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Abstract: A parametric method for the estimation of vector valued discrete-time stochastic
systems or equivalently the spectrum of a stochastic process is presented. The key feature is that
the method can be used to frequency selectively fit the model to the data. This means that parts
of the spectrum can be modeled with a lower model order than otherwise would be necessary if
the entire spectrum would be modeled. The method is based on a frequency domain subspace
method which delivers a state-space model. It explicitly takes into account that the frequency
domain data is derived from finite data and hence suppresses the leakage effects. Furthermore
the method employs convex optimization to guarantee that the estimated parametric model
represents a non-negative spectrum.
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1. INTRODUCTION

Identification of discrete time stochastic systems or, equiv-
alently, parametric spectral estimation is used in numer-
ous signal processing and control applications. This paper
deals with estimation of finite order discrete-time stochas-
tic systems from time domain output samples. A wide
range of techniques are available ranging from simple least-
squares estimation of AR models to more complex tech-
niques such as subspace and maximum-likelihood meth-
ods, Stoica and Moses (1997); Van Overschee and De Moor
(1996); Marple (1987) . A common denominator for most
methods is that the parametric model sought should de-
scribe the second order properties of the sampled signal as
well as possible. Hence, the entire frequency spectrum is
captured by the model. In some applications the measured
data is a mix between important and unimportant parts.
Particularly, here we consider the case when it is desired
to only model a frequency sub-band of the spectrum and
disregard the spectrum outside this band. From the appli-
cation point of view only the interesting sub-band needs
to be modeled with a parametric model. One benefit of
only partially model the spectrum is that a lower order
model can be used to accurately model the sub-band. This
becomes particularly important if the spectrum outside
the sub-band of interest has a complex shape and thus
would require a very high model order and consequently a
large amount of data. Of course, from an optimality point
of view, deliberate under-modeling will often have a price
in terms of reduced performance and this effect has to
balance the above mentioned advantages.

The method introduced in this paper is frequency selective
in the user can select in which frequency bands the
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parametric model should fit the spectrum. Is is based on
a subspace method coupled with convex optimization to
guarantee that the estimated model correspond to a valid
non-negative spectrum. Similar combinations has been
described in earlier work but only for a full model of the
spectrum by Stoica et al. (2000); Mari et al. (2000) Byrnes
et al. (2001). Similar techniques has also been applied for
identification of positive real systems, e.g. McKelvey and
Moheimani (2005); Hoagg et al. (2004). Also a related
frequency domain subspace method has been described
earlier by Van Overschee et al. (1997). However that
method departs from samples of a discrete time spectrum
which were assumed to be available.

The technique we present below will pre-process the time-
domain samples by usage of the discrete Fourier transform
(DFT) to filter out the sub-band of interest. The estima-
tion of the parametric model is then performed using a
subspace based method based on techniques in McKelvey
et al. (1996).

The paper is organized as follows. In the following section
we introduce the stochastic model, the associated autocor-
relation function and the important parametric model of
the truncated half spectrum. In Section 3 we illustrate how
the stochastic system can be realized from a covariance se-
quence. In Section 4 we present the estimation algorithm.
In Section 5 a small example is presented and in the last
section the conclusions are presented.

2. PRELIMINARIES

For a discrete time, zero-mean, wide sense stationary
random process y(t) ∈ R

n, the autocorrelation sequence
Ryy(τ) is defined as

Ryy(τ) , E{y(t)yT (t − τ)} (1)
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where Ryy(τ) ∈ R
n×n, E{·} denotes the expectation,

t is the sample index of the process and τ is the lag
length. Directly from the definition we have the property
Ryy(−τ) = RT

yy(τ).

2.1 Power Spectrum

Based on the auto-correlation function, the Power Spec-
trum is defined as the Fourier transformation of the auto-
correlation function,

Φ(ω) ,

∞∑

τ=−∞

Ryy(τ)e−jwτ , w ∈ R (2)

which is a Hermitian positive semi definite, periodic func-
tion with period 2π where, for all ω

v∗Φ(ω)v ≥ 0; ∀ v ∈ C
n,v 6= 0. (3)

Here v∗ denotes transpose and complex conjugation.

By considering only the positive lags of the autocorrelation
function and half the zero lag we introduce the half
spectrum,

φ(ω) ,
1

2
Ryy(0) +

∞∑

τ=1

Ryy(τ)e−jwτ (4)

and consequently Φ(ω) = φ(ω)+φ(ω)∗. In the estimation
we will only deal with a finite number of samples of the
auto-correlation function and it is convenient to introduce
the truncated half spectrum which is DFT of the N samples
long truncated auto-correlation function,

ϕ(k) =
1

2
Ryy(0) +

N−1∑

τ=1

Ryy(τ)W−kτ
N (5)

where WN = ej2π/N .

2.2 Stochastic system model class

This paper deals with the identification of finite dimen-
sional vector valued stochastic systems. A state-space
model class is used in the following form

x(t + 1) = Ax(t) + w(t)
y(t) = Cx(t) + v(t)

(6)

where x(t) ∈ R
n is the state vector, A ∈ R

n×n is a matrix
with all eigenvalues inside the unit disc and C ∈ R

p×n.
The signals w(t) ∈ R

n and v(t) ∈ R
p are zero mean

stochastic processes which are temporally white and with
a joint covariance matrix

E

{[
w(t)
v(t)

] [
w(t)
v(t)

]T
}

,

[
Q11 Q12

QT
12 Q22

]

, Q (7)

We also assume that the model order n, i.e. the length
of the state vector x(t) is minimal. The auto-correlation
function for the stochastic state-space model can easily be
derived by using the equations (6) and (7). We obtain the
relations

Rxx(τ) = ARxx(τ − 1), τ > 0
Ryy(τ) = CAτRxx(0)C∗ + CAτ−1Q12, τ > 0

(8)

To simplify the notation, define

P , Rxx(0)
G , ARxx(0)C∗ + Q12.

(9)

The state-covariance matrix P is defined by the Lyapunov
equation

P = APAT + Q11 (10)

and for the output covariance matrix we have at lag zero.

R0 , Ryy(0) = CPCT + Q22. (11)

The eigenvalue assumption of the A matrix guarantee that
a solution P > 0 exists. In summary we have

Ryy(τ) =







R0 = CPCT + Q22, τ = 0

CAτ−1G, τ > 0

GT (A−τ−1)T CT , τ < 0

(12)

2.3 Frequency domain model

The truncated half spectrum for the stochastic state-space
model then follows as

ϕ(k) =
1

2
R0 +

N−1∑

τ=1

Ryy(τ)W−kτ
N

=
1

2
R0 +

N−1∑

τ=1

CAτ−1GW−kτ
N

=
1

2
R0 + C(W k

NI − A)−1(I − W k
NAN−1)G

(13)

where the last equality is due to the properties of a
geometric series. Recall that k is the frequency index (DFT
bin). Finally, by introducing an auto-correlation frequency
domain state-variable matrix Zk ∈ C

n×p

Zk , (W k
NI − A)−1(I − W k

NAN−1)G (14)

we obtain the alternative recursive description of the
truncated half spectrum.

ZkW k
N = AZk + (I − W k

NAN−1)G

ϕ(k) =
1

2
R0 + CZk, k = 0, . . . , N − 1

(15)

The factor (I − W k
NAN−1) in (13) and (14) explicitly

accounts for the inherent leakage effect which always occur
for finite data.

The particular model description (15) also appears in the
F-Esprit algorithm McKelvey and Viberg (2001); Gun-
narson and McKelvey (2004) and in frequency domain
subspace based algorithms McKelvey et al. (1996). Associ-
ated with the model in (15) are the extended observability
matrix with s block rows

Os ,







C
CA

...
CAs−1







(16)

and the lower triangular block matrix

Γs ,








R0

2
0 ··· 0

CG
R0

2
−CAN−1G 0 ··· 0

CAG CG−CANG
R0

2
−CAN−1G

. . .
...

...
. . .

. . .
. . .








(17)

We note that since the state-space model is minimal
(A,C) is an observable matrix pair and the extended
observability matrix in (16) has full rank whenever s ≥ n.
The number of block rows must be selected to satisfy
s > n.
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Phase shifted versions of ϕ(k) (multiplications with W k
N )

can easily be derived via (15) and by stacking them in a
long vector we obtain

Yk = OsZk + ΓsUk (18)

where

Yk , Wk,s ⊗ ϕ(k), Uk , Wk,s ⊗ Ip (19)

and

Wk,s ,

[

1 W k
N W 2k

N · · · W
(s−1)k
N .

]T

(20)

Here ⊗ denotes the Kronecker matrix product, see Graham
(1981).

3. A FREQUENCY DOMAIN STOCHASTIC
REALIZATION ALGORITHM

In this section we will introduce a subspace based realiza-
tion algorithm which will recover a state-space model from
a finite set of auto-correlation coefficients. As stated in the
introduction we are primarily concerned with the problem
of only recover parts of the spectrum and hence we will
focus on an algorithm which uses samples of the truncated
half spectrum, i.e. a subset of {ϕ(k)}N−1

k=0 . In this section
we assume the covariance sequence is known without errors
and hence the algorithm is a realization algorithm. In the
next section we will assume only signal samples and modify
the algorithm to provide an approximation instead.

Assume the set {Ryy(τ)}N−1
τ=0 is known and calculate ϕ(k)

for a suitable set of frequency indices {ki}
M
i=1. The size

of the index set must satisfy M > s + n. For each
frequency index the vector Yk from (19) is constructed
and assembled into a matrix as

Y , [Yk1
Yk2

· · · YkM ] (21)

From (18) it directly then follows

Y = OsZ + ΓsU (22)

where
Z , [Zk1

Zk2
· · · ZkM ]

U , [Uk1
Uk2

· · · UkM ]
(23)

From (22) we see that the known matrix Y is the sum
of two matrices where the product OsZ by construction
has rank of n or less. However, following the technique
in Gunnarson and McKelvey (2004) it can be shown it
has rank n. The second matrix product ΓsU has higher
rank but can be removed by using a projection matrix
which projects onto the nullspace of U. Algebraically this
projection can be formulated as

Π⊥ = I − U∗(UU∗)−1U. (24)

Multiplying this matrix from the left then leads to

YΠ⊥ = OsZΠ⊥ (25)

since UΠ⊥ = 0. It has been established that the rank of
the product OsZΠ⊥ remains as n and hence the range
space of YΠ⊥ coincide with the range space of Os, see
Gunnarson and McKelvey (2004). As the rank is n we can
factor YΠ⊥ into two matrices where the left matrix factor
can be selected with a size identical to Os. A numerically
convenient way to obtain the desired factor is by using
the singular value decomposition (SVD). As we originally
assumed the model matrices in (6) are real valued we can
enforce the matrix to be real by

[
Re

{
YΠ⊥

}
Im

{
YΠ⊥

}]
=

[

Ẑs Ẑo

]
[
Σ̂s 0

0 Σ̂o

] [
V̂T

s

V̂T
o

]

.

(26)
Now, as YΠ⊥ has rank n and has a range space which
is similar to the real matrix Os the compound matrix of
the real and imaginary parts also have rank n. Hence, the
singular value decomposition has n positive singular values
which are collected on the diagonal in the Σ̂s matrix. The
remaining singular values are all zero and hence Σ̂o is a
zero matrix. As a realization of the observability matrix
we thus simply select Ẑs. Due to the relation (25) there
exists a non-singular matrix T such that

Ẑs = OsT (27)

which means that Ẑs is the extended observability matrix
of a state-space realization similar to the realization
defined by the matrices A and C. From the knowledge
of the observability matrix we directly obtain the C in
this alternative realization as the first p rows in Ẑs. With
Matlab matrix notation we have

C̄ = Ẑs(1 : p, :) (28)

i.e. C̄ is the first p rows of the observability matrix.
The structure of the observability matrix implies that the
following block row can be obtained as the present block
row multiplied by the A from the right. This leads to the
linear relation

J1ẐsĀ = J2Ẑs (29)

where J1 and J2 are defined as

J1 =
[
I(s−1)m 0(s−1)m×m

]
(30)

J2 =
[
0(s−1)m×m I(s−1)m

]
. (31)

The linear equations (29) can be solved using the pseudo-

inverse as J1Ẑs corresponds to an extended observability
matrix with s − 1 ≥ n block rows and consequently has
full rank n. Hence, we have

Ā = (J1Ẑs)
†J2Ẑs. (32)

where (·)† denotes the pseudo-inverse operator.

Now we turn to the remaining parameter G. Recall the
relation (13). Given that Ā and C̄ have been determined
the G matrix appears linearly in the equation. Hence, we
can form the linear equation







C̄(IW
k1

N
−Ā)−1(I−W

k1

N
ĀN−1) I

C̄(IW
k2

N
−Ā)−1(I−W

k2

N
ĀN−1) I

...
...

C̄(IW
kM
N

−Ā)−1(I−W
kM
N

ĀN−1) I











Ḡ

R̄0

2



 =







ϕ(k1)
ϕ(k2)

...
ϕ(kM )







(33)
and solve for the unknown Ḡ and R̄0 using the pseudo-
inverse. Note that R0 is independent of the state-space
basis. Hence, we obtain in the noise free case R̄0 = R0.

To this end we have demonstrated how the system ma-
trices C̄, Ā and the related matrix Ḡ can be explicitly
calculated. Together with R̄0 these matrices represents the
half spectrum, (see (4))

φ(ω) =
1

2
R̄0 + C̄(I ejω − Ā)−1Ḡ (34)

The parametric model of the half spectrum in (34) is also
known as a spectral summand model of the spectrum.
However, for most filtering applications a more useful
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representation of a stochastic system is by the spectral
factor model in (6). By using samples of the spectrum
derived from the spectral summand model we can retrieve
a covariance matrix Q for the spectral factor model. The
spectrum of the spectral factor model is given by

Φ̄(ω, Q̄) =
[
C̄(I ejω − Ā)−1 I

]
[
Q̄11 Q̄12

Q̄T
12 Q̄22

]

︸ ︷︷ ︸

Q̄

[

(C̄(I ejω − Ā)−1)∗

I

]

(35)
where we explicitly have marked the dependence of the
covariance matrix Q̄. Note that the covariance matrix
Q̄ appears linear in the spectrum. The spectral factor
model is now easily calculated by forming a set of linear
equations where each equation equates the spectrum from
the spectral summand model with the spectrum from
the factor model. We also need to add a constraint to
guarantee that Q ≥ 0, i.e. it is a proper covariance matrix.
It is also worth pointing out that the set defined by

{Q̄ | Q̄ ≥ 0 and Φ(ω) = Φ̄(ω, Q̄)} (36)

is an infinite set. Hence, the spectral factor model is over-
parametrized in terms of the elements of the matrix Q̄
and infinitely many solutions exists. However, any of them
represents the same spectrum which is of course the entity
we have set out to model from the beginning. Finding
a point in the set (36) can be achieved by semidefinite
programming, see e.g. Vandenberghe and Boyd (1996).

4. ESTIMATION FROM TIME DOMAIN DATA

In a practical application we are normally faced with
samples of the stochastic process and not samples of the
autocorrelation function. To make the procedure outlined
above useful we have to provide estimates of the autocor-
relation function and derive a state-space approximation
of the spectrum. Since the first step will only provide an
estimate of the autocorrelation function the second step
has to take into account that the estimated autocorrelation
function has errors.

From samples of the stochastic process, {y(t)}Nt

t=0 we form
the unbiased sample estimate of the correlation function
as

R̂yy(τ) ,

Nt−τ−1∑

t=τ

y(t)y(t − τ)T

Nt − τ
, τ = 0, . . . , N < Nt − 1

(37)
Then samples of the truncated half spectrum is calculated
as, c.f. (13),

ϕ̂(k) ,
1

2
R̂0 +

N−1∑

τ=1

R̂yy(τ)W−kτ
N (38)

Recall that the indices k corresponds to the DFT fre-
quency bins and bin k corresponds to frequency 2πk/N
[rad/sample]. The index set {ki}

M
i=1 is then selected to

correspond to the sub-band(s) where the spectrum is to
be well approximated by the model. The choice of N is a
trade-off between the variance of the last lag and M , the
size of the index set used in the subspace steps.

The next step is to construct the matrix Ŷ according to
(19)-(21) and use the projection matrix as in (25). In the

noise free case YΠ⊥ has rank n but in the case with
estimates from data it has normally full rank. The SVD
step in (26) will then provide a rank n estimate of the

range space of the observability matrix. Indeed Ẑs in (26)
is a solution to the following problem Golub and van Loan
(1980)

Ẑs, T̂ = arg min
Z∈Rsp×n,T

‖ZT − ŶΠ⊥‖F , s.t. rankZ = n

(39)
Again, due to the noise, the linear relation (29) does not
hold so using (32) provides the solution to

Â = arg min
A

‖J1ẐsA − J2Ẑs‖F . (40)

The estimate of the C matrix, Ĉ is taken according to (28).

To proceed we need to ensure that Â is stable. This can
be checked for example by an eigenvalue decomposition.
If any eigenvalues λ are outside the unit circle we modify
them to 1/λ as this does not change the spectrum. If any
eigenvalues are on the unit circle, a small perturbation is
employed to move them inside the unit disc.

The aim of the final step is to provide estimates of the
G matrix and the covariance matrix R0. A straightfor-
ward technique would be to solve (33) in a least-squares
sense. However, the least-squares solution might lead to
a spectral summand model which does not satisfy the

constraint that for all ω, φ̂(ω) + φ̂(ω)∗ ≥ 0, i.e. that the

spectrum is non-negative or equivalently that φ̂(ω) is non-
negative real. To enforce this inequality constraint to hold
for all ω is, in a numerical method, of course intractable.
However, by using the Positive Real Lemma, the non-
negative real condition can be recast to a finite dimensional
matrix inequality Andersson (1967). See Appendix A for
a statement of the lemma.

Define the quadratic loss function with G and R0 as free
parameters as

J(G,R0) =

M∑

i=1

∥
∥
∥
∥

[
ReS(ki)
ImS(ki)

] [
G
R0

]

−

[
Re ϕ(ki)
Imϕ(ki)

]∥
∥
∥
∥

2

F

(41)

where

S(k) =
[

Ĉ(IW k
N − Â)−1(I − W k

NÂN−1) I/2
]

(42)

The estimate is then defined as the solution to the follow-
ing constrained optimization problem

Ĝ, R̂0, P̂ = arg min
G,R0,P

J(G,R0,P)

subject to

[
P − AT PA G − APCT

GT − CPAT R0 − CPCT

]

≥ 0,

P = PT and R0 = RT
0

(43)

The constraint in (43) in the form of the linear matrix
inequality will by Lemma 2 guarantee that the half spec-
trum is non-negative real. This constrained optimization
problem is a version of a second order cone program with
linear matrix equality constraints and can be solved effi-
ciently with interior point methods, see e.g. Vandenberghe
and Boyd (1996); Boyd and Vandenberghe (2004). The
software package SeDuMi by Sturm (1999) support this
class of problems. The final step to produce a spectral
factor model is identical as in the realization case outlined
in the previous section and involves no approximations.
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Fig. 1. Average power spectra based on 100 Monte Carlo
simulations

5. NUMERICAL EXAMPLE

This section shows a comparison of the derived sub-
space based estimation algorithm with Welch’s estimation
method which is a non-parametric estimator.

A stochastic processes of model order 12 is considered
with a spectrum shown in Figure 1 as a solid line. The
frequency region of interest (0.2 ≥ f ≥ 0.4) where f = 1 is
the sampling frequency. The number of time domain data
samples used for the spectrum estimation was Nt = 10000.

Welch’s averaged, modified periodogram method with 50%
overlap and window size of 128 was used to calculate
the spectrum in 1024 frequency points (i.e. a 1024 points
DFT).

The presented subspace algorithm first produced sample
estimates of the autocorrelation function for a total of
N = 128 non-negative lags, see (37). Then, using the DFT,
samples of the truncated positive spectrum was derived.
Within the frequency region of interest a total number of
M = 26 samples were retained in the estimation and the
size of the phase shifted vector (19)-(20) was selected as
s = 20.

A Monte Carlo simulation with NMC = 100 trials was
performed. The average spectrum estimate based on the
100 Monte Carlo runs are shown Figure 1. The dashed line
represent the parametric method based on the presented
subspace algorithm while the dash dotted line represents
Welch’s method. The figure show that both methods re-
solve the peaks but the parametric method has less average
error. Furthermore the average mean square spectrum
error was calculated as

e2
est =

2π/N

NMC

NMC∑

t=1

M∑

i=1

(Φ(2πki/N) − Φ̂est(2πki/N))2.

(44)
The results of the Monte Carlo simulations for both
estimation methods are shown in Table 1. For this example
the parametric method has the lowest average mean square
error in the selected sub-band.

e
2

Welch
e
2

F−Esprit

e
2

W elch

e
2

F−Esprit

MSE error 7.5× 105 1.0× 105 7.5

Table 1. Sample based estimation error based
on 100 Monte Carlo simulations.

6. CONCLUSIONS

This paper has shown a parametric method for the esti-
mation of stochastic systems or equivalently the spectrum
of a stochastic process. The key feature is that the method
can be used to frequency selectively fit the model to the
data. This means that parts of the spectrum can be mod-
eled with a lower model order than otherwise would be
necessary if the entire spectrum would be modeled. The
method is based on a frequency domain subspace method
that explicitly take into account that the frequency domain
data is derived from finite data and hence suppress the
leakage effects. Furthermore the method employs convex
optimization to guarantee that the estimated parametric
model represents a non-negative spectrum.
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Appendix A. POSITIVE REAL LEMMA

Lemma 1. (PR). Given A ∈ R
n×n, B,CT ∈ R

n×m,
D ∈ R

m×m, with det(ejωI − A) 6= 0 for ω ∈ R, (A,B)
controllable and Ψ(ω) = D + C(ejωI − A)−1B, the
following two statements are equivalent:

i For ω ∈ R

Ψ∗(ω) + Ψ(ω) ≥ 0 (A.1)

ii There exists P = PT ∈ R
n×n such that

[
P − AT PA CT − AT PB

C − BT PA D + DT − BT PB

]

≥ 0 (A.2)

Proof. Based on the Kalman- Yakobovich - Popov lemma
see Rantzer (1996) the Positive Real Lemma follows im-
mediately.

By a hermitian transpose of the transfer function it is easy
to see that the dual result exists.

Lemma 2. (PR dual). Given A ∈ R
n×n, B,CT ∈ R

n×m,
D ∈ R

m×m, with det(ejωI − A) 6= 0 for ω ∈ R, (A,C)
observable and Ψ(ω) = D+C(ejωI−A)−1B, the following
two statements are equivalent:

i For ω ∈ R

Ψ∗(ω) + Ψ(ω) ≥ 0 (A.3)

ii There exists P = PT ∈ R
n×n such that

[
P − AT PA B − APCT

BT − CPAT D + DT − CPCT

]

≥ 0 (A.4)
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