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Abstract: In this paper we present three different industrial real-time applications that are
based on an embedded Java processor. Although from different application domains all three
projects have one topic in common: communication. Today’s embedded systems are networked
systems. Either a proprietary protocol is used due to legacy applications or for real-time aspects
or standard Internet protocols are used. We present the challenges and solutions for this variety
of protocols in small, memory constraint embedded devices.

1. INTRODUCTION

Embedded systems in the control and automation domain
become more and more complex. In the desktop and
server domain the increasing complexity of systems can
be handled by advanced programming languages. Java has
been seen as a very productive object-oriented language.
In this paper we show that Java can also be used in the
embedded domain. We present three real-world embedded
applications written entirely in Java. The applications are
deployed on the Java processor JOP.

Furthermore, most embedded systems are implemented as
distributed systems and even very small and memory con-
straint devices need to communicate. In control applica-
tions this communication has to be performed under real-
time constraints. We show in this paper different communi-
cation systems that are all based on simple communication
patterns.

The paper is organized as follows: in the remainder of the
introduction we present the Java processor JOP and re-
lated work on Java processors. Section 2 gives an overview
of the three industrial projects. In Section 3 we describe
the challenges and solutions for different communication
requirements. We extract common patterns from the three
applications and present them in Section 4 followed by a
discussion in Section 5 and the conclusion in Section 6.

1.1 The Java Processor JOP

All described projects are based on an embedded Java
processor, called JOP, see Schoeberl (2005, 2007a). JOP
executes Java bytecodes, the instruction set of the Java
virtual machine (JVM) native. Therefore, no compiler with
the associated memory overhead or an interpreter with
the runtime overhead is necessary. The main focus of the
design of JOP is on time-predictable execution of those
Java bytecodes. As a result the execution time is known
cycle accurate and JOP is an easy target for worst-case
execution time (WCET) analysis as has been shown by
Schoeberl and Pedersen (2006) and Harmon and Klefstad
(2007).

JOP is implemented in a field-programmable gate array
(FPGA). The logic resource consumption is configurable
in the range of 2000–3000 logic cells (LC). That size is 1/3
of the soft-core RISC processor LEON, see Gaisler (2002),
that is used by ESA for space missions.

Implementation of a processor in an FPGA is a little bit
more expensive than using an ASIC processor. However,
additional application logic, such as a communication
controller or an AD converter, can also be integrated
into the FPGA. Integration of the processor and the
surrounding logic in the same reprogrammable chip is a
flexible solution: one can even produce the PCB before
all logic components are developed as the interconnection
is programmed on-chip and not routed on the PCB. For
low-volume projects, as those presented in this paper,
this flexibility reduces development cost and therefore
outweighs the cost of the FPGA device. It has to be noted
that low-cost FPGAs, that are big enough for JOP, are
available at $11 for a single unit.

1.2 Related Work

Several embedded Java processors are available from in-
dustry and academia. aJile’s JEMCore, see aJile (2000)
and Hardin (2001), and the Cjip processor, see Halfhill
(2000) and Imsys (2004), are ASIC versions of Java proces-
sors. The first Java processor available was Sun’s picoJava,
see O’Connor and Tremblay (1997). The ASIC version
of picoJava was not a real success and Sun released the
Verilog source as open-source. Puffitsch and Schoeberl
(2007) have implemented picoJava in an FPGA. As the
design was originally targeted for an ASIC and not an
FPGA it is quite big: 27500 LCs or about 9 times bigger
than JOP.

Kreuzinger et al. (2003) present Komodo, a research Java
processor for multithreaded real-time systems. Komodo
is now renamed to jamuth, see Uhrig and Wiese (2007),
and targeted for commercial embedded applications with
Altera FPGAs. Beck and Carro (2003) designed Femto-
Java, a research project to build an application specific
Java processor. Komodo and FemtoJava are quiet similar
to JOP: simple bytecodes are supported by the processor
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Fig. 1. A Kippfahrleitung mast in down position

pipeline, more complex are implemented by the execution
of microcode or with a software trap. Their resource usage
is also in the same range.

The jHISC project, see Tan et al. (2006), proposes a high-
level instruction set architecture for Java. However, the
resulting design is probably not very well balanced. The
processor consumes 15500 LCs compared to about 3000
LCs for JOP.

2. THE PROJECTS

Since the start of the development of JOP in late 2000 it
has been successfully deployed in several embedded control
and automation systems. The following section highlights
three of those projects.

2.1 The Kippfahrleitung

The first commercial project where JOP had to prove that
a Java processor is a valuable option for embedded real-
time systems was a distributed motor control system.

In rail cargo, a large amount of time is spent on loading
and unloading of goods wagons. The contact wire above
the wagons is the main obstacle. Balfour Beatty Austria
developed and patented a technical solution, the so-called
Kippfahrleitung, to tilt up the contact wire. Fig. 1 shows
the construction of the mechanical tilt system driven by an
asynchronous motor (just below the black tube). The little
box mounted on the mast contains the control system. The
black cable is the network interconnection of all control
systems. In Fig. 2 the same mast is shown with the contact
wire tilted up.

The contact wire is tilted up on a distance of up to one
kilometer. For a maximum distance of 1 km the whole
system consists of 12 masts. Each mast is tilted by an
asynchronous motor. However, the individual motors have
to be synchronized so the tilt is performed in a smooth way.
The maximum difference of the position of the contact wire
is 10 cm. Therefore, a control algorithm has to slow down
the faster motors.

Hardware Each motor is controlled by its own embedded
system (as seen in Fig. 1) by silicon switches. The system
measures the position of the arm with two end sensors and
a revolving sensor. It also supervises the supply voltage

Fig. 2. The mast in the up position with the tilted contact
wire

and the amount of current through the motor. Those
values are transmitted to the base station.

The base station provides the user interface for the op-
erator via a simple display and a keyboard. It is usually
located at one end of the line. The base station acts as
master and controls the deviation of individual positions
during the tilt. In technical terms, this is a distributed,
embedded real-time control system, communicating over
a shared network. The communication bus (up to one
kilometer) is attached via an isolated RS485 data interface.

Although this system is not a mass product, there are
nevertheless cost constraints. Even a small FPGA is more
expensive than a general purpose CPU. To compensate for
this, additional chips for the memory and the FPGA con-
figuration were optimized for cost. One standard 128 KB
Flash is used to hold FPGA configuration data, the Java
program and a logbook. External main memory is reduced
to 128 KB with an 8-bit data bus.

Furthermore, all peripheral components, such as two
UARTS, four sigma delta ADCs, and I/O ports are in-
tegrated in the FPGA.

Five silicon switches in the power line are controlled by
the application program. A wrong setting of the switches
due to a software error could result in a short circuit.
Simple logic in the FPGA (coded in VHDL) can enforce
the proper conditions for the switches. The sigma-delta
ADCs are used to measure the temperature of the silicon
switches and the current through the motor.

Software Architecture The main task of the program
is to measure the position using the revolving sensor
and communicate with the base station under real-time
constraints. The conservative style of a cyclic executive
was chosen for the application. At application start all
data structures are allocated and initialized. In the mission
phase no allocation takes place and the cyclic executive
loop is entered and never exited. The simple infinite loop,
unblocked at constant time intervals, is shown in Listing 1.
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Fig. 3. EVN SCADA system with the modem pool and TALs as remote terminal units

p r i va t e s t a t i c void f o r e v e r ( ) {

f o r ( ; ; ) {
Msg . loop ( ) ;
Triac . loop ( ) ;
i f (Msg . a v a i l a b l e ) {

handleMsg ( ) ;
} e l s e {

chkMsgTimeout ( ) ;
}
handleWatchDog ( ) ;
Timer . wai tForNextInterva l ( ) ;

}
}

Listing 1. The cyclic executive (simplified version)

At the time the application was developed no static WCET
analysis tool for Java was available. The actual execution
time was measured and the maximum values have been
recorded regularly. The loop and communication periods
have been chosen to leave slack fur unexpected execution
time variations. However, the application code and the
Java processor are fully WCET analyzable as Schoeberl
and Pedersen (2006) have shown later.

No interrupts or direct memory access (DMA) devices that
can influence the execution time are used in the simple
system. All sensors and the communication port are polled
in the cyclic executive.

Communication Communication is based on a mas-
ter/slave model. Only the base station (the master) is
allowed to send a request to a single mast station. This
station is then required to reply within bounded time. The
master handles timeout and retry. If an irrecoverable error
occurs, the base station switches off the power for all mast
stations, including the power supplies to the motors. This
is the safe state of the whole system.

In a master/slave protocol no media access protocol is
needed. In the case of a failure in the slave that delays

a message collision can occur. The collision is detected by
a violation of the message CRC. Spurious collisions are
tolerated due to the retry of the base station. If the RS485
link is broken and only a subset of the mast stations reply
the base station, the base station switches of the power
supply for the whole system.

On the other hand the mast stations supervise the base
station. The base station is required to send the requests
on a regular basis. If this requirement is violated, each
mast station switches off its motor. The local clocks are not
synchronized. The mast stations measure the time elapsed
since the last request from the base station and locally
switch off based on a timeout.

The maximum distance of 1 km determines the maximum
baud rate of the RS485 communication network. The re-
sulting 12 masts on such a long line determine the number
of packets that have to be sent in one master/slave round.
Therefore, the pressure is high on the packet length. The
data is exchanged in small packets of four bytes, including
a one-byte CRC. To simplify the development, commands
to reprogram the Flash in the mast stations and to force a
reset are included. Therefore, it is possible to update the
program, or even change the FPGA configuration, over the
network.

2.2 The SCADA Device TeleAlarm

TeleAlarm (TAL) is a typical remote terminal unit of a
supervisory control and data acquisition (SCADA) system.
It is used by the Lower Austria’s energy provider EVN
(electricity, gas, and heating) to monitor the distribution
plant. TeleAlarm also includes output ports for remote
control of gas valves.

Hardware The TAL device consists of a CPU FPGA
module and an IO board. The FPGA module contains an
Altera Cyclone device, 1 MB static memory, 512 KB Flash,
and 32 MB NAND Flash. The IO board contains several
EMC protected digital input and output ports, two 20 mA
input ports, Ethernet connection, and a serial interface.
Furthermore, the device performs loading of a rechargeable
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Fig. 4. Support system for single track railway control for the Austrian railway company

battery to survive power down failures. On power down,
an important event for a energy provider, an alarm is sent.
The rechargeable battery is also monitored and the device
switches itself off when the minimal voltage threshold is
reached. This event is sent to the SCADA system before
the power is switched off.

The same hardware is also used for a different project: a
lift control in an automation factory in Turkey. The simple
lift control software is now used as a test case for WCET
tool development.

Communication The communication between the TAL
and the main supervisory control system is performed with
a proprietary protocol. On a value change TAL sends the
new data to the central system. Furthermore, the remote
units are polled by the central system at a regular base.
The TAL itself also sends the actual state regularly. TAL
can communicate via Internet/Ethernet, a modem, and
via SMS to a mobile phone.

EVN uses a mixture of dial-up network and leased lines
for the plant communication. The dial-up modems are
hosted by EVN itself. For safety and security reason there
is no connection between the control network and the office
network or the Internet.

Fig. 3 shows the SCADA system setup at EVN. Several
TALs are connected via modems to the central modem
pool. The modem pool itself is connected to the central
server. It has to be noted that there are many more TALs
in the field than modems in the pool. The communication
is usually very short (several seconds) and performed on
demand and on a long regular interval. Not shown in the
figure are additional SCADA stations and other remote
terminal units from other manufacturers.

2.3 Support for Single Track Railway Control

Another application of JOP is in a communication device
with soft real-time properties – Austrian Railways’ (ÖBB)
new support system for single-track lines. The system
helps the superintendent at the railway station to keep

track of all trains on the track. He can submit commands
to the engine drivers of the individual trains. Furthermore,
the device checks the current position of the train and
generates an alarm when the train enters a track segment
without a clearance.

At the central station all track segments are administered
and controlled. When a train enters a non-allowed segment
all trains nearby are warned automatically. This warning
generates an alarm at the locomotive and the engine driver
has to perform an emergency stop.

Fig. 4 gives an overview of the system. The display and
command terminal at the railway station is connected to
the Intranet of the railway company. On the right side of
the figure a picture of the terminal that is connected to the
Internet via GPRS and to a GPS receiver is shown. Each
locomotive that enters the track is equipped with either
one or two of those terminals.

It has to be noted that this system is not a safety-critical
system. The communication over a public mobile phone
network is not reliable and the system is not certified for
safety. The intension is just to support the superintendent
and the engine drivers.

Hardware Each locomotive is equipped with a GPS
receiver, a GPRS modem, and the communication device
(terminal). The terminal is a custom made device. The
FPGA module is the same as in TAL, only the IO board is
adapted for this application. The IO board contains several
serial line interfaces for the GPS receiver, the GPRS
modem, debug and download, and display connection.
Auxiliary IO ports connected to relays are reserved for
future use. A possible extension is to stop the train
automatically.

Communication The current position of the train is
measured with GPS and the current track segment is
calculated. The number of this segment is regularly sent
to the central station. To increase the accuracy of the
position, differential GPS correction data is transmitted
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to the terminal. The differential GPS data is generated by
a ground base reference located at the central station.

The exchange of positions, commands, and alarm messages
is performed via a public mobile phone network (via
GPRS). The connection is secured via a virtual private
network that is routed by the mobile network provider to
the railway company’s Intranet. The application protocol
is command/response and uses UDP/IP as transport layer.
Both systems (the central server and the terminal) can
initiate a command. The system that sends the command
is responsible for retries when no response arrives. The
deadline for the communication of important messages is
in the range of several seconds. After several non-successful
retries the operator is informed about the communication
error. He is than in charge to perform the necessary
actions.

Besides the application specific protocol a TFTP server
is implemented in the terminal. It is used to update the
track data for the position detection and to upload a new
version of the software. The flexibility of the FPGA and
an Internet connection to the embedded system allows to
upgrade the software and even the processor in the field.

3. COMMUNICATION

Although we described embedded systems from quite dif-
ferent application domains we have been facing similar
challenges. All systems are distributed systems and there-
fore need to communicate. Furthermore, they are real-time
systems (at least with soft deadlines) and need to trust the
communication and perform regular checks.

3.1 Challenges

Communication is not per se reliable. The RS485 link at
the Kippfahrleitung operates in a rough environment and
electromagnetic influences can lead to packet loss. The
TAL system can suffer from broken phone lines. The single
track control system operates on a public mobile phone
network – a network without any guarantees for the GPRS
data traffic.

Therefore, we have to find solutions to operate in a safe
and controlled manner the distributed system despite the
chance of communication errors and failures.

3.2 Solutions

Reliable communication is usually provided by the trans-
port layer, TCP/IP in the case of the Internet. However,
the timeouts in TCP/IP are way longer than the commu-
nication deadlines within control systems. The approach in
all three presented projects is to use a datagram oriented
protocol and perform the timeout and retransmission at
the application level. To simplify the timeout handling a
simple command and response pattern is used. One part-
ner sends a command and expects the response within a
specific time bound. The command initiator is responsible
for retransmission after the timeout. The response partner
just needs to reply to the command and does not need to
remember the state of the communication. After several
timeouts the communication error is handled by an upper
layer. Either the operator is informed (in the SCADA and

the railway control system) or the whole system is brought
into a safe state (in the motor control project).

4. COMMON PATTERNS

The issues in the design of embedded real-time systems
are quite similar in the three described projects. We found
that several design patterns are used over and over and
describe three of them in this section.

4.1 Master/Slave Designs

Developing safe embedded systems is an exercise in re-
ducing complexity. One paradigm to simplify embedded
software development is the master/slave pattern. Usually
a single master is responsible to initiate commands to
the slaves. The single master is also responsible to handle
reliable communication.

The master/slave pattern also fits very well with the
command/response pattern for the communication.

4.2 Dealing with Communication Errors

Communication errors are either transient or longer last-
ing. Transient communication errors are lost packets due
to network overload or external electromagnetic influences.
In a command/response system the lost packets (either the
command or the response) is detected by a timeout on the
response. A simple retransmission of the command can
correct those transient errors.

A longer network failure, e.g. caused by a wire break, can
be detected by too many transmission retries. In such a
case the system has to enter some form of safe state. Either
the power is switched off or a human operator has to be
informed.

The individual timeout values and the number of retries
depend, similar to thread periods, on the controlled envi-
ronment. In the Kippfahrleitung the maximum timeout is
in the millisecond range, whereas in the SCADA system
the timeout is several minutes.

4.3 Software Update

Correction of implementation bugs during development
can be very costly when physical access to the embedded
system is necessary for a software update. Furthermore, a
system is usually never really finished. When the system
is in use the customer often finds new ways to enhance the
system or requests additional features.

Therefore, an important feature of a networked embedded
system is a software and parameter update in the field.
In the first project the software update is performed
via a home-made protocol. The other projects use the
Internet protocol to some extent and therefore TFTP is
a natural choice. TFTP is a very simple protocol that
can be implemented within about 100 lines of code. It
is applicable even in very small and resource constraint
embedded devices.
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5. LESSONS LEARNED

Writing embedded control software in Java is still not very
common due to the lack of small and efficient implemen-
tations of the JVM. Our Java processor JOP is a solution
for some embedded systems.

Using Java as the implementation language was a pleasure
during programming and debugging. We did not waste
many hours to hunt for pointer related bugs. The stricter
(compared to C) type system of Java also catches many
more programming errors at compile time. However, when
using Java in a small embedded system one should not
expect that a full blown Java library is available. Almost
all of the code had to be written without library support.
Embedded C programmers are aware of that fact, but Java
programmers are new in the embedded domain and have
to learn the difference between a PC and a 1 MB memory
embedded system.

Up to date FPGAs in embedded control systems are
only used for auxiliary functions or to implement high-
performance DPS algorithm directly in hardware. Using
the FPGA as the main processor is still not very com-
mon. However, combining the main processor with some
peripheral devices in the same chip can simplify the PCB
layout and also reduce the production cost. Furthermore, a
field-reprogrammable hardware device offers a great deal
of flexibility: When some part of the software becomes
the bottleneck, an implementation of that function in
hardware can be a solution. Leaving some headroom in
the logic resources can extend the lifetime of the product.

6. CONCLUSION

In this paper we have presented three industrial applica-
tions implemented in Java on an embedded, real-time Java
processor. All projects included custom designed hardware
(digital functions) and the central computation unit imple-
mented in a single FPGA. The applications are written in
pure Java without the need for native methods in C. Java
proved to be a productive implementation language for
embedded systems.

The presented applications contain several nodes and form
a distributed embedded system with real-time constraints.
In a distributed system reliable communication is essential.
We have extracted common patterns (master/slave and
command/response) that enable implementation of reli-
able communication in a constraint environment.

We have attached JOP to a time-triggered network-on-
chip, see Schoeberl (2007b). It would be an interesting ex-
ercise to implement a JOP based node in a time-triggered
distributed system as proposed by Kopetz and Bauer
(2003). The combination of a real-time Java processor and
a real-time network can ensure real-time characteristics for
the whole system.
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