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Abstract: This paper presents a solution to the boundary stabilization of a symmetric composite laminated plate in free 
transverse vibration. The symmetric composite laminated plate dynamics is presented by a linear fourth order partial 
differential equation (PDE). A linear control law is constructed to stabilize the plate. The control force consists of feedback 
of the velocity at the boundary of the plate. The novelty of this article is that it is possible to stabilize asymptotically a free 
transversely vibrating symmetric composite laminated plate with simply supported boundary condition via boundary 
control without resorting to truncation of the model. 
 

1. INTRODUCTION 

The word composite in the term composite material signifies 
that two or more materials are combined on a macroscopic 
scale to form a useful third material. The advantage of 
composite materials is that, if well designed, they usually 
exhibit the best qualities of their components or constituents 
and often some qualities that neither constituent possesses. 
Some properties that can be improved by forming a 
composite material are: strength, stiffness, corrosion 
resistance, wear resistance, attractiveness, weight, fatigue 
life, temperature-dependent behavior, thermal-insulation, 
thermal conductivity, acoustical insulation, etc.  

For a flexible system, its elastic effects are often modeled 
using a linear partial differential equation (PDE) and a set of 
boundary conditions. Since there has been little control 
synthesis work for PDE-based systems as compared to the 
abundance of control design techniques available for ordinary 
differential equations (ODEs), most of the proposed control 
approaches for elastic systems rely on discretizing the PDE 
model into a set of ODEs (Canbolat et al. 1998; Chrysafinos 
et al. 2006). FEM and finite assumed-modes are the common 
methods for approximating and descritizing a PDE into a set 
of ODEs. Since the actual number of modes in an elastic 
system is infinite (at least theoretically), it is often not clear 
how many modes should be included while constructing the 
discretized ODE model. In addition, if a large number of 
modes is utilized to approximate a PDE-based system, the 
order of the discretized linear ODE model is often relatively 
high. Hence, the resulting controller can be a complex high-
order algorithm (Canbolat et al. 1998). Unfortunately, a 
stability result generated for a discretized ODE model under a 
proposed control cannot be generalized to the PDE model 
under the same controller. That is, the neglected higher order 
modes could possibly destabilize the flexible system under a 
discretized model based controller (i.e. spillover instability 
(Balas 1978, Meirovitch, Baruh 1983)). Also, some devices 
and instruments such as strain gages are needed to feedback 
the vibration information at different points of the object or 
an observer is required to estimate the vibration information. 

However, in many applications, using the measurement 
instruments at the interior points of the objects is impossible 
or at least very difficult.   

In this paper, motion control of a symmetric composite 
laminated plate having a transverse vibration is considered. 
So far, in the literature the researchers have used different 
methods to control the transverse vibration by discretizing the 
governing PDE of the composite plates. To the best of our 
knowledge, boundary control method has not been used for 
this purpose (Birman, 2008; Zhang et al. 2007; Gaoa et al. 
2003). To the best of our knowledge, boundary control 
method has not been used for this pupose. Boundary control 
(BC) is an efficient method to exclude the effects of both 
observation difficulty and control spillover problem. The 
boundary controllers designed for the nondiscretized PDE 
model are often simple compensators which ensure closed-
loop stability for an infinite number of modes. A brief review 
of BC is given in reference (Shahruz et al. 1996). Several 
researchers have proposed boundary controllers for a variety 
of flexible systems such as strings, beams and plates. In 
reference (Shahruz et al. 1996), it is shown that feedback 
from the velocity at the boundary of a string can stabilize the 
vibration in the string. In the same reference, a boundary 
feedback state is used to control the vibration of an axially 
moving string. In both, (Littman et al. 1988; Shahruz et al. 
1996), the control laws are implemented via a mass-damper-
spring on the right-hand side of the string. The most 
important benefit of the boundary control is that it can 
stabilize the mechanical systems without using in-domain 
aligned distributed controllers and/or measurement 
instruments. This novelty is very important in the industry 
and aerospace problems. 

Lagnese in 1989 suggested using the boundaries to stabilize a 
plate (Lagnese, 1989). Then, Rao showed that stabilization of 
the transverse vibration of the elastic plates by using 
boundary control is possible for special boundary conditions 
(Rao 1998, Littman et al. 1988). Then Liu, Jiang and Huang 
by using Rao’s approach obtained the same results as 
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Lagnese’s research, but they showed that only asymptotic and 
not exponential stability is obtainable (Liu et al. 2004). 

The main goal of this article is to use boundary control to 
stabilize the vibration of elastic symmetric composite 
laminated plates with different boundary conditions. Our 
study is a novel extension of the work by Liu et al. and Rao 
for more boundary conditions and from isotropic to 
symmetric laminated composite plates (Liu et al., 2004; Rao 
1998). The stability will be proved using a Lyapunov 
functional. 

 

2. GOVERNING EQUATIONS 

Governing equations of vibrating plates are categorized as: 

(1) Geometric equations 

(2) Vibration equations 

(3) Relations between stress and strain 

The first two equations are the same for a variety of plates 
(isotropic, composite, FGM…) but the third equation 
depends on the type of the plate. 

 

2.1 Geometric equations 

For small deflection assumption (deflection in z direction (w) 
is small), w is a function of x and y and planar strains are 
expressed by the following equations (Timoshenko 1959): 
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where u and v are displacements of middle plane in x 
direction and y directions, see figure  1. 

 

2.2 Vibration equations 

Assuming small deflection in z direction, the governing 
vibration equations for a transversely vibrating plate are 
obtained as follows (Timoshenko 1959): 
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   Fig. 1 Applied forces and moments and displacements 
along x, y and z axes 

 

where xN and yN are in-plane forces in x and y directions, 
respectively xyN and yxN are shear forces in y and x directions 
and xM and yM  and xyM and yxM  are moments as shown in 
figure 1. Also, ρ  is mass density of the plate.  

 

2.3 Relation between stress and strain 

Relation between stress and strain in plates depends on 
material symmetry. If we found this relation we could obtain 
the Forces and moments at each point of plate. Generally, for 
composite materials the forces and moments, at each point, is 
dependent planar strains and curvature of each point. This 
relation is expressed as follows, (Jones 1999): 
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where  Aij, Bij and Dij are constant. 
Also xV (shear force in y direction) and yV (shear force in x 
direction) expressed as follows: 
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If we replace equations (7) and (8) into equations (6), we 
obtain: 
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For laminated plates that are symmetric in both geometry and 
material properties about the middle surface, matrix B will be 
zero. For this case, the number of laminas should be odd. 
Also, laminas that are symmetric relative to the middle plane 
of middle lamina should have the same thickness. 
For this case, the governing equation is expressed as:  
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2.2 Boundary conditions 

In this paper we consider a plate with the following boundary 
conditions: 
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3. BOUNDARY CONTROL 

In order to apply Lyapunov's stability theorem to distributed 
parameter systems, it is necessary to introduce some 
definitions and lemmas. Furthermore, some basic theorems 
on which the stability proof is based will be presented. 

Definition 1: An equilibrium state eqx of a dynamic system is 
an element of the state-space Ξ   such that 

0),),(( 0 =eqeq xxttφη  for all 0≥t (the distance of its 

corresponding trajectory to that state is zero), where ),( 0ttφ  
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is a continuous operator on Ξ  and for any fixed ],[ 0tt it maps 
Ξ  into itself. The set of all equilibrium states will be called 
the equilibrium set. 

Definition 2: An invariant set M of a dynamic system is a 
subset  Ξ  of so that for any initial state ,)( 0 Mt ∈x  its 
corresponding trajectory will remain in Ξ  for all 0tt ≥ . 

Definition 3: An asymptotically invariant set, M, of a 
distributed parameter dynamic system is uniformly 
asymptotically stable if 

0),),(( 0 →MttR 0xφ  as +∞→− 0tt  

 Uniformly with respect to 00 ≥t , where 2δ  is sufficiently 
small and  )(),( 00 ttt xφ  is the solution of the dynamic system 
at time t , starting at 0t . 

Theorem 1 (Zubov, 1964): In order for an invariant set M of a 
dynamic system to be stable, it is necessary and sufficient 
that there exists a one-parameter family of functions )(tV , 
having the following properties: 

1. On any element S∈x  there is defined a function ),( tV x  
of the real argument t, defined for 0tt ≥ , where 

}),(0¦{ rMS <<Ξ∈= xx η  

2. For any sufficiently small 01 >α  it is possible to find a 
quantity 02 >α  such that 2),( α>tV x  for 10 )),(( αη >Mtx  
and all 0≥t  

3. 0),( →tV x  uniformly relative to 0≥t as 0),( →MR x . 

4. The functional )(tV  evaluated along the solution of the 
system does not increase for all 0tt ≥  for which it is defined, 

0≤
•
V . 

5. Furthermore, if the functional )(tV  evaluated along the 
solution of dynamic system tends to zero as +∞→t  for all 

00 ≥t and 1),( δη <Mx , where 01 >δ  is sufficiently small, 
then the invariant set of the dynamic system will be 
asymptotically stable, and, conversely, if the invariant set is 

asymptotically stable, this holds, 0≤
•
V . 

Note that item 2 in the above theorem indicates positive 
definiteness of the function ),( tV x . Item 3 requires that the 
function ),( tV x  admit an infinitesimally upper limit. To 
prove stability of a distributed parameter system, one has to 
show that there exists a functional with the following 
properties: 

1. The functional is positive definite with respect to a 
specified metric; 

2. The functional admits an infinitesimally upper limit; and 

3. The time derivative of the functional along the solutions of 
the underlying system is negative definite. 

First we assume the following functional as a Lyapunov 
condidate and then we prove that the time derivative of this 
functional is negative definite. 
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The above functional is the total energy (total kinetic energy 
and strain energy) of the vibrating composite plate thus it is a 
positive definite function. Its time derivative is: 
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By replacing equation (12) in equation (18), we obtain: 
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Before we proceed, we introduce some basic lemmas. 
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Some required basic lemmas 

By using integration by part we can verify each of the 
following integrals:  
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By using basic lemmas (20 – 28), we can convert integration 
on domain to integration on boundary; then: 
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By Arrangement of
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V , we can write 
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If boundary conditions (at x=0 and x=a), equations (13, 14) 

are applied to equation (30), 
•
V will be simplified to the 

following form: 
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If boundary conditions at y=0 (equation 15 )is applied to 

equation (31), 
•
V will be simplified to the following form: 
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Then, using (16), we have: 
At y=b: 0=yM and UV y =  
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If we choose: 
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4. CONCLUSION 

According to the principle of conservation of energy, the 
work that is done by external forces and moments is equal to 
the total energy of the system. For our system, the external 
excitation (forces or moments) is applied on the boundaries 
of the rectangular composite plate. If we choose control 
forces/moments of the boundary controller to make the time 
derivative of the total energy of the system (which is positive 
definite function) be negative definite; then, the total energy 
of the plate can be used as the Lyapunov function of the 
system. 
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