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AbstractThe aim of this paper is to introduce a notion of zero dynamics for linear, time-delay
systems. To this aim, we use the correspondence between time-delay systems and system with
coefficients in a ring, so to exploit algebraic and geometric methods. By combining the algebraic
notion of zero module and the geometric structure of the lattice of invariant submodules of
the state module, we point out a natural way to define zero dynamics in particular situations.
Then, we extend our approach, in order to encompass more general situations, and we provide
a definition of zero dynamics which applies to a number of interesting cases, including that of
time-delay systems with commensurable delays. Relations between this notion and fixed poles
in closed loop control schemes, as well as with a concept of phase minimality, are discussed.

1. INTRODUCTION

The notion of zero of a linear, dynamical system has been
investigated and studied by several authors from many
different points of view (see Schrader and Sain [1989)
for a comprehensive discussion of the literature). Among
others, the approach based on the notion of Zero Module,
introduced in Wyman and Sain [1981] and recalled below
provides conceptual and practical tools that, besides being
useful in the analysis and synthesis of classical linear
systems, can be effectively generalized to a larger class
of dynamical systems. In particular, an algebraic notion
of zero in terms of zero module has been given in Conte
and Perdon [1984] for linear, dynamical system with coef-
ficients in a ring, instead of a field.

By exploiting the possibility to associate to any linear,
time-delay system a system with coefficients in a suitable
ring, the algebraic notion of zero introduced in the ring
framework can be employed for defining a notion of zeros
and of zero dynamics for time-delay systems. This idea
has been partially developed in Conte and Perdon [2007],
where some properties of zeros for time-delay systems
with commensurable delays and their role in inversion and
matching problems for the SISO case have been studied.
Here, extending previous results of Conte and Perdon
[1984] and Conte and Perdon [2007], we consider the notion
of zeros for time-delay systems from a geometric point
of view. More precisely, we analyze the relation existing
between the zero module and the quotient module of
two controlled invariant submodules, endowed with the
structure induced by a closed loop dynamics. This relation
motivates the introduction of a notion of zero dynamics
for time-delay systems in the general case of non com-
mensurable delays. In addition, it is shown that the zero
dynamics so defined determines the dynamics that remains
fixed by closing (dynamic) feedback loops which make the
system maximally unobservable.

The paper is organized as follows. In Section 2, we recall
basic notions concerning system with coefficients in a ring
and the related notion of Zero Module. In Section 3, we
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describe briefly the relation between time-delay systems
and systems with coefficients in a ring and we introduce,
on that basis, the algebraic notion of zero, in terms of
zero module, for time-delay-systems. In Section 4, we recall
some basic notions of the geometric approach and we give
a meaningful characterization of the zero module in terms
of controlled invariant submodules. This characterization
suggests a possible notion of zero dynamics, which applies
to the case of time-delay systems and which is formally
defined in Section 5. Finally, in Section 6 we discuss the
role of the zero dynamics so introduced in closed feedback
loops, also in relation to stability and minimality of phase.

2. PRELIMINARY RESULTS

Let R denote a commutative ring. By a system with

coefficients in R, or a system over R, we mean a linear

dynamical system ¥ = (A, B,C,X) whose evolution is
described by a set of difference equations of the form

x(t+1) = Az(t) + Bu(t) 1

y(t) = Calt) o)

where ¢ € IN is an independents variable, z(-) belongs to
the free module X = R™, u(-) belongs to the free module
U = R™, y(-) belongs to the free module Y = RP and
A, B, C are matrices of suitable dimensions with entries in
R. By analogy with the classical case of linear, dynamical,
discrete-time systems with coefficients in the field of real
number IR, we view the variables z, v and y as, respec-
tively, the state, input and output of X.

Besides being interesting abstract algebraic objects, sys-
tems with coefficient in a ring have been proved to be
useful for modeling and studying particular classes of
dynamical systems, such as discrete-time systems with
integer coefficients, families of parameter dependent sys-
tems and time-delay systems. General results concerning
the theory of systems with coefficients in a ring and a
number of related control problems can be found in Sontag
[1976], Sontag [1981], Brewer et al. [1986], Kamen [1991],
Conte and Perdon [2000a] and the references therein.
In particular, a geometric theory, similar to the existing

10.3182/20080706-5-KR-1001.2274



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

one for linear systems over a field (see Basile and Marro
[1992], Wohnam [1985]), has been developed and related
concepts, like the notion of controlled invariance and that
of conditioned invariance, maintain their relevance in the
solution of several design problems in the ring framework
(see Conte and Perdon [2000a]).
In the following, we will generally assume that the con-
sidered rings are Noetherian rings, that is rings in which
non decreasing chains of ideals are stationary, having no
zero divisors. Examples of rings of that kind are the rings
of polynomials in one or several variables with real coeffi-
cients, that is IR[Aq, ..., Ag], k > 1, which play a basic role
in dealing with time-delay systems. For k = 1, IR[A] is also
a principal ideal domain (p.i.d), that is a ring in which any
ideal has a single generator (see e.g. Lang [1984]).
Introducing the ring R[z] of polynomials in the inde-
terminate z with coefficients in R and its localization
R(z) = S7'R[z] at the multiplicatively closed set S of
all monic polynomials (that is the ring of all rational
functions in the indeterminate z with monic denominator),
we can associate to the system X its transfer function
matrix G(z) = C(2I — A)~! B, whose elements are in R(z),
and the induced R(z)-morphism G : U ® R(z) — YV ®
R(z). Each element u(z) of U ® R(z) can be written as
(2) = >22,, uez ™", with u; € U, and it can be naturally
interpreted as a time sequence, from some time tg to oo, of
inputs. Respectively, each element y(z) of Y ® R(z) can be
written as y(z) = 3.0, w2~ ", with y; € Y, and it can be
naturally interpreted as a time sequence, from some time
to to oo, of outputs. Therefore, G can be interpreted as
a transfer function between the space of input sequences
and the space of output sequences.
From the point of view we adopt here, following Wyman
and Sain [1981], the zeros of ¥ are determined by the
transfer function G in an abstract algebraic way. To this
aim, let us recall that the R[z]-modules U ® R[z] and
Y ® R|z], usually denoted by QU and by QY, are naturally
embedded into U @ R(z) and into Y ® R(z), respectively.
Then, as in Conte and Perdon [1984], we can extend to
the framework of systems with coefficients in a ring the
definition of Zero Module introduced in Wyman and Sain
[1981].
Definition 1. (see Conte and Perdon [1984] Definition 2.1
and compare with Wyman and Sain [1981]) Given the
system ¥ = (A, B,C, X) with coefficients in the ring R
and transfer function G, the Zero Module of ¥ is the R[z]-
module Z defined by

G 1(2)(QY) + QU

Z= KerG(z) + QU

(2)

The reader is referred to Conte and Perdon [1984] and
Wyman and Sain [1981] for a discussion of the above
definition and for a description of Z in terms of generator
of zeroing signals. Here, we recall that the zero module
is related to the numerator matrix in polynomial matrix
factorizations of G(z).

Proposition 1. (Conte and Perdon [1984] Proposition 2.5)
Let G(z) = D7IN be a factorization where D = D(z) and
N = N(z) are coprime polynomial matrices of suitable
dimensions, with D(z) invertible over R(z). Then, the
canonical projection py : QY — QY/NQU induces an
injective R[z]-homomorphism « : Z — Tor(QY/NQU).

When R is a field, «, as shown in Wyman and Sain [1981],
is actually an isomorphism. In the ring case, additional
conditions are required in order to assure this (see Conte
and Perdon [1984], Section 2).

An important property of the zero module Z of ¥ is that
it is a finitely generated R-module (see Conte and Perdon
[1984] Proposition 2.4).

The relations between zero modules and inverse systems
in the ring framework has been investigated in Conte and
Perdon [1984] and part of the results found there have
been extended to the case of SISO time-delay systems in
Conte and Perdon [2007]. The reader is referred to those
papers for comments and examples. Here, we simply recall
that the zero module of a left (right) invertible system %
is, in a natural way, a submodule (a quotient module) of
the state module of any left (right) inverse.

3. TIME-DELAY SYSTEMS AND SYSTEMS OVER
RINGS

Let us consider a linear, time-invariant, time-delay system
¥4 with non commensurable delays hy, ..., hy, h; € RT,
for : = 1,...,k, described by equations of the the form

k a kE b
) =D > At —jhi) + Y Bijult — jhi)

i=1 j=0 i=1 j=0

y(t) = D> Cia(t — jhi)
i=1 j=0

(3)
where A;;, BH, and C; are matrices of suitable dimensions
with entries in the field of real number IR.
In the last years, a great research effort has been devoted
to the development of analysis and synthesis techniques for
this kind of systems, mainly extending tools and methods
from the framework of classical linear systems (see e.g.
the Proceedings of the IFAC Workshops on Linear Time
Delay Systems from 1998 to 2006). Many of the difficulties
in dealing with systems of the form (3) is due to the fact
that their state space has infinite dimension. In order to
circumvent this, it is useful to associate to a time-delay
system a suitable system with coefficients in a ring, as
described in the following.
For any delay hj, let us introduce the delay operator ¢;
defined, for any time function f(t), by d;f(t) = f(t — h;).
Accordingly, we can re-write the system (3) as

ZZ Aij0ja( +ZZB”J

11_]0 =1 j=0

-3 e

1=1 j=0

g =

Now, by formally replacing the delay operators §; by the
algebraic unknowns A}, it is possible to associate to ¥4 the
discrete-time system X over the ring R = IR[Aq,..., Ak]
defined by equations of the form (1) where the matri-

ces A,B,C are given by A = Y7 | Z?:o A AL, B =

Z?:1 Z?:o BijA;'; C = Z§=1 Z?zo CZJAE Actually,
the time-delay system X,; and the associated system X
over R = IR[Ay,...,Ag] are quite different objects from
a dynamical point of view, but they share the struc-
tural properties that depend on the defining matrices.
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Therefore, control problems concerning the input/output
behavior of ¥; can be naturally formulated in terms of
the input/output behavior of ¥, transferring them from
the time-delay framework to the ring framework. Since
systems with coeflicients in a ring have finite dimensional
state modules, algebraic methods, similar to those of linear
algebra, as well as geometric methods apply. Solutions to
specific problems found in the ring framework often can
be interpreted in the time-delay framework for solving the
original problem (see Conte and Perdon [2000a], Conte and
Perdon [2005] and the references therein).

Here, we use the correspondence between time-delay sys-
tems and systems over rings to derive a notion of zero
modules for the first ones.

Definition 2. Given a time-delay system X, of the form
(3), the Zero Module of ¥, is the zero module Z of the
associated system X over the ring R = IR[Aq, ..., Ag].

4. GEOMETRIC TOOLS

Extension of the geometric theory developed in Basile
and Marro [1992] and in Wohnam [1985] to systems over
rings has been considered by many authors (see Conte and
Perdon [2000a] for an account of the geometric approach
to systems with coefficients in a ring). The basic notion of
the geometric approach we will need in the following are
briefly recalled below.

Definition 3. (Hautus [1982]) Given a system X, defined
over a ring R by equations of the form (1), a submodule
V of its state module X is said to be

i) (A, B)-invariant, or controlled invariant, if and only
if AV CV+ ImB;

ii) (A, B)-invariant of feedback type if and only if there
exists an R-linear map F : X — U such that (A +
BF)Y C V.

Any feedback F as in ii) above is called a friend of V.

While (A, B)-invariance is a purely geometric property,
controlled invariance is a notion related to system dy-
namics which is equivalent to invariance with respect to
a closed loop dynamics. For systems with coefficients in a
ring, an (A, B)-invariant submodule V is not necessarily
of feedback type and therefore it cannot always be made
invariant with respect to a closed loop dynamics, as it
happens in the special case of systems with coefficients
in the field of real numbers IR. Equivalence between the
(generally weaker) geometric notion of (A, B)-invariance
and the (generally stronger) dynamic notion of feedback
type invariance holds if V is a direct summand of X, that
is X = V@& W for some submodule W (see Conte and
Perdon [1998]).

Given a submodule £ C X, there exists a maximum
(A, B)-invariant submodule of X' contained in K, denoted
by V*(K), but there may not be a maximum (A4, B)-
invariant submodule of feedback type contained in K.
The computation of V*(K) is not difficult for systems with
coefficients in the field of real numbers IR, since V*(K)
coincides with the limit of the sequence {Vy} defined by

i ()
Virr = KNA™Y(V, + ImB)

and the limit itself is reached in a number of steps lesser
than or equal to the dimension of the state space. For
systems with coefficients in a ring, the sequence (4), which
is non-increasing, may not converge in a finite number of
steps and, in such case, an algorithm for computing V*(K)
is in general not available. In case R is a principal ideal
domain, however, using a different characterization, the
problem of computing V*(K) has been satisfactorily solved
(see Assan et al. [1999Db)]).

Together with the notion of controlled invariance, it is
useful to consider the following one.

Definition 4. Given a system X, defined over a ring R
by equations of the form (1), a submodule S of its state
module X is said to be

i) (A, C)-invariant, or conditioned invariant, if and only
it ASN KerC) CS;

ii) injection invariant if and only if there exists an R-
linear map G : Y — X such that (A+ CG)S C S.

Any output injection G as in ii) above is called a friend of

S.

In the ring framework, (A, C)-invariance is a weaker prop-
erty than injection invariance. Given a submodule K C X,
there exists a minimum (A, C)-invariant submodule of X
containing K, usually denoted by $*(K), but there may not
be a minimum injection invariant submodule containing /C.
As in the field case, it is not difficult to show that, denoting
simply by V* the (A, B)-invariant submodule V*(KerC)
and by S* the (A, C)-invariant submodule $*(ImB), the
submodule R* defined by
R*=V"NS* (5)

is the smallest (A, B)-invariant submodule of V* contain-
ing V* N ImB. Moreover, if V* is of feedback type with a
friend F, also R* is of feedback type and it has the same
friends (see Basile and Marro [1992], Wohnam [1985]).
In dealing with geometric objects, it is useful to consider
the following notion, first introduced in Conte and Perdon
[1982].
Definition 5. Let M C N be R-modules. The closure of
M in N, denoted by CLy(M) or simply CL(M) if no
confusion arises, is the R-module defined by

CLy(M) = {z € N, such that ax € M 6

for some a # 0, a € R}. (6)

If M =CLN(M), M is said to be closed in N.

The main result relating the zero module with the geomet-
ric objects we have introduced can now be stated.

Proposition 2. (compare with Conte and Perdon [1984],
Proposition 4.2) Given a system X, defined over a ring R
by equations of the form (1), with zero module Z, assume
that ¥ is reachable and observable and that G(U(z) is
closed in Y(2). Then, V*/R* is R-isomorphic to Z. If, in
addition, V* is of feedback type and F' is one of its friends,
V*/R* endowed with the R[z]-module structure induced
by the R-morphism (A + BF)[y-/g- : V*/R* — V*/R" is
R][z]-isomorphic to Z.

In the hypothesis of the above Proposition, if one could
assume that V*/R* is a free R-module, say V*/R* = R",
taking a matrix Z that represents (A 4+ BF)|y- g~ with
respect to the canonical basis of R", it would be quite
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natural to define the zero dynamics of ¥ as the dynamics
given by

§(t+1) = Z&(t) (7)
with £ € R" or, equivalently, as the pair (R", Z). Although
this approach may be inspiring, it is too limiting, due
to the many restrictive hypothesis at its basis. However,
motivated by the above discussion and following the same
line of reasoning, we will provide a definition which applies
to more general cases in the next Section.

5. ZERO DYNAMICS

Since the notion of zero we are considering is related to
the input/output behavior of the system, it is clear that,
for systems represented in state space form by equation
(1), such notion makes sense only if the representation is
minimal. Very roughly, this means that the dimension of
the state module cannot be reduced without altering the
transfer function. Minimality in this sense is guaranteed
by the requirement of reachability and observability in
Proposition 2, but reachability is a very strong property.
Actually, in the framework of systems over rings, we can
have state space representations of the form (1) that are
minimal, in the sense explained above, but not reachable
and, of course, cannot be transformed into a reachable rep-
resentation by a change of basis in the state module. Mini-
mal representation are characterized by the fact that both
the observability matrix [CT CTAT...CT(AT)"1]T and
the reachability magtrix [B AB....A""!'B] are full rank.
Reachability requires in addition that [B AB...A""1B]
has a right inverse over R.

We will assume, in the rest of the paper, that the represen-
tation of the system ¥ given by equations (1) is minimal.
Then, in order to handle general situations, in which the
strong hypothesis made in Proposition 2 do not necessarily
hold, let us consider, instead of 8*, its closure CL(S*) in
X and, instead of R* = V*NS*, the module CL(S*)NV*.

Proposition 3. Let¥ be a system defined over the ring R
by equations of the form (1) and let V*, S&* R* be as
above. Then,

i) the closure CL(S*) of &* in X is a conditioned
invariant submodule;
ii) the module CL(S*) N V* coincide with the closure
CL(V*)(R*) in V* of R*;
iii) CL(y~)(R*) is the minimum closed submodule of V*
that contains V* N ImB;
iv) CL(y~)(R*) is a controlled invariant submodule of X'.

In the following, we will denote CL(y+)(R*) simply by
CL(R").

Remark 1. Remark that CL(R*) is not necessarily closed
in X. Since direct summands are closed, in case R* is
a direct summand of V* (as it happens if V*/R* is a
free module), there is no difference in considering R* or
CL(R*). On the other hand, if R is p.i.d. (as the ring
R[A]), CL(R*), being closed, is a direct summand of V*.

With the above ingredients, we can now generalize the
situation described in Proposition 2 to the cases in which
V* is not of feedback type. In such an occurrence, let-
ting dimV* = s, construct the extended system . =
(4, B, C,, X.), with state module X, = X® R*, for which

A0 B0
Ae—[o O:|7Be—|:0 I:|7C€_[CO] (8)
where I and 0 denote, respectively, the identity matrix
and null matrices of suitable dimensions. Denoting by V/
a matrix whose columns span V* in X, the submodule
V. spanned in X & R® by the columns of the matrix
[VTI)T is easily seen to be (A, Be)-invariant and direct
summand of X & R?®. Hence, V, is of feedback type and,
since the canonical projection 7 : X & R® — X is such
that w(V,) = V*, it can be viewed as an extension of V*.
In addition, we have that V. is contained in the kernel
KerC, of the output map of ..

Proposition 4. In the above situation and with the above
notations, let R, be defined as R, = 7~ 1(CL(R*)). Then:

i) R, is an (4., B.)-invariant submodule of X;
ii) R, is the minimum closed submodule of V. that
contains V. N ImB,;
iii) the canonical projection 7 induces an R-isomorphism
between the quotient module V. /R. and the quotient
module V*/(CL(R*)).

It follows from the above Proposition, that the system ex-
tension produces an R-module V. /R, and an R-morphism
(Ac + BeFe)ly, /v, , where Fy is a friend of V., that form a
pair akin to the pair V*/R* and (A + BF )|y« g~ consid-
ered, under the restrictive hypothesis of Proposition 2, at
the end of Session 4. So, we can state a Definition of zero
dynamics for ¥ which is meaningful also when not all the
hypothesis of Proposition 2 necessarily hold.

Definition 6. With the above notation, assume that V. /R.
is a free R-module, say V./R. = R", and that Z is a
matrix representing (A, + BeFe)|y, jz. with respect to the
canonical basis of R". Then, the Zero Dynamics of ¥ is
the dynamics given by

§(t+1) = Z£(1) (9)
with £ € R" or, equivalently, that determined by the pair
(R, Z).

Remark that, in case V. /R, is not a free R-module, we do
not define a zero dynamics. However, zero dynamics exist
in interesting cases, like, in particular, when S* N V* =0
(as it happens if ¥ is left invertible) and V* is a free
R-module. Moreover, in case R is a ring of polynomials
in one or more indeterminates with coefficients in IR,
ie. R = IR[Aq,...,A], as it happens for systems over
ring associated to time-delay ones, we have the following
Proposition.

Proposition 5. If R = IR[Aq,...,Ag], then V./R. is a
torsion free R-module. If V. /R, is a free R-module, then
R is a free direct summand of V.. In particular, if £ =1,
Ve/Re is a free R-module of the form R" for some r.

Proof. Being a direct summand of a free module over a
ring of polynomials with real coefficients, V. is a free R-
module by Lam [1978], hence V, = R?® for some s. Being
the inverse image of a closed submodule, R, is closed in
V.. In the general case, this implies that V. /R, is a torsion
free R-module, which is the first statement. In particular,
if k = 1, the ring of coefficients is a principal ideal domain
and the last statement follows. If V,/R. is free, that is
V./Re = R", V, is isomorphic to R, & R" and the second
statement follows, as above, from Lam [1978].
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Definition 7. Let ¥4 be a time-delay systems of the form
(3). Then, the Zero Dynamics of ¥4 is the zero dynamics
of the associated system X, if that is defined.

Remark 2. Remark that, by Proposition 5, the zero dy-
namics is always defined for time-delay system with com-
mensurable delays, since the ring of coefficients of the
associated systems is, in that case, IR[A4].

Remark 3. Note that, in case the zero dynamics of X is
given by the pair (R", Z), by substituting in Z the delay
operators ¢; to the indeterminates Aj, we can consider,

instead of (9), a time-delay dynamics of the form £(t) =
Z& ().

6. FIXED DYNAMICS AND PHASE MINIMALITY

A basic property of the zero dynamics introduced above
is that it characterizes the fixed dynamics with respect to
feedbacks which make the system maximally unobservable.
To see this, recall that V* represents the largest submodule
of the state module X’ that can be made unobservable by
means of a feedback, either a static one, in case V* is of
feedback type, or a dynamic one, in case it is not. This
property is fundamental in dealing with the problem of
decoupling the output of the system from a disturbance
input (see Conte and Perdon [1995]).

Given a system X, with coeflicient in R, of the form (1), let
us consider the submodule V* of its state module. In order
to deal with all possible situations at the same time, let us
consider a system Y. = (A, Be, Ce, X¢) that, in case V*
is not of feedback type, is an extension of ¥ constructed
as in Section 5 and that, in case V* is of feedback type,
coincides with ¥. In both cases we have the submodules
V. and R, which, in particular, when 3. coincides with
3, coincide with V* and CL(R*). Now, let us assume
that the zero dynamics of ¥ is defined and that V., is a
direct summand of X, (as we have seen in Section 5, this
is true by construction if 3. is actually an extension of 3,
but it must be assumed explicitly in the other situation).
In case Y. coincides with X, the existence of the zero
dynamics implies, in particular, that R* is closed, that is
R* = CL(R*). In both situations, we can write X, = X @
R" = R. ® W1 & Wy for some submodules W7 and W,
such that V. = R, ® Wy and X, = V., @ Ws. Writing A,
and B, in that basis and partitioning accordingly, we get

A Aig Ags B
Ac=| 0 Ay A3 |;B.=| 0 (10)
Asy Asp Ass Bs

The dynamic matrix A. = (A.+ B.F') of the compensated
system, for any friend F, = [Fy F» F3] of V., takes
therefore the form

A+ BiFy Ao+ BiFy Ais+ BiF3s
A, = 0 Aoy Aas (11)
0 0 As3 + B3 F3

showing that the dynamics of the block Ass remains fixed
for any choice of F, and that (A. + BoFe)ly, jr, = Aso.
We can recall now the abstract notion of stability for
systems with coefficients in a ring R, by introducing the
concept of Hurwitz set (see e.g. Habets [1994]).

Definition 8. Given a ring R, a subset S C R[z] of
polynomials with coefficients in R in the indeterminate
z is said an Hurwitz set if (i) it is multiplicatively closed,

(ii) it contains at least an element of the form z — a, with
a € R, (iii) it contains all monic factors of all its elements.

Given a Hurwitz set S, a system ¥ of the form (1) with
coefficients in R is said S-stable if det(zI — A) belongs to
S. If R = IR[A], then R[z] = R[z, A] and, letting

S = {p(z,A) € R[z], such that p (y,e" ") #0 (12)
for all complex number v with Re v > 0},

we have that stability of a system ¥, in the time-delay
framework corresponds to S-stability of the associated
system ¥ in the ring framework.

When the zero dynamics is defined, together with the
notion of stability we have recalled above, it allows us to
give the following Definition.

Definition 9. Let ¥ be a system with coefficients in the
ring R and assume that the zero dynamics of X is defined
and that it is given by (R", Z). Then, ¥ is said to be S-
minimum phase, where S in an Hurwitz set, if its zero
dynamics is S-stable.

In case X is associated to the time-delay system X ; and S is
the Hurwitz set defined by (12), X4 is said to be minimum
phase if ¥ is S-minimum phase.

For invertible systems, the notion of minimum phase is
related the existence of stable inverses, due to the relation
between zeros of the system and poles of the inverse.
Various aspects of this situation, following the lines of
Wyman and Sain [1981] have been dealt with in Conte
and Perdon [1984], Conte and Perdon [2000b] and, more
recently, Conte and Perdon [2007].

Example 1. Let us consider the time-delay system >4
described by the equations

.Tl(t) = £U3(t — h) =+ U(t — h)

Za(t) = x1(t) + x3(t — h) +u(t — h)

.i‘g(t) = xg(t) + l‘3(t — h)

y(t) = x3(t)

and the associated system ¥ = (A, B,C, X) with coeffi-
cients in R = IR[A] and matrices

Yg =

00A A
A=|10A|;B=|A|;C=[001].
01A 0

Computations in the ring framework show that V* is the
submodule of R? spanned by the vector V = (A 0 0)7
and that R* = {0}. V* is not of feedback type (because
it is not closed), so we consider the extension ¥, =
(4, B.,C., X.), where

A0
A0
00
01

We have, now, that V, is the submodule of R* spanned
by the vector [VT 1]7 = (A 00 1) and R, = {0}. The
zero dynamics of X, as well as that of X4, is defined and
can be explicitly evaluated. A friend F, of V. is given, for

8 8 8 :H Therefore, the dynamic

:C.=[0010".

instance, by F, =

matrix A. = (4. + B.F) of the compensated system is
00A —-A
10A -A .

Ac= 191 A o |- Since AJVT 1T = —[VT 1)T] the
000 —1
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zero dynamics turns out to be given by (R,[—1]) or, in
other terms by

. f(t + 1) = 75(15) (13)

(£(t) = —£(t) in the time-delay framework)

with £ € R (respectively & € IR).
Taking the Hurwitz set S as in (12), ¥ is S-minimum phase
(respectively, ¥, is minimum phase).
The transfer function matrix of ¥ is G(z) = %
and then, by Proposition 1, the zero module Z of ¥ can
be viewed, through the injective R[z]-morphism «, as a
submodule of Tor(QY/(Az+A)QU). We have, in our case,
Tor(QYV/(Az + A)QU) = R[A, z]/(Az + A)R[A, z] and,
since any element p(A,z) € IR[A,z] can be written in
a unique way as p(A,z) = Ap'(A,z) +p"(2) = Al(z +
1)g(A,z) + ¢'(A)] + p’(2), we can say that, denoting
equivalence classes by brackets, any element [p(A,z)] €
Tor(QY/(Az + A)QU) can be written in a unique way
as [p(A, z)] = [A¢(A)] + [p”(2)], for suitable polynomials
¢ (A) € R[A] and p”(z) € IR[z]. It turns out that I'm(«)
coincides with the submodule of R[A, z]/(Az+ A)IR[A, z]
consisting of all elements of the form [Ag¢'(A)] with ¢'(A) €
IR[A]. Inspection shows that, for any element of that kind,
Z[A¢ (A)] = [2A¢' (A)] = [-Aq¢'(A)] and therefore we can
conclude that the R[z]-module Z can be viewed as defined
by the pair (R,[—1]), in accordance with what expressed
by equation (13).
Example 2. Let us consider the time-delay system 34
described by the equations

@1 (t) = x2(2)

Y= { i‘g(t) = x1(t) + ul(t — h]) + us(t — ho)
y(t) = xa(t)

and the associated system ¥ = (A, B,C, X) with coeffi-

cients in R = IR[A1, As] and matrices

A= [(1’(1)};3: {Aol AOZ];C:[O 1.

Computations in the ring framework show that V* is the
submodule of R? given by span{(A; 0)T, (A 0)T} and
that R* = 0. V* is not of feedback type (because it is not
closed), so we should consider an extension %, as described
in Section 5. However, we know that V. /R. = V*/R* = V*
is not free, since it has a minimal set of generators which
are not linearly independent. Therefore, in this case, the
zero dynamics is not defined.
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