
Algebraic synthesis of dependable logic

controllers

Yann Hietter ∗ Jean-Marc Roussel ∗ Jean-Jacques Lesage ∗

∗ LURPA, ENS Cachan, UniverSud, 61 Av. du President Wilson
F-94235 Cachan Cedex (email: {yann.hietter, jean-marc.roussel,

jean-jacques.lesage}@lurpa.ens-cachan.fr)

Abstract: This paper presents an algebraic method to synthesize control laws for logical system
controllers. The starting point is a set of functional and dependable requirements expressed with
algebraic relations or state models. We propose to synthesize control laws by solving a Boolean
equation which represents all the requirements. The mathematical results that we have obtained
allow to establish the exact form of the solutions if this equation has solutions.
The first step of this method is the formalization of each requirement with Boolean relations
between Boolean functions. Under this formulation, the requirements can be assembled and
their coherence can be analyzed. This step consists in verifying if the Boolean equation, which
represents all the requirements, has solutions. The third step is the synthesis of the control laws
by solving this equation. At the end of this step, a parametric formulation of all the possible
solutions is given. The fourth step of the method is the choice of a particular solution. This
choice is made by the designer from heuristics. This method is illustrated with an example.

Keywords: Dependable system, Controller synthesis, Algebraic approaches, Boolean algebra,
logic controllers

1. INTRODUCTION

Logic controllers are used in a very large number of
systems such as embedded systems, transport systems,
power plants or production systems. Several components
of our daily lives and of the economy at large thereby rely
upon the successful operations of these controllers. This
explains why the dependability of logic controllers is a
major concern for control engineers.

To improve the dependability of logic controllers, it is
important to ensure that no flaw due to a misinterpre-
tation of the requirements or to any other reason has been
introduced during design. A logic controller can in fact
only be referred to as dependable if its behaviour fulfills
the application requirements and must therefore not in-
clude design errors leading to non-functional or hazardous
behaviours.

To reach this goal, many formal methods have been pro-
posed during the last twenty years. They aim at detecting
flaws once the controller has been designed or avoiding
flaws during design (Faure and Lesage [2001]). The first
class of approaches consists in letting the control system
designer develops control laws based on the requirements
contained in the set of specifications, and then in automat-
ically analysing a formal representation of these control
laws. Such an analysis may be carried out by using formal
verification techniques such as model-checking (De Smet
and Rossi [2002], Klein et al. [2003]) or theorem proving
(Roussel and Faure [2002]). The second class of approaches
aims at deducing the control laws from the requirements
and the dependable properties expected, without any in-
volvement of the designer (or at least by limiting his

involvement to a strict minimum). The method presented
herein belongs to this second class of approaches that come
within the synthesis.

This paper is organized as follows. Section 2 describes
the objectives and the main principles of our method.
Section 3 presents the formal framework used and the
mathematical results on which this method is based. Our
algebraic synthesis method is finally developed in section 4
thanks to an illustrative example.

2. OBJECTIVES

To design controllers, several research teams propose to
exploit the Supervisory Control Theory (SCT) defined
by Ramadge and Wonham [1987]. This language theory
provides a formal framework for Discrete Event Systems
analysis and synthesis. The starting point of this method
is two distinct automata called Plant and Specification.
Synthesis algorithms (Kumar et al. [1991]; Ramadge and
Wonham [1987]) automatically generate an optimal su-
pervisor which operates synchronously with the plant to
restrict the language accepted by the plant to satisfy the
specification. Results obtained on complex case studies
(for example, Pétin et al. [2007]) point out the real poten-
tial of this theory for a high-level description plant model.
However, when the plant model must be very detailed
to take into account all the reaction possibilities of an
operative system, the efforts made to obtain a coherent
plant model are often more important than the efforts
made to find a solution manually. An example of plant
model with this abstraction level is presented in Roussel
and Guia [2005]. This abstraction level is often necessary
to obtain control laws for dependable logic controllers.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4132 10.3182/20080706-5-KR-1001.2264

The method that we propose (figure 1) is specially de-
veloped to synthesize dependable logic controllers. The
starting point of this method is functional and dependable
requirements which are given by the designer. The first
step is their formalization with state models or algebraic
models. Examples of this formalization are given in sec-
tion 4.

The second step consists in analyzing all the requirements
to control if the whole is coherent. In our case, this step
is made by symbolic calculus on an algebraic formulation
of them. If inconsistencies exist, the conditions to have
these inconsistencies are given to the designer to help
him modify given requirements. If coherence is proved, the
formal description of the requirements becomes a system
of equations in which the control laws searched are the
unknowns.

The third step is the synthesis of the control laws. This
step is made by solving the system of equations which rep-
resents coherent requirements. The mathematical results
that we have obtained allow to establish an exact symbolic
form for solutions. The set of solutions is described with a
parametric expression of the generic solution.

The last step of the method is the choice of a solution
by the designer. This step consists in fixing a specific
value for each free parameter. The designer also has the
possibility to complete the requirements proposed if the
solutions synthesized do not satisfy him. If our method can
prove that the requirements are coherent, only the designer
could judge whether the requirements are completed by
analyzing the solutions synthesized.

In traditional design methods, the design procedure of a
logic controller is an interactive process which converges
to an acceptable solution. At the beginning, requirements
are not complete. New requirements are introduced during
the search of solutions. These complementary elements are
given by the designer after an analysis of partial solutions
or the detection of inconsistencies. Designing a controller
with an automatic synthesis technique will also be an
interactive process on which the designer plays the leading
part. For that reason, to be used in an industrial context,
an automatic synthesis method must take into account the
three following aspects:

• A designer will agree to use a tool which automati-
cally finds a solution only if the effort made to express
the requirements is less important than the effort
made to find a solution manually.

• The solution automatically proposed must be read-
able by the designer to allow its analysis.

• The designer can obtain the solution for a specific sys-
tem by adapting the solution obtained for a previous
system studied if both systems are similar.

To take into account these aspects, our method accepts to
start from requirements completed with a partial solution.
In this case, the automatic synthesis is used to complete
this solution. This possibility simplifies the designer’s work
by reducing the number of requirements to give. As the
solutions synthesized are built from the partial solution,
their analysis is simplier. The case study presented in
section 4 is made in this context.

Functional
and dependable

requirements

Coherence checking

Inconsistency
conditions

System of equations

Equation solving

Parametric
solutions

Solution choice

Control laws

Formalization1

2

3

4

A
u

to
m

a
ti

c
 p

ro
c
e
s
s

Functional
and dependable

requirements

Coherence checking

Inconsistency
conditions

System of equations

Equation solving

Parametric
solutions

Solution choice

Control laws

Formalization1

2

3

4

A
u

to
m

a
ti

c
 p

ro
c
e
s
s

Fig. 1. Method proposed to design dependable logic con-
trollers

3. FORMAL FRAMEWORK USED

This section is structured as follows. First, the Boolean
algebra structure of Boolean functions is recalled. The sec-
ond subsection presents the two main relations which are
used to express the functional requirements and depend-
able properties. In the last part the technique developed to
solve systems of Boolean equations with several unknowns
is given.

3.1 The Boolean algebra of Boolean functions

For automation purposes, Boolean Functions (BFs) are
often used to determine the value of Boolean outputs
according to the logical values of Boolean inputs (figure 2).

Combinatorial

logical systemia jyn p
Combinatorial

logical systemia jyn p

Fig. 2. A combinatorial logical system

From a mathematical point of view, a BF is a function
from IBn → IB, where IB = {0, 1} is a Boolean domain.
For each n-tuple of Boolean variables (a1, . . . , an), 2(2n)

different BFs can be defined. Designing a combinatorial
logical system consists in finding, for every output, one of
these BFs which satisfies all the requirements. Generally,
the solution is not unique.

Let (a1, . . . , an) be a n-tuple of Boolean variables. Let Ψn

be the set of the 2(2n) possible BFs. Ψn contains two BFs
which are defined as follows:

F : IBn → IB
(a1, . . . , an) 7→ 0

T : IBn → IB
(a1, . . . , an) 7→ 1

Ψn also contains n specific BFs whose image is a Boolean
variable of (a1, . . . , an). These functions are defined as
follows:

Ai : IBn → IB
(a1, . . . , an) 7→ ai

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4133

Nota: In this communication, to avoid confusion between
Boolean variables and Boolean functions, Boolean vari-
ables are noted with lowercase letters (ai) whereas Boolean
functions are noted with an uppercase first letter (Ai).

As presented in Grimaldi [2004], Ψn with the two binary
operations OR (noted “+”), AND (noted “·”), the unary
operation NOT (noted “̄ ”) and the two elements T and
F , is a Boolean algebra. These three operations are defined
as follows:
(C + D)(a1, . . . , an) = (C(a1, . . . , an)) ∨ (D(a1, . . . , an))
(C · D)(a1, . . . , an) = (C(a1, . . . , an)) ∧ (D(a1, . . . , an))
C(a1, . . . , an) = ¬(C(a1, . . . , an))

where ∨, ∧, ¬ are the basic operations on Boolean vari-
ables.

Nota: To avoid unreadable formulae, the reference to n-
tuple (a1, . . . , an) in the notation of BFs will now be
removed.

3.2 Relations between BFs

As (Ψn, +, ·,̄ , F , T) is a Boolean algebra, a partial order
relation between elements of Ψn can be defined as follows
(Grimaldi [2004]):

Definition 1. (Inclusion Relation). Let C, D ∈ Ψn.

C ≤ D iff C · D = C (read “C is included into D”)

In other terms: BFs C and D satisfy relation C ≤ D if
and only if the set of values of n-tuple (a1, . . . , an) whose
image by C is 1 is included into the set of values of n-tuple
(a1, . . . , an) whose image by D is 1.

In our approach, this relation is often used to express
functional requirements and dependable properties. For
example, relation C ≤ D can be the formal translation of
the three following requirements given in natural language:

• When C is true, D is also true.
• It is sufficient to have C to have D.
• It is necessary to have D to have C.

Moreover, relation “Equality” is used to translate require-
ments such as:

• C and D are never simultaneously true: C · D = F
• One of BFs C and D is always true: C + D = T

More complex requirements could be expressed by com-
posing BFs using operations OR, AND and NOT.

It is important to notice that requirements expressed with
relations “Equality” and “Inclusion” could be associated
and reduced to a simple relation. This characteristic is due
to the following equivalences:

C ≤ D ⇔ C · D = C (1)

C = D ⇔ C · D + C · D = F (2)
{

C = F
D = F

⇔ C + D = F (3)

3.3 Solving equations between Boolean functions with
several unknowns

The results presented in this section have been demon-
strated for any Boolean algebra, and in particular for

the algebra of BFs. These demonstrations are the gen-
eralization of previous results obtained for Boolean equa-
tions between Boolean variables. In Bernstein [1932] the
condition for an equation to have a unique solution is
given. In Toms [1966], the case of systems of equations is
studied. Levchenkov has expressed solutions of equations
with several unknowns (Levchenkov [2000]).

Designing the system presented in figure 2 consists in
finding, for each output yj , a BF Yj which allows the
calculation of the value of yj according to the values of
each input ai. Functions Yj , which are the unknowns of
the problem, must satisfy all the requirements expected
for the system.

We consider that all the requirements and properties
expected of the system to design can be expressed by using
relations “equality” or “inclusion”. Examining equation
(1) above shows that every inclusion form can be put under
an equality form. Equation (2) shows that all equality
forms can be put under an “always false” form (. . . = F).
As equation (3) shows that a set of “always false” relations
can be reduced into a single “always false” relation, the set
of all requirements can globally be expressed by a unique
relation of the form:

R(Y1, . . . , Yp) = F

where R(Y1, . . . , Yp) is an expression written with only Ai

and Yj and operations OR, AND and NOT.

Case of one unknown: R(Y) = F

By generalizing Shannon’s decomposition to functions of
BFs, R(Y) can be expressed as follows:

R(Y) = E1 · Y + E2 · Y

where E1 and E2 are two expressions containing Ai and
can be obtained directly by substitution:

R(F) = E1 · F + E2 · F = E1 + F = E1

R(T) = E1 · T + E2 · T = F + E2 = E2

In this case, the solutions of requirements equation
R(Y) = F are given by the resolution of the following
equation:

R(F) · Y + R(T) · Y = F (4)

Theorem 1. Let us consider equation R(Y) = F expressed
on the Boolean algebra of BFs (Ψn, +, ·,̄ , F , T), where
R(Y) is the generic expression of a single unknown Y .
R(Y) = F has solutions if and only if:

R(F) · R(T) = F

In this case, all the solutions of this equation can be
expressed as follows:

Y = R(F) + R(T) · G (5)

Indeed, if the condition R(F)·R(T) = F is respected, then

Y = R(F) and Y = R(T) are two particular solutions. It
can be demonstrated than form 5 represents the whole
space of solutions. G is a constant term of Ψn whose set of
values describes all the solutions. Furthermore, R(Y) = F
has a single solution if and only if:

R(T) = R(F)

General case of several unknowns: R(Y1, . . . , Yp) = F

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4134

Starting from the simplified case of logical systems with
only one output, we have generalized the previous result
to logical systems with p outputs. Before giving the generic
form of the general solution, we must now introduce some
notations.

By generalizing equation (4), the requirement relation with
p unknowns can be expressed as the sum of 2p terms.
Each term is the product of two expressions. The second
expression is one of the 2p combinations on {Y1, . . . , Yp}.
The first expression is the image of the corresponding
combination of functions F and T by R.

For example, for p = 2, the generic notation of R is:

R(Y1, Y2) = R(F ,F) · (Y1 · Y2) + R(F , T) · (Y1 · Y2)
+R(T ,F) · (Y1 · Y2) + R(T , T) · (Y1 · Y2)

Let Ωp be the set of the 2p p-tuples whose components are
F or T . Let ω be an element of this set and ωi the ith

component of p-tuple ω.

R(

ω
︷ ︸︸ ︷

F
︸︷︷︸

ω1

, T , . . . , T
︸︷︷︸

ωi

, . . . ,F , T
︸︷︷︸

ωp

)

The generic notation for R(Y1, . . . , Yp) becomes:

R(Y1, ..., Yp) =
∑

ω∈Ωp

(

R(ω) ·

p
∏

i=1

(ωi · Yi + ωi · Yi)

)

Taking into account these notations, the fundamental
theorem (which can not be demonstrated herein) that we
will use in the next part of this paper is as follows:

Theorem 2. R(Y1, Y2, . . . , Yp) = F has solutions iff:
∏

ω∈Ωp

R(ω) = F (6)

In this case, the result of theorem 1 was generalized and a
generic form of the solutions is as follows:

Y1 =
∏

ω∈Ωp−1

R(F , ω1, . . . ωp−1)

+
∏

ω∈Ωp−1

R(T , ω1, . . . ωp−1) · G1

. . .

Yi =
∏

ω∈Ωp−i

R(Y1, . . . , Yi−1,F , ω1, . . . ωp−i)

+
∏

ω∈Ωp−i

R(Y1, . . . , Yi−1, T , ω1, . . . ωp−i) · Gi

. . .

Yp = R(Y1, . . . , Yp−1,F) + R(Y1, . . . , Yp−1, T) · Gp

where G1, . . . , Gp are constant terms of Ψn whose set of
values describes the whole space of solutions.

The algorithm that implements the calculation of this
parametric solution is the head of our synthesis method.

4. SYNTHESIS OF CONTROL LAWS

4.1 Model of sequential aspects

The mathematical results presented before allow to design
a logical system, starting from requirements given by an

algebraic generic relation. These results can directly be
used to synthesize combinatorial logic controllers. How-
ever, additional information must be given to be able to
treat the sequential part of logical systems.

During the design step, the designer often uses state
machines such as Automaton, Statecharts or Sequential
Function Chart to model sequential behaviours. When the
design step is over, these state models are often translated
into an algebraic program which is more adapted to its
execution by programmable controllers. These translations
are based on the well-known model presented in figure 3
based on the works of Shannon [1940]. Efficient techniques
to translate a state model into a set of recurrent equations
can be found in Machado et al. [2006].

State

logic

Output

logic

Delay

n
m p

ia jy

lx

State

logic

Output

logic

Delay

n
m p

ia jy

lx

Fig. 3. Diagram of a Sequential Machine

The diagram in figure 3 is composed of two combinatorial
blocks “State Logic” and “Output logic”. The values of
state variables xl are calculated by block “State Logic” and
the values of the outputs are calculated by block “Output
logic” according to the following equations:

{
xl(k) = Sl(a1(k), . . . , an(k), x1(k − 1), . . . , xm(k − 1))
yj(k) = Yj(a1(k), . . . , an(k), x1(k), . . . , xm(k))

In this system of equations, xl(k) is the value of xl at
instant k and xl(k−1) is the value of xl at previous instant
(k − 1). It is possible to treat such recurrent equations by
using the formal framework presented before by associat-
ing a different variable to the “current value” and to the
“previous value” of the same variable. We are now going
to detail our method by treating a simple example that
has two characteristics: its specification is given by using
both logical propositions and an automaton; its behaviour
is partially combinatorial and partially sequential.

4.2 Application to an example

The example used to present our approach deals with the
control of the electrical energy of a production machine.
To protect operators, this machine is equipped with a
safety system which allows access only by using a door.
In normal mode (during operation), this door is closed
and automatically locked. For maintenance operations,
the door can be opened. In this case, the technician is
protected by the obligation to use a two-hand control
station (figure 4).

The driving of the machine by operators is made through
a control console which allows:

• to select the operation mode (Production or Mainte-
nance) with a two-position selector (prod/maint),

• to ask for the locking of the door with a switch
(request of locking: rl),

• to start and stop the machine with two distinct push-
buttons (start and stop).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4135

Supply of the

machine (power)

Lock of the

door (lock)

The door

(closed = dc)

Two hand control

station (th)

machine
Logic

controller

power

lock

start

stop

dc

prod

th

rl

maint

Supply of the

machine (power)

Lock of the

door (lock)

The door

(closed = dc)

Two hand control

station (th)

machine

Supply of the

machine (power)

Lock of the

door (lock)

The door

(closed = dc)

Two hand control

station (th)

machine
Logic

controller

power

lock

start

stop

dc

prod

th

rl

maint
Logic

controller

power

lock

start

stop

dc

prod

th

rl

maint

Fig. 4. Structure of the production machine

The controller is informed that the door is closed by sensor
(dc) and that the two-hand control station is activated
(th). The control laws to synthesize are the power supply
of the machine (power) and the door locking (lock).

The six following requirements are given in natural lan-
guage under the form of logical propositions. The two first
ones are safety requirements whereas the other ones are
functional requirements:

R1: In Production mode, the machine is supplied only if
the door is locked.

R2: In Maintenance mode, the machine is supplied only
if the two-hand control station is active.

R3: In Maintenance mode, the door is never locked.
R4: In Maintenance mode, when the two-hand control

station is active, the machine is supplied.
R5: To lock the door, it is necessary that the door is

closed.
R6: In Production mode, when the door is closed, the door

is locked if and only if the locking request is active.

According to the method presented in figure 1, we suppose
for this example that the designer has proposed a partial
solution for output power (figure 5). Indeed, the control
law of power concerns both the operation of the machine
and the security of operators. In this Moore’s machine,
only a part of the transition conditions is fixed (the
functional parts), the parts to be synthesized (the security
parts) are expressed by Ui. In fact, function Ui represented
the parts which are unknown for the designer.

POWER

21 UMaintUStartProd ⋅+⋅⋅

3UStopProd +⋅

1x 2x
POWER

21 UMaintUStartProd ⋅+⋅⋅

3UStopProd +⋅

1x 2x

Fig. 5. A partial solution proposed by the designer

The two control laws (power and lock) are now going to
be synthesized from previous requirements and the partial
solution proposed by the designer.

Formalization step

The result of the formalization step is given below. The six
requirements given in natural language are expressed by
using relation “Inclusion”. The behaviour of the Moore’s
machine is described by six other relations. The three
first ones concern its dynamics (Xi is the BF associated
to variable xi(k) and Xip represents variable xi(k −
1)). The two following ones are introduced to precise
that this Moore’s machine has one and only one active

state. The last relation specifies that the behaviour of the
machine must be stable (no transition can be fired without
inputs values change). This requirement was previously
introduced by Huffman [1954].

R1: Prod · Power ≤ Lock
R2: Maint · Power ≤ Th

R3: Maint ≤ Lock
R4: Maint · Th ≤ Power
R5: Lock ≤ Dc

R6: Prod · Dc ≤ Rl · Lock + Rl · Lock
X1 = X2p · (Prod · Stop + U3)

+X1p · (Prod · Start · U1 + Maint · U2)
X2 = X1p · (Prod · Start · U1 + Maint · U2)

+X2p · (Prod · Stop + U3)
Power = X2

X1 · X2 = F
X1 + X2 = T
(Prod · Start · U1 + Maint · U2)

·(Prod · Stop + U3) = F

Each one of these BFs depends on the 9 Boolean variables
(start, stop, prod, maint, rl, th, dc, x1p, x2p). Four of
these BFs are unknowns: Lock, U1, U2 and U3.

Relations between the 9 elementary BFs also exist as they
are not totally independent. These relations which are used
as hypotheses during calculation are:

X1p + X2p = T
X1p · X2p = F
Prod + Maint = T
Prod · Maint = F

The two first relations are introduced to precise that the
Moore’s machine has one and only one previous active
state. The two last ones are introduced to precise that
the operational mode selector has only two positions.

The set of requirements can be reduced into a unique
equation of the following form:

R(Lock, U1, U2, U3) = F (7)

The generic form of R(Lock, U1, U2, U3) is composed of 16
terms. The global expression of R is:

R(Lock, U1, U2, U3) = R(F ,F ,F ,F) · Lock · U1 · U2 · U3

+ . . . + R(T , T , T , T) · Lock · U1 · U2 · U3

With for example, term R(F ,F ,F ,F) is:

R(F ,F ,F ,F) = Prod · (Dc · Rl + Stop · X2p)
+Maint · (Th · X2p + Th · X2p)

Coherence checking step

The second step of our method is the coherence checking
of the requirements. In our case, the condition expressed
in equation (6) is respected:

∏

ω∈Ωp

R(ω) = R(F ,F ,F ,F) · . . . · R(T , T , T , T) = F

The set of requirements is then coherent.

Equation solving step

The algorithm that implements the calculation of the
parametric solution given in 3.3 produces:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4136

Lock = Dc · Prod · Rl

U1 = (Maint + Start + Dc · Rl · Stop) · G1

U2 = (Prod + Th) · G2 + Maint · Th · X1p

U3 = Maint · Th · X2p + (Dc + Rl) · Prod · Stop · X2p

+(Prod · (Dc + Start + Stop + Rl + G1)
+Maint · Th) · G3

Only one solution exists for Lock. U1, U2 and U3 have a
space of solutions expressed by parameters G1, G2 and G3.

Solution choice

The last step of the method is the choice of a particular
solution. This choice is made by the designer according to
heuristics that define his strategy. For example, to obtain
the most permissive solution (priority to the functioning)
that satisfies the requirements, it is necessary to maximize
the reachability of state 2 and to minimize the evolution
possibilities from state 2. To obtain this result, the param-
eters are fixed as follows: G1 = T , G2 = T , G3 = F

Finally, figure 6 presents the control laws synthesized.

POWER

ThMaint
StopStartRlDcProd

⋅+

⋅⋅⋅⋅

ThMaint
DcRlStopProd

⋅+

++⋅)(

RlDcProdLock ⋅⋅=

1x 2x
POWER

ThMaint
StopStartRlDcProd

⋅+

⋅⋅⋅⋅

ThMaint
DcRlStopProd

⋅+

++⋅)(

RlDcProdLock ⋅⋅=

1x 2x

Fig. 6. Control laws algebraically synthesized

5. CONCLUSION

The method presented herein has been developed to design
dependable logic controllers from requirements given using
state machines or logical propositions. This method can
be used to find the laws to implement into industrial
controllers or to complete a partial solution given by
the designer. These two characteristics are offered by the
mathematical framework used (an algebra for Boolean
functions) and more specially by the possibility to solve
Boolean equations with several unknowns.

To be able to evaluate the potential of this method from
case studies, we have developed (under tool Mathematica)
an experimental module which solves sets of equations
with several unknowns. It is based on a symbolic calculus
module which develops and simplifies Boolean expressions.
The results already obtained have pointed out the real
interest to exploit the partial solution proposed by the
designer. For the designer, it is simpler to propose a partial
solution than to express the corresponding functional
requirements. At the end of the design step, the solution
obtained satisfies all the requirements given. As the state
model structure is not changed, the designer can analyze
it more easily.

The potential of this method can be increased by offering
additional models to express requirements. The possibility
to use temporal logic is currently studied. We are also
searching if some heuristics could be defined to help the
designer for the choice of a solution for specific classes of
problems.

To be operational for the design of complex dependable
control systems, it is also necessary to develop strategies
to identify the independent parts of the problem, in order
to solve each part independently. The size of the equations
studied will be reduced.

REFERENCES

B.A. Bernstein. Note on the Condition that a Boolean
Equation Have a Unique Solution. American Journal of
Mathematics, 54(2):417–418, 1932.

O. De Smet and O. Rossi. Verification of a controller for a
flexible manufacturing line written in Ladder Diagram
via model-checking. American Control Conference,
2002. Proceedings of the 2002, 5:4147–4152, 2002.

J.-M. Faure and J.-J. Lesage. Methods for safe control
systems design and implementations. Proceedings of the
10th IFAC Symposium on Information Control Prob-
lems in Manufacturing, Vienna, Austria, 2001.

R.P. Grimaldi. Discrete and Combinatorial Mathematics:
An Applied Introduction. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 5 edition, 2004.
ISBN : 0-321-21103-0, 980 pages.

D.A. Huffman. The synthesis of sequential switching
circuits. Journal of the franklin Institute, 257(3):161–
190, 1954.

S. Klein, G. Frey, and L. Litz. Designing fault-tolerant
controllers using Model-Checking. proc. of the 5th
IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes (SAFEPROCESS 2003),
Washington DC (USA), June, pages 115–120, 2003.

R. Kumar, V.K. Garg, and S.I. Marcus. On controllability
and normality of discrete event dynamical systems.
Systems and Control Letters, 17(3):157–168, 1991.

V.S. Levchenkov. Boolean equations with many unknowns.
Computational Mathematics and Modeling, 11(2):143–
153, 2000.

J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, and
J. Ferreira Da Silva. Logic controllers dependability
verification using a plant model. 3 rd IFAC Workshop on
Discrete-Event System Design: DESDes’06, pages 37–
42, 2006.

J.-F. Pétin, D. Gouyon, and G. Morel. Supervisory synthe-
sis for product-driven automation and its application to
a flexible assembly cell. Control Engineering Practice,
15(5):595–614, 2007.

P.J. Ramadge and W.M. Wonham. On the supremal
controllable sublanguage of a given language. SIAM
Journal of Control and Optimization, 25(3):637–659,
1987.

J.-M. Roussel and J.-M. Faure. An algebraic approach
for PLC programs verification. Proceedings. Sixth In-
ternational Workshop on Discrete Event Systems, pages
303–308, 2002.

J.-M. Roussel and A. Guia. Designing dependable logic
controllers using the supervisory control theory. 16th
IFAC World Congress, CDROM paper n04427, 2005.

C.E. Shannon. A symbolic analysis of relay and switching
circuits. Master’s thesis, Massachusetts Institute of
Technology, Dept. of Electrical Engineering, 1940.

R.M. Toms. Systems of Boolean Equations. The American
Mathematical Monthly, 73(1):29–35, 1966.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4137

