
A Eulerian approach to the analysis of

rendez-vous algorithms

Claudio Canuto, Fabio Fagnani, Paolo Tilli

Dipartimento di Matematica, Politecnico di Torino, Corso D. Abruzzi,
24, 10129 Torino, Italy

Abstract: In this paper we analyze rendez-vous algorithms in the situation when agents can
only exchange information below a given distance threshold R. We study the system under an
Eulerian point of view considering (possibly continuous) probability distributions of agents and
we present convergence results both in discrete and in continuous time. The limit distribution
is always necessarily a convex combination of delta functions at least R far apart from each
other: in other terms these algorithms are locally aggregating. Numerical simulations seem to
show that starting from continuous distributions, in general these algorithms do not converge
to a unique delta (rendez-vous) in agreement with previous literature on this subject.
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1. INTRODUCTION

Consider N agents moving in R
q according to the following

rule: at every time t (discrete or continuous), each agent
i, which is in position xi(t), computes the barycenter of
the positions of those agents which are within (Euclidean)
distance R from him and it moves towards it with a certain
velocity. This is a well known rendez-vous algorithm: if
one can prove that the corresponding geometric graph
(connecting agents which are below distance R) does not
change, it easily follows that all agents converge to the
same position (rendez-vous). In general however the graph
changes (and could disconnect). Consequently, the overall
dynamical system is non-linear (possibly discontinuous)
and hard to analyze. While more robust rendez-vous al-
gorithms assuring that the communication graph never
looses links, have been considered in ?), the behavior of
these more basic algorithms is largely unexplored. Liter-
ature on this argument is quite vast: recent contributions
are ?) and for applications in opinion dynamical models
?). In ?) a convergence result for the discrete time case
and q = 1 (agents on a line) is presented: in the limit
configuration, for any two agents i and j, xi(∞) and xj(∞)
are either equal or their distance is larger than R. If we
assume that the initial positions xi(0) all stay in a hyper-
cube K = [−L,L]q, the set of limit positions Ω = {xi(∞)}
will be a subset of K: in particular |Ω| = O(2L/R)q (inde-
pendent on the number of agents). The exact cardinality
of Ω of course depends on the initial positions. Simulations
(in the case q = 1) presented in ?) seem to indicate that
for a large number of agents uniformly distributed on the
interval, |Ω| ≈ L/R (the limit positions are around 2R far
apart), but there is no analytical proof of this result.

The main goal of our paper is to study the behavior of
these algorithms for large number of agents in any dimen-
sion, in discrete and continuous time. In order to achieve
this, we believe that a fundamental step is to study these
dynamical models for continuous distributions of agents.
Some considerations in this sense are already in ?), our

point of view is however different: we undertake in fact an
“Eulerian” point of view, substituting labelled agents, with
probability measures of agents. Our results (Theorems 1
and 3, Corollary 2) show that, for a special important case
of rendez-vous algorithms preserving global average, the
algorithms, both in discrete than in continuous time and
in any dimension q, converge to a limit configuration which
is always a convex combinations of deltas with reciprocal
distance at least R. At our knowledge these results are new
(for q > 1). At the moment we do not have (except in very
special symmetric case Corollary 6) any theoretical tool to
predict the final number of deltas. As in the cited litera-
ture, numerical simulations seem to show that only local
aggregation takes place and that the limit configuration
exhibit more than one delta even if we start from initial
distributions with connected support. The exact number
of these deltas seems to depend not only on R and on
the initial distribution, but also on the specific averaging
scheme used.

2. FORMULATION OF THE PROBLEM

2.1 The dynamical model

Assume we have a family V of N agents in the space R
q

(typically with q = 1, 2, 3). The position of agent j ∈ V at
time t will be denoted by xj(t) and we will assume that
they will all undergo the same dynamics governed by a
linear input/output law which can be in either discrete or
continuous time.

The discrete-in-time model In this setting we assume
the evolution of all systems to take place over the lattice
0, τ, 2τ, . . . where τ > 0 is a fixed time. For the sake of
notational simplicity, we will write xj(t) for xj(τt) with
t ∈ N. In this case we assume the evolution law of every
agent to be of the following type:

xj(t + 1) = xj(t) + τuj(t) (1)
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The vector uj(t) ∈ R
q plays the role of a control velocity

function that each agent can autonomously choose on the
basis of the information available at time t: it will be a
function of the position xj(t) as well of the information
transmitted by its neighbors. More precisely, we fix a
function ξ : R

q → R
+ such that ξ(0) > 0 and we define

the averages

mj(t) =

∑

k∈V

ξ(xk(t) − xj(t))xk(t)

∑

k∈V

ξ(xk(t) − xj(t))
. (2)

The control functions which we want to consider are of
type

τuj(t) = pj [mj(t) − xj(t)]

where pj ∈]0, 1[ are scalar (which can also be function of
the position of the agents). We thus obtain

xj(t + 1) = pjmj(t) + (1 − pj)xj(t) . (3)

The new position is a convex combination of the average of
the other agents weighted according to their distance from
xj(t) and xj(t) itself. The N coupled evolution equations
(3) can be compactly written as follows. We consider
X(t) ∈ R

N×q where X(t)js is the s-th component of xj(t).
For any X ∈ R

N×q we define A(X) ∈ R
N×N by

A(X)jk = pj(X)
ξ(Xk − Xj)

∑

h∈V

ξ(Xh − Xj)
+ (1 − pj(X))δi,k (4)

where Xh denotes the h-th row of X and where δi,k is equal
to 1 if i = k and 0, otherwise. Then, the global dynamical
system becomes

X(t + 1) = A(X(t))X(t) (5)

It is immediate to check that matrices A(X) are always
stochastic.

We say that the A(X) satisfies the rendez-vous problem if
for every initial condition X(0), there exists α ∈ R

q such
that

lim
t→+∞

X(t)js = αs ∀j ∈ V ∀s = 1, . . . , q .

Moreover, we say that it satisfies the barycentral rendez-
vous problem if α = N−1

∑

j xj(0).

The case typically treated in the literature is when ξ =
1B(0,R) the indicator function of the ball B(0, R), for some
R > 0, and pj(t) = 1 for every j and t. In this paper we will
instead focus on weight profiles ξ which are continuous: the
basic case we have in mind is when ξ is a continuous radial
decreasing function, supported inside B(0, R). On one side,
this continuity assumption seems to be necessary for our
type of results. On the other hand, simulation seem to
show that the behavior of this algorithm, when ξ is close
to the indicator function, is quite close to the one with
exactly ξ = 1B(0,R). Our main theoretical results are for
the case when, for some fixed constant λ,

pj(X) = λ
∑

k∈V

ξ(xk(t) − xj(t)) ,

A(X)jk = λξ(xk(t)−xj(t))+(1−λ
∑

k∈V

ξ(xk(t)−xj(t)))δjk

(6)
The peculiarity of this case consists in the fact that A(X)
is symmetric. Simple consequence of this is that the global
average of the system is preserved:

∑

k xk(t) is a constant.

The continuous-in-time model In this case we consider
instead the law of agents to be

ẋj(t) = uj(t) (7)

where now t ∈ R
+. We consider the same choice for the

control signals uj(t). This leads, in the same compact
notation, to

Ẋ(t) = (A(X(t)) − I)X(t) (8)

One difficulty we have to face with the continuous model
is that if A(X) is not continuous, the above closed loop
equation cannot be interpreted in the classical sense.
Notice that this happens when ξ is discontinuous, as for
instance an indicator function.

3. A CONTINUOUS-IN-SPACE MODEL

When the number of agents N is very large, one can
identify the set of agents with a mass distribution µt in
R

q, which varies in time 1 according to a suitable strategy
based on some communication model, as in the previous
section. In this identification, borrowing the terminology
from Fluid Dynamics, we abandon the “Lagrangean” point
of view used above (in which the independent variable
j labels individual agents followed in their evolution)
in favor of an “Eulerian” point of view, in which the
independent variable x denotes a point in space occupied
at each time by an infinitesimal mass of agents. Since
agents are neither created nor destroyed, the total mass
of µt is preserved, hence we may assume that µt is a
probability measure in R

q. As before, the time variable
t can be discrete as well as continuous, whereas the model
is continuous in space by construction. This means that
the mass distribution µt can be in principle any Borel
probability measure in R

q: for instance, a large number
of agents uniformly distributed in an interval [a, b] can
be well represented by normalized Lebesgue measure on
[a, b]. Another example is the discrete-in-space model of
the previous section, which reduces to a particular case
of the continuous-in-space model (see the end of the next
section).

The initial condition is therefore a probability measure µ0

in R
q which is assigned, and represents the initial spatial

configuration of agents. Then, we have to distinguish
between the discrete-time and the continuous-time models.

3.1 Discrete time

If times t takes discrete values, we are led to consider a
dynamical system of the kind

µt+1 = T (µt)µt, t = 0, 1, 2, . . . , (9)

where, for each time t, T (µt) is some linear operator which
maps the space of probability measures in R

q to itself.

In order to derive a model which generalizes (and is
consistent with) the discrete case, we have to further
specialize the structure of the operator T (µt). Suppose
that, at time t, we have a mass distribution µt, and let
x ∈ R

q be a point in the support of µt (i.e. the smallest

1 Throughout this section, we use the subscript t to denote depen-
dence on time, and not differentiation with respect to t. Similarly,
any object O(t, x) depending on both the time variable t and the
space variable x will be denoted by Ot(x).
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closed set which carries all the mass). We suppose that
the agents at x (or, more precisely, the infinitesimal mass
of agents µt(dx) at x), move from position x at time t
to position x̃ at time t + 1, according to some strategy
which we will specify later: it is convenient to write the
displacement x̃ − x as the product of a fixed time step
τ > 0 times a velocity vector Vt(x), i.e.,

x̃ − x = τVt(x). (10)

Introducing the time step τ , as already done in Sect. 2.1.1,
allows us to consider arbitrary clock times τ , 2τ , 3τ etc.
at which the agents actually move, whereas the variable t
takes integer values only. With this notation, determining
a strategy reduces to specifying how the velocity field Vt(x)
is computed, at time t, by the agent(s) at position x.

Before further specifying the choice of Vt(x), we point out
that (10) can be written as

µt+1 = γt#µt, t = 0, 1, 2, . . . , (11)

where γt : suppµt ⊆ R
q → R

q is the mapping γt(x) = x +
τVt(x) while the symbol γt# denotes the corresponding
action on measures (called the push forward of a measure,
see e.g. ?)), formally defined by

γt#µt(E) = µt(γ
−1
t (E)) for every Borel set E.

Note that γt#µt is unaffected by values of γt possibly
taken outside the support of µt. With this definition, (11)
uniquely defines the mass distribution µt+1 by the identity

∫

Rq

f(x) dµt+1 =

∫

Rq

f(x + τVt(x)) dµt (12)

for every (bounded and Borel) function f . Choosing f
to be the characteristic function of a set E, for instance,
makes this definition consistent with the intuitive idea that
a point x in the support of µt moves (at time t +1) to the
point x + τVt(x) in the support of µt+1.

The choice of the velocity field Vt(x) in (11) is the
counterpart of the choice of the velocity controls uj(t) in
previous formulation.

In the spirit of the communication constraint considered
above, we require that an agent at x should compute its
velocity Vt(x) by looking only at those other agents which
are a distance less than some given communication radius
R > 0 apart from x. Mathematically, this means that
the vector Vt(x) should depend only on the restriction
of the measure µt to the ball of radius R centered at
x. A possible choice for Vt(x) is the following. As in
Section 2, suppose we have fixed a positive number R
(the communication radius), a non negative, continuous
function ξ(x) : R

q → R which is supported and positive in
the ball B(0, R), and, for every probability µ, a continuous
function p(µ)(x) : R

q →]0, 1[ (also continuous with respect
to µ). For any x ∈ supp(µt), we put

Vt(x) = p(µt)(x)









∫

Rq

yξ(y − x) dµt(y)
∫

Rq

ξ(y − x) dµt(y)

− x









(13)

Note that the ratio of the two integrals is a sort of center
of mass (weighted by ξ) of the neighbouring agents that
the agent at x can see, within radius R. This is precisely
the continuous analog of (2).

Note that, when x ∈ supp(µt), the integral at the denom-
inator is always positive, thus (13) does define a velocity

vector at every point x ∈ supp(µt). The case which we will
be able to analyze theoretically is when

p(µ)(x) =

∫

Rq

ξ(y − x) dµ(y) (14)

In this case, Vt(x) can be rewritten in the form

Vt(x) =

∫

Rq

(y − x)ξ(y − x) dµt(y), ∀x ∈ supp(µt) .

(15)

Note that, in presence of the same mass distribution µt, a
change in p(µt)(x) only changes the velocity field in (13)
by scalar multiples: this however affects the resulting new
mass distribution µt+1, and hence the resulting dynamics
is a different one. However, numerical simulations (see
Sect. ??) show the same qualitative behaviour for the
dynamics when p(x) is given by our choice (14) and
p(x) = 1. Our choice, however, leads to a system which
is much simpler to handle mathematically, and lends itself
to a much more detailed analysis for what concerns the
asymptotic behaviour for large times.

This is the main result of this section, for a proof see ?).

Theorem 1. Assume that ξ is as above with the additional
assumption that ξ(x) = ξ(−x). Consider the dynamical
system (11) relative to velocity field (15) and any time step
τ > 0 such that τ ||ξ||∞ < 1, and let µ0 be a probability
measure on R

q with compact support. Then, the sequence
of probability measures µt converges, as t → ∞, to a limit
probability measure µ∞, which is a purely atomic measure,
whose atoms are a distance at least R apart from one
another.

In the previous theorem, convergence of measures is meant
in the weak-star topology, i.e.

lim
t→∞

∫

Rq

η(x) dµt(x) =

∫

Rq

η(x) dµ∞(x)

for every bounded and continuous test function η. Note
that, no matter what the initial measure is, Dirac masses
arise in the limit, hence the weak-star topology is natural
in this context.

We now discuss the precise relation of these models with
the discrete-in-space models considered above. Straight-
forward verification shows that if we consider sequences of
atomic probability measures

µt =
1

N

∑

j∈V

δxj(t).

(with |V | = N) solving (11), then, the trajectories xj(t)
solve (1) with uj(t) = Vt(xj(t)). Using the compact
notation X(t) introduced above, we have that X(t) solves
(5) with A(X) as in (4). In particular, if Vt is given by
(15), we obtain that A(X) is equal to the choice (6). We
have thus the following obvious consequence of previous
result.

Corollary 2. Assume that ξ is as above with the additional
assumption that ξ(x) = ξ(−x). Consider the dynamical
system (5) with A(X) given by (6). For any initial condi-
tion X(0), the sequence matrix X(t) converges to a matrix
X(∞) such that

Xh(∞) 6= Xk(∞) ⇒ ||Xh(∞) − Xk(∞)|| ≥ R ,

(where, we recall, Xh denotes the h-th row of X).
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3.2 Continuous time

If the time variable t varies continuously, we are naturally
lead to a partial differential equation which governs the
evolution in time of the mass distributions µt. At every
time t ≥ 0, the velocity field is again given by (13), whereas
the fact that the movement of the mass distribution is
dictated by Vt(x), is expressed by the continuity equation

∂

∂t
µt + div Vtµt = 0, (16)

which being homogeneous also carries the information that
mass is neither created nor destroyed. If every µt is a
priori known to be smooth (i.e., an absolutely continuous
measure with smooth density), then (16), coupled with
(13), can be considered in principle as a nonlinear partial
differential equation, and classical solutions can be sought.
However, this is not our case: indeed, since the equation
is nonlinear, even if the initial mass distribution µ0 is
smooth, it is not clear whether smoothness is preserved
for all times. Moreover, we are interested in the large-time
behaviour, hence in global solutions which shall possibly
show local concentration phenomena, and we are also
interested in nonsmooth initial measures (in fact, we seek a
formulation which contains the discrete-in-space case as a
particular case, when the initial mass distribution is purely
atomic).

Therefore, (16) is to be meant in the sense of measures.
Formally, if we multiply (16) by a smooth test function
η(x) with compact support, and we integrate in space (by
part in the last term), we obtain

d

dt

∫

Rq

η(x) dµt(x) =

∫

Rq

∇η(x) · Vt(x) dµt(x). (17)

This suggests the following notion of solution. We say that
a family of probability measures µt, t ≥ 0, is a solution
of (16), if for every test function η(x), continuous with
compact support in R

q, the function

t 7→

∫

Rq

η(x) dµt(x), t ≥ 0,

is absolutely continuous in [0,∞), and satisfies (17) for
almost every t > 0.

Note that this definition makes sense for every initial
probability measure µ0. Moreover, this notion of solution
allows one to see the discrete-in-time case as an explicit
Euler approximation to the continuous case. Indeed, let
µn, n = 0, 1, 2, . . . be a solution, with time step τ > 0, of
the problem with discrete time, i.e. rewriting (12) with n
in place of t,

∫

Rq

η(x) dµn+1 =

∫

Rq

η(x + τVn(x)) dµn (18)

If we expand

η(x + τVn(x)) = η(x) + τ∇η(x) · Vn(x) + O(τ2)

and we assume, as it is the case when Vt(x) is given by
(13), that Vt(x) is uniformly bounded, plugging into (18)
and neglecting the term O(τ2) we obtain
∫

Rq

η(x) dµn+1 =

∫

Rq

η(x) dµn + τ

∫

Rq

∇η(x) · Vn(x) dµn,

an explicit time-discretization of (17).

For a generic velocity field given by (13) when the initial
datum has compact support, we are able to prove existence

and uniqueness of a solution, in the previous sense. How-
ever, with the special velocity field (15), we are also able
to study the asymptotic behaviour of solutions for large
times, as in the discrete-in-time model.

Theorem 3. Assume that ξ is as above with the additional
assumption that ξ(x) = ξ(−x). Let µ0 be any probability
measure on R

q. Then there exists a unique solution µt

of (16) with the velocity field given by (15). Moreover,
as time t tends to infinity, the probability measures µt

converge to a limit measure µ∞, which is a purely atomic
measure, whose atoms are a distance at least R apart from
one another.

3.3 Symmetries

Both in the continuous-in-time and in the discrete-in-time
models, we are not in general able to predict the number of
deltas which will appear in the limit configuration starting
from a given initial measure µ0 (even when µ0 is the
uniform distribution). However some further information
on µ∞ can be obtained in the presence of symmetries.

Suppose for the moment we are back to the discrete-in-
time model. We have the following result.

Proposition 4. Let U : R
q → R

q be a linear isometry. Let
ξ be a radial function and let p(µ)(x) be such that for any
probability measure µ, it holds p(U#µ)(Ux) = p(µ)(x) for
all x. Consider now µt the solution of (11) with respect to
the initial condition µ0. Then U#µt is the solution of (11)
with respect to the initial condition U#µ0.

Proof. Denote by Wt(x) the velocity field Vt(x) when we
consider the measure U#µt. It is immediate to check that
UVt(x) = Wt(Ux) for any x ∈ R

q. Notice now that
∫

Rq

f(x) d(U#µt+1)(x) =

∫

Rq

f(Ux) dµt+1(x)

=

∫

Rq

f(U(x + Vt(x))) dµt(x) =

∫

Rq

f(Ux + Wt(Ux)) dµt(x)

=

∫

Rq

f(x + Wt(x)) d(U#µt(x) .

This proves the result.

This has some interesting consequences.

Corollary 5. Let U : R
q → R

q be a linear isometry. Let ξ
be a radial function and let Vt(x) be given by (15). Then,

U#µ0 = µ0 ⇒ U#µ∞ = µ∞

A probability measure µ is said to have a radial symmetry
with respect to x0 ∈ R

q if for any rotation U centered in
x0 we have that U#µ = µ. We can now present our last
result.

Corollary 6. Let ξ be a radial function and let Vt(x) be
given by (15). If µ0 has radial symmetry with respect to
x0, then µ∞ = δx0

.

Proof. By Corollary 5, we have that µ∞ also has radial
symmetry with respect to x0, and since it must be a finite
combination of deltas, it has to coincide with δx0

.

Similar considerations also hold in the continuous-time
case. Notice that in this context, a key point underlying
the proof of Proposition 4 is the uniqueness result for the
corresponding partial differential equation.
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4. NUMERICAL SIMULATIONS

At last, we provide some insight about the behavior of the
continuous-in-time model introduced in Sect. 3.2, through
numerical simulations, mainly in 1 dimension. We assume
here that the probability measures µt are absolutely con-
tinuous with respect to the Lebesgue measure on R, i.e.,
there exists a density function ρ(t, x) ≥ 0, which ∀t is com-
pactly supported in x and satisfies

∫

R
ρ(t, x) dx = 1, such

that dµt = ρ(t, x) dx. The initial density ρ(0, x) = ρ0(x) is
assigned. The continuity equation (16) becomes

∂ρ

∂t
+

∂F

∂x
= 0 , (19)

where the flux is given by

F (t, x) = Vt(x)ρ(t, x) (20)

and the velocity V is defined as in (13). Note that, unlike
in classical conservation laws, our flux F (t, x) depends on
ρ in a non-local manner. We discretize (??) by a standard
finite-volume approach (see, e.g., ?)). Let ∆x > 0 be
a constant spatial discretization step. For j ∈ Z, the
nodes xj+1/2 = (j + 1

2 )∆x define a sequence of cells
Vj = [xj−1/2, xj+1/2]. Let ∆tn > 0 be a sequence of time
steps, which define time instants tn+1 = tn + ∆tn, n ≥ 0,
from t0 = 0; set λn = ∆tn/∆x. The numerical method is
obtained by integrating (??) over the volume Vj×[tn, tn+1]
and applying the divergence theorem, after introducing
approximate cell-averages

ρn,j ≃
1

∆x

∫ xj+1/2

xj−1/2

ρ(tn, x) dx

and approximate fluxes (termed numerical fluxes)

Fn,j+1/2 ≃
1

∆t

∫ tn+1

tn

F (t, xj+1/2) dt .

We obtain the scheme

ρn+1,j = ρn,j −λn(Fn,j+1/2 −Fn,j−1/2) , j ∈ Z, (21)

which updates the cell-averages at time tn+1 from their
values at time tn, provided we specify how the numerical
fluxes depend on the cell averages ρn,k. In all subsequent
simulations, we will adopt the popular choice of the upwind
fluxes, in which information is taken from the side where
particles arrive; precisely, assuming that an approximate
velocity Vn,j+1/2 is defined at time tn and at the interface
point xj+1/2, we set

Fn,j+1/2 =

{

Vn,j+1/2ρn,j if Vn,j+1/2 ≥ 0 ,

Vn,j+1/2ρn,j+1 if Vn,j+1/2 < 0 .

The definition of the approximate velocity Vn,j+1/2 is
based on (13) with p(µ) = 1 or on (15); in both cases,
we use as weight ξ an even nonnegative function whose
support is [−R,R] . Precisely, we set

Vn,j+1/2 =

∫ R

−R

z ξ(z)ρn(z + xj+1/2) dz

∫ R

−R

ξ(z)ρn(z + xj+1/2) dz

, (22)

or, in the second case,

Vn,j+1/2 =

∫ R

−R

z ξ(z)ρn(z + xj+1/2) dz , (23)

where ρn is the piecewise constant function which equals
ρn,k on the cell Vk, k ∈ Z.

Uniform (in ∆t and n) L1-stability is assured by the CFL
(Courant-Friedrichs-Lewy) condition

Cn := λn max
j∈Z

|Vn,j+1/2| ≤ 1 ;

hereafter, we will invariably choose ∆tn so that Cn = 1.

The first set of simulations is relative to an initial density
ρ0 which is constant = 1 on the interval [0.5, 1.5] and
zero elsewhere. We report the results for two choices
of the weight function ξ: i) a C∞ function ξ1 obtained
by slightly smoothing the characteristic function of the
interval [−R,R] near ±R to ensure continuity; ii) the
piecewise linear hat function ξ2(z) = 1 − |z|/R. In both
cases, the observed asymptotic dynamics is consistent
with the theoretical prediction of Theorem 3, i.e., a finite
number of deltas is created whose minimal distance is
invariably larger than R. Figure ??, obtained with ξ =
ξ1 and ∆x = 1/1600, provides a sort of “bifurcation
diagram”, in which the position of the discrete deltas in
the interval [0.5, 1.5] (represented on the horizontal axis)
is plotted against log(1/R) (represented on the vertical
axis). This scenario appears to be quite robust with respect
to numerical discretization errors; besides, the alternative
choices (??) or (??) of velocity have little influence on
the limit pattern, the only significant difference being in
the speed of the evolution. Similar diagrams have been
reported in the recent literature (see ?) and the references
therein), stemming from related but different models.
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Fig. 1. Position of discrete deltas vs log(1/R) (with ∆x =
1/1600) for the piecewise constant initial density

Next, we investigate the influence of the weight ξ on the
asymptotic patterns. For both choices ξ = ξ1 and ξ = ξ2

and several values of R, we have monitored the number
#δ of deltas, as well as the inter-delta distance, expressed
by the ratios σmin = dmin/R and σmax = dmax/R, where
dmin and dmax are the minimal and maximal distance
between two consecutive deltas. Indeed, it is conjectured
in the literature mentioned above that this ratio should be
around 2. Our results, given in Table ??, do suggest the
existence of a limit intra-delta distance significantly larger
that R; yet they also indicate a clear dependence on the
particular weight assigned to the neighboring agents in the
communication graph.

Finally, we consider two non-constant initial distributions,
a linear and a parabolic one given by the left-hand plots
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Table 1. Number of deltas and intra-delta
distance as a function of R

ξ = ξ1 ξ = ξ2

R #δ σmin σmax #δ σmin σmax

0.10 4 2.367 2.450 5 1.800 2.175
0.08 5 2.250 2.635 7 1.646 1.802
0.06 7 2.250 2.472 9 1.792 1.930
0.04 11 2.167 2.250 14 1.583 1.812
0.02 22 2.208 2.333 28 1.583 1.792

of Fig. ??. The resulting patterns of discrete deltas,
obtained at convergence for R = 0.04 with ξ = ξ1

and ∆x = 1/800, are shown in the corresponding right-
hand plots. The figures show a characteristic feature of
the communication model under investigation, namely,
the mass transportation occurs only locally (on a scale
proportional to R), but not globally (on the scale of the
support of the initial density). Indeed, the strengths of the
limit deltas retain the linear or parabolic behavior of the
initial data. The “bifurcation” diagram for such cases (see
Fig.??)
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1.5
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3.5

4

Fig. 2. Position of discrete deltas vs log(1/R) (with ∆x =
1/1600) for the piecewise linear initial density

indicates that the loss of symmetry does not destroy the
mechanism of one-by-one increment of the number of
deltas as R decreases, observed above. The ratios σmin

and σmax are 2.125 and 2.292 (linear case) and 2.066 and
2.312 (parabolic case).

At last, we show that the 1D scenario illustrated so far
is somehow representative of the “structurally stable”
behavior of our model in higher dimensions. Consider the
two-dimensional situation of an initial constant density,
whose support is a circle centered at the origin. According
to Corollary 6, the limit measure is a single Dirac mass
centered at the origin. However, the discretization errors
generated by the use of a Cartesian grid of rectangular cells
in the plane immediately destroy the rotational symmetry;
no matter how refined is the grid, mass concentrates locally
as in the 1D case, giving rise to a pattern of discrete deltas
whose reciprocal distance is related to the size of R. Fig.
?? provides an example of such limit pattern, for R = 0.08
and ∆x = ∆y = 1/32.
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Fig. 3. Initial piecewise linear density (top left); discrete
deltas at convergence (top right); initial piecewise
parabolic density (bottom left); discrete deltas at
convergence (bottom right)
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Fig. 4. Limit pattern of discrete deltas for R = 0.08, with
∆x = ∆y = 1/32, starting from an initial piecewise
constant density supported in a circle around the
origin.
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