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Abstract: The Disturbance observer (DOB) method is known to be effective in enhancing the performance 
of dynamic systems in the presence of disturbances. DOBs of various structures have been proposed to 
improve systems’ sensitivity functions for better disturbance rejection performance and robustness. 
However, the improvement to the sensitivity function may deteriorate robustness and transient responses. 
In this paper, we propose a new systematic method of designing the DOB. This method is based on the 
robust stabilization of the normalized coprime factor plant description and H∞ loop shaping method. In our 
method, good system robustness can be achieved by Nehari stability margin, and the design parameters of 
the Q-filter for system robustness and performance can be determined systematically using a target loop 
transfer function. We applied this method to a MEMS stage. Simulation results show that the disturbance 
effect of the stage is reduced, and a robust system is achieved in the presence of parameter uncertainties. 

 

1. INTRODUCTION 

Disturbance observer (DOB) is known to be an effective 
method to compensate for the disturbance of a motion control 
system. Since DOB was proposed (Ohnishi, 1987), the 
definition of disturbance has been expanded to include the 
parameter uncertainties and internal disturbances (Ohishi et 
al., 1988). The purpose of using DOB is to enhance the 
performance of the systems by observing and eliminating 
these undesirable disturbances (Unemo et al., 1993). 
However DOB may cause poor robustness and transient 
responses because of an increased peak of the sensitivity 
function. In DOB, the disturbance rejection performance 
depends on the Q-filter’s (low pass filter) order. Its 
robustness also depends on the relative degree and 
denominator order of the Q-filter (Choi et al., 2003). 

Various methods have been developed for the design of DOB. 
For system robustness, doubly coprime factorization and 
Youla-parameterization are used to design robust DOB in the 
presence of plant input multiplicative uncertainty (Ohishi et 
al., 1996). In another method, DOB is treated as a controller 
with two degrees of freedom, and is designed using 
sensitivity and complementary sensitivity function 
optimization (Unemo et al., 1993). The robust internal-loop 
compensator (RIC) method is also a robust DOB (Kim et al., 
2002). In this method, the Q-filter is systematically 
determined by the reference model and the desired feedback 
controller, but its design is constrained by the type of 
feedback controller used. To improve disturbance rejection 

performance, several types of DOB have been proposed. The 
high order DOB can achieve a rapid transient response and 
low sensitivity to disturbances (Yamada et al., 1996; Komada 
et al., 2000), but can have low damping characteristics due to 
large phase lag. Another approach is error based DOB 
(EDOB), which is a modified DOB that doesn’t use 
additional sensors to measure the reference input (Yang et al., 
2002). Besides these methods, six design guidelines for DOB 
are proposed to improve system robustness and performance 
for second order systems only (Choi et al., 2003). In all of 
these methods, we still have to determine the design 
parameters of the Q-filter, such as time constant and filter 
order, to achieve better disturbance rejection and system 
robustness. The use of trial and error in determining the 
parameters and order of the Q-filter is inevitable. 

In this paper, we propose a new systematic design method of 
the DOB Q-filter. This method is based on the stabilization of 
the normalized coprime factor plant description (Glover et al., 
1989) and the H∞ loop shaping method (McFarlane et al., 
1992). In this method, DOB guarantees robust stability by a 
Nehari optimal stability margin (Glover et al., 1989). Also 
the parameters and order of the Q-filter required to achieve 
system robustness and performance are determined 
systematically by the desired target loop transfer function 
(McFarlane et al., 1992).  

We apply this proposed DOB to a Micro-Electro-Mechanical 
Systems (MEMS) stage. In this system, the output 
disturbances are considered to be the stage coupling 
dynamics and the low frequency noise component which may 
affect the position of the MEMS stage during tracking 
operations. Parameter uncertainties such as a variation in 
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resonance frequency and the damping ratio are also critical 
problems for system robustness and performance. Simulation 
results show that disturbances to the MEMS stage are 
reduced by the proposed DOB. Also, high system robustness 
is achieved in the presence of parameter uncertainties. 

This paper is structured in the following way. In Section 2, 
the robust stabilization of DOB and the H∞ loop shaping 
DOB are detailed. In Section 3, we illustrate the control 
system design for the MEMS stage. In Section 4, we show 
the simulation results of the proposed method. In Section 5, 
we conclude the paper. 

2. H∞ LOOP SHAPING DESIGN OF DOB 

The robust stabilization of normalized coprime factor plant 
description and the H∞ loop shaping method were proposed 
by Glover and McFarlane (Glover et al., 1989; McFarlane et 
al., 1992). In this paper we use these methods to describe the 
new design procedure for DOB. The following sub-sections 
include a summary of those methods. 

2.1  Robust Stabilization of DOB 

Coprime uncertainty model is presented in Fig. 1(a). In this 
figure, the signal, u, is a control input, δ is the disturbance, y 
is the output, η is the sensor noise, φ is the output signal from 
the perturbation, and z1 and z2 are the input signals to the 
perturbation. Let the nominal plant model have normalized 
coprime factorizations, N and 1M − , such that 

1G M N−= . (1)
Then the perturbed plant model can be written as 

( ) ( )1

M NG M N
−

Δ = + Δ + Δ  (2)

where
NΔ  and MΔ  are stable proper transfer functions which 

represent the uncertainty in the nominal plant model. 
MΔ  can 

be represented as the low frequency plant parameter 
uncertainty, while 

NΔ  can be represented as the high 
frequency unmodeled dynamics (Vinnicombe, 2001). 

The object of robust stabilization is to stabilize not only the 
nominal plant model, G, but also a family of perturbed plants 
defined by 

( ) ( ){ }1
:P M N M NG M N ε

−

∞
= + Δ + Δ Δ Δ <⎡ ⎤⎣ ⎦  (3)

where ε > 0 is the stability margin. The perturbed feedback 
system from φ to z1 and z2 in Fig. 1(a) is robust stable if and 
only if  

( ) 1 1 1DOB
DOB

K
I GK M

I
γ

ε
− −

∞

⎡ ⎤
− ≤ =⎢ ⎥

⎣ ⎦
. (4)

The maximum stability margin, εmax , is given by 

{ } ( )( )
1/ 22 1/ 2

max min1/ 1 1
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Fig. 1. Robust stabilization of DOB,  (a) Coprime uncertainty 
description, (b) DOB represented by coprime factors and 
uncertainties, (c) Equivalent form of (b) 

In (5), ||·||H denotes the Hankel norm, ρ denotes the spectral 
radius (maximum eigenvalue), and X and Z are the solutions 
of two Riccati equations (6) for the state space realization 
(A,B,C,D) of G (Skogestad et al., 2005). 

( ) ( )
( ) ( )

1 1 1 1

1 1 1 1

0

0

,
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(6)

In (Choi et al. 2003), the parameters of the Q-filter are 
determined from the given second order nominal plant. In 
this paper, we present a different approach. In Fig. 1(b), the 
control input, u, can be computed using (7). The diagram in 
Fig. 1(b) can be rearranged to give the equivalent form seen 
in Fig. 1(c). 
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DOBu K y

QN Nu M y

Qu QN My QN M

I Q QN M y

η
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η

−

− −
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= +

= − +
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=− − +

 (7)

Then the robust stabilization controller, KDOB, can be defined 
by 

( ) 1 1
DOBK I Q QN M− −=− − . (8)
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From (8), the DOB Q-filter can be expressed as 

( ) 11
DOB DOBQ K K N M

−−= − . (9)

Therefore, given the nominal coprime factor plant description, 
the DOB Q-filter can be obtained using the robust 
stabilization controller, KDOB. Furthermore, KDOB, will be 
designed by the H∞ loop shaping method in Section 2.2. As in 
(4), the robust stabilization of DOB can be written as follows. 

Proposition 1: The Robust Stabilization of DOB  

DOB represented by the coprime factor is robust stable for all 
allowed perturbations with 

M N ε
∞

Δ Δ <⎡ ⎤⎣ ⎦ , if and only if 

( )

( ) ( )( )( )

1 1

1 1 11 1 1 1

DOB
DOB

K
I GK M

I

I Q QN M I G I Q QN M M
I

γ
ε

− −

∞

− − −− − −

∞

⎡ ⎤
−⎢ ⎥

⎣ ⎦

⎡ ⎤− −= − − − ≤ =⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Proof: This proposition can be proved based on the small 
gain theorem (Zhou, 1998). 

If System 1 is an SISO system, then (9) can be modified as 

( ) 11DOB DOBQ K G K G −= − − . (10)

From (10), Proposition 1 can be modified for the SISO 
system.  

Proposition 2: If the system in (1) is an SISO system, then 
DOB represented by the coprime factor is robust stable for all 
allowed perturbations with 

M N ε
∞

Δ Δ <⎡ ⎤⎣ ⎦ , if and only if 

( ) ( ) ( )

1
1 1 11

1 1 1
DOB

DOB

K QG Q
GK M

Q Q G
γ

ε

−
− −

∞ ∞

⎡ ⎤− −⎡ ⎤
− = ≤ =⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦

. 

Proof: See Appendix A. 

From Proposition 2, given an SISO plant model, G, and a 
DOB Q-filter from (9), we can estimate the allowable 
maximum bound of the coprime factor uncertainties, 

NΔ and
MΔ . 

2.2  DOB Design Procedure using the H∞ Loop Shaping 
Method 

In Section 2.1 our goal was to find the robust stabilization 
controller, KDOB, to satisfy Proposition 1. In this section, we 
introduce the design procedure for KDOB using the H∞ loop 
shaping method illustrated in Fig. 2. The advantage of this 
method is that we can design a robust KDOB if the following 
condition is satisfied. 

Design Procedure: 

① Design DOB’s desired loop transfer function, LDOB. 

② From LDOB, determine the pre- and post-filters, WDOB1 and 
WDOB2. 

DOBL

G1DOBW 2DOBW

_DOBK ∞
 

G

DOBK

_DOBK ∞1DOBW 2DOBW

 

Fig. 2. H∞ loop shaping design procedure 

③ Determine the maximum stability margin, εmax, of DOB 
using (5). 

If the maximum stability margin is too small, return to 
Step 2 and modify the pre- and post-filters. Otherwise, 
select γ to be greater than γ min by about 10% to synthesize 
the sub-optimal control (Skogestad et al., 2005). 

④ Design the H∞ loop shaping controller, KDOB_∞ , using 

_

1

2

2 1

( )

( )
(1 ) ( 1/ )

( )

T TDOB

T T

T T

A BF H C DF H
K B X D

F S D C B X
L I XZ
H L ZC

γ γ ε

γ

∞

−

−

+ + +⎡ ⎤
= ⎢ ⎥−⎢ ⎥⎣ ⎦

= − +

= − + =

=

. 

⑤ Use KDOB = WDOB1KDOB_∞WDOB2 to design the controller 
KDOB. 

⑥ Design the Q-filter using (9). 

3. CASE STUDY 

In this section, we design the track following control system 
by applying the proposed DOB to a MEMS stage used in 
scanning-probe data storage systems. The goal of the track 
following control for the probe storage system is for the 
position of MEMS stage to be maintained on the track center 
line in the presence of disturbances and model parameter 
uncertainties. In this paper, we consider only the x-axis 
which keeps the stage positioned on the track center line 
during the scanning operation (Pantazi et al., 2007). The 
modelling equation for the MEMS stage is  

2

2 2( )
2

n
x

n n

k
G s

s s
ω
ςω ω

=
+ +

 (11)

where the damping ratio, ς, is 0.0035, the natural frequency, 
ωn, is 510.5 rad/s, and DC gain, k, is 7.708. This MEMS 
stage is fabricated by LG Electronics.  

Figure 3 shows the close loop control structure. In this figure, 
Gx is the x-axis model of the MEMS stage, Kx is the feedback 
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controller and KDOB is the proposed DOB controller. We 
design both Kx and KDOB using the H∞ loop shaping method. 
Hence we can design Kx and KDOB simultaneously by 
constructing the transfer function matrix. 

The transfer functions of the desired loop transfer functions, 
pre- and post-filters are shown in (12) and (13).  

2 1

1 2
1 2

1 2

0
0

0 0 0
0 0 0

DOB
s
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x x x
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G W GW
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G W W
G W W

G W W

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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1

DOB

DOB

x

x

s sW
s s

W

s s sW
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W

× + × + ×
=

× + × + ×
=

× + × + × + ×
=

+ × + × + × + ×
=

(13)

where LDOB is DOB’s desired loop transfer function, and Lx is 
the desired loop transfer function for the feedback controller. 
WDOB1 and WDOB2 are the pre- and post-filters for LDOB, Wx1 
and Wx2 are the pre- and post-filters for Lx. In this paper, we 
consider only the x-axis so the transfer function matrices of 
(12) are diagonal. This implies that KDOB can be treated as the 
independent inner loop controller, and Kx as the outer 
controller to the plant model. In addition, if we consider the 
coupled dynamics of the MEMS stage, then the transfer 
function matrix (12) should be expanded to MIMO 
representation to design the proposed DOB and feedback 
controller.  

A singular value plot of Gs is shown in Fig. 4(a). In this 
figure, Lx is the filter for the feedback controller and LDOB is 
the filter for the DOB controller. Lx has a bandwidth of 
100Hz and a slope of -20dB/decade from 1Hz to the 
crossover frequency which reduces the steady state error for 
the step input. However it cannot sufficiently reject the 
disturbance to meet the design specifications. We design 
DOB such that LDOB has a lower bandwidth than Lx to achieve 
high sensitivity in the low frequency region. In this paper, 
LDOB is taken to be a 2nd order low pass filter with a 
bandwidth of 50Hz and DC gain of 3dB. We will show later 
that these parameters are important factors in designing a 
DOB Q-filter.  

To obtain the maximum stability margin, εmax, we use (4) and 
(5) with a state space realization of Gs. The calculated εmax is 
0.626 which is larger than 0.25, and is suitable for the 
application of the sub-optimal control method (Skogestad et 
al., 2005). The state space realization of controller, K, is 
shown in (14). In this paper, γ, is selected to be 10% larger 
than γ min, as mentioned in Section 2.2.  
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Fig. 3. Closed loop system with DOB and controller 
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Fig. 4. Singular value plot, (a) Gs, (b) K 

Figure 4(b) shows the singular value plot of the designed 
controller, K. The feedback controller, Kx (dashed line), 
shows a slope of -20dB/decade in the low frequency region 
which reduces the steady state error. The solid line, KDOB, is 
designed to perform the disturbance rejection and to prevent a 
large disturbance excitation at the resonance frequency. 

Figure 5 shows the frequency response of the Q-filter. The Q-
filter has a DC gain of 0dB and a cut off frequency of 50Hz. 
These parameters can be changed by the DC gain and cut off 
frequency of LDOB. The numerical value of the Q-filter we 
obtained is shown in (15). The degree of the Q-filter is 4 and 
its relative degree is 3. These parameters depend on the order 
of LDOB.  

( )
8 11

4 3 3 6 2 9 11

1

(4.9 10 ) (3.1 10 )
(3.3 10 ) (4.7 10 ) (2.1 10 ) (3.1 10 )

DOB x

DOB x

K G
Q

K G

s
s s s s

−
=

−

× + ×
=

+ × + × + × + ×

(15)

In this section, we show that a robust DOB can be designed 
systematically without considering the design parameters of a 
Q-filter, e.g., time constants and orders of polynomials. In the 
next section, we will show the simulation results found using 
this DOB. 
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Fig. 5. Frequency response of the Q-filter 

4. SIMULATION RESULTS 

In this section, we apply the designed control system to a 
MEMS stage. The simulation condition is that one track is 
100nm and the sampling rate is 40kHz. As mentioned before, 
the output disturbances of the stage can be treated as a low 
frequency noise component, stage coupling dynamics and the 
parameter uncertainties (Pantazi et al., 2007). 

Figure 6 shows the output disturbance signal of the stage. In 
this simulation, we assume that the output disturbance is 
treated as a low frequency noise component which varies, 
having a maximum of 50nm during 10 seconds of operation. 
Figure 7 shows the simulation results of one track step 
response with the output disturbance signal. Without DOB 
(dashed line), the position of the x-axis varies, having a 
maximum at 13nm in the operating time. The results show 
that this output disturbance will be a critical problem in the 
use of the MEMS stage during long term operation. The solid 
line represents the simulation results found using DOB. In 
these results, DOB enables the control system to maintain a 
tracking error of less than ±1nm under the same simulation 
conditions. These results indicate that the output disturbance 
does not affect the motion of the MEMS stage over long term 
operation.  

Figure 8 shows the output sensitivity function from dout to y 
from Fig. 3. Since the designed Q-filter has a bandwidth of 
50Hz, an improved sensitivity function is obtained in the low 
frequency region (below 50Hz). Better disturbance rejection 
performance can be expected when the bandwidth of the Q-
filter is increased. Increasing the bandwidth, however, 
reduces the system robust stability margin (Choi et al., 2003). 
The maximum value of the sensitivity function is about 4dB, 
the designed control system with DOB satisfies the 6dB 
robustness specification (Skogestad et al., 2005). 

We evaluate the robust stability block against the inverse 
multiplicative output uncertainties using the structured 
singular value (SSV). As mentioned in Section 2.1, we can 
assume that the inverse multiplicative output uncertainties are 
the parameter uncertainties (Vinnicombe, 2001), which are 
±15% and ±5% of ωn and ς, respectively. As a result, the 
designed control system with DOB guarantees the robust 
stability in the presence of parameter uncertainties because 
the SSV is less than 1, as shown in Fig. 9 (Skogestad et al., 
2005).  
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Fig. 6. Output disturbance signal of the MEMS stage 
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Fig. 7. Simulation results with output disturbance (x-axis), (a) 
one track response, (b) Steady-state response of one track 

5. CONCLUSIONS 

This paper presents a new systematic design method for DOB 
which is based on the robust stabilization of normalized 
coprime factor plant description and the H∞ loop shaping 
method. The advantage of this method is that the system 
designers do not need to determine the parameters of the Q-
filter for system robustness and performance. The proposed 
DOB is applied to a MEMS stage to reject the disturbance 
and to achieve high system robustness and performance in 
the presence of parameter uncertainties. Simulation results 
show that high disturbance rejection performance and system 
robustness are achieved by the proposed DOB. 
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Fig. 8. Output sensitivity functions (with and w/o DOB) 
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Fig. 9. SSV plot for robust stability 
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Appendix A. Proof of Proposition 2 

If the system in (1) is an SISO system, then Proposition 1 can 
be changed according to 
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In (A.1), 
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Since the normalized coprime factor M N⎡ ⎤⎣ ⎦  is a co-inner 
function (Glover et al., 1989), and the H∞ norm is invariant 
under right multiplication by a co-inner function, M N⎡ ⎤⎣ ⎦  
(Zhou, 1998), the equation (A.1) can be modified to its 4-
block equivalent form 
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  .        (A.3) 
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