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Abstract: Optimal pulse width modulation (PWM) problem is an established method
of generating PWM waveforms with low baseband distortion. In this paper we focused
on computation of optimal switching angles of a PWM waveform for generating general
odd symmetric waveforms with applications in control. We introduce an exact and fast
algorithm with the complexity of only O(n2) arithmetic operations. This algorithm is based
on transformation of appropriate trigonometric equations for each harmonics to a polynomial
system of equations that is transferred to a special system of power sums. The solution of
this system is carried out by modification of Newton’s identity via Padé approximation and
orthogonal polynomials theory and property of symmetric polynomials. Finally, the optimal
switching sequence is obtained by computing the zeros of two orthogonal polynomials in one
variable.

Keywords: Polynomial methods; optimal PWM; selected harmonics elimination; Newton
identities; Padé approximation; orthogonal polynomials; composite power sums.

1. INTRODUCTION

The problem of optimal PWM waveform (or some times
called selected harmonic elimination (SHE) problem) is
tackled in this paper. The main aim is to compute switch-
ing angles for a odd symmetry PWM waveform so as the
arbitrary required output waveform is obtained after its
filtration. The odd symmetry T periodic waveform (or
function) f(t) is defined as

f(t) = −f(−t) . . . odd symmetry, (1a)

f(t) = f(t + T ) . . . periodicity. (1b)

Lets see the concrete example of function f(t) = 2 sin t −
sin 2t whose figure is depicted in (Fig. 1). We focused
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Fig. 1. Example of odd symmetry 2π periodic function
f(t) = 2 sin t − sin 2t.

on finding the switching α1, α2, . . . , αn for odd symmetry
periodic PWM waveform p(t) see (Fig. 2) so that its
baseband frequency is equal to frequency spectrum of
f(t) and several following higher harmonics are equal
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Fig. 2. Optimal odd PWM waveform for generation of odd
symmetry periodic signal f(t) = 2 sin t − sin 2t.

to zero see (Fig. 3). Amplitude frequency spectrum of
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Fig. 3. Amplitude frequency spectrum p(t).

signal f(t) is {a1 = 2, a2 = −1} (i.e. the first and the
second harmonics; the following harmonics are zero). The
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baseband frequency spectrum for p(t) is chosen the same
like the frequency spectrum f(t) and then following six
harmonics (from the third to the eight) are put equal to
zero. Finally, it is required that {b1 = 2, b2 = −1, b3 =
· · · = b8 = 0} holds for the first eight harmonics of p(t).
The other higher harmonics p(t), that are impossible to
change by computing of switching angels α1, . . . , α8 are
{b9 = 4.06, b10 = .76, b11 = .79, b12 = −.66, . . .}. These
higher harmonics are necessary to be cancelled by suitable
filter. It is clear, that the wider band of zero harmonics is,
the better result of filtration will be.

1.1 Other Methods

A lot of methods for the optimal PWM problem were
developed up to now. The most effective method for
single-phase quarter-symmetry inverter is described in
Czarkowski et al. [2002], Chudnovsky and Chudnovsky
[1999]. This method is based on trigonometric identity
where original trigonometric system is transformed to the
polynomial system of specific structure leading to the odd
power sums system. The problem result in construction
special set of one variable polynomials and computing
their zeros. It is noticeable that these polynomials are
orthogonal and recurrence formula is derived for them.
The solution is based on diagonal Padé approximation.
In case of single-phase inverter for given modulation index
only one or none solution exists.

2. OPTIMAL PWM PROBLEM SOLUTION

In this study we restrict ourselves to computation of the
optimal switching sequence of single-phase odd symmetry
periodic PWM waveform p(t) for generally odd symmetry
periodic waveforms f(t). Each T periodic waveform can be
described using sine Fourier series

f(t) ∼

∞∑

k=1

ak sin kωt. (2)

The same for odd symmetry T periodic PWM waveform
p(t) that is depicted in (Fig. 2). Its Fourier series is also
odd

p(t) ∼

∞∑

k=1

bk sin kωt, (3)

where

bk =
4

T

∫ T
2

0

p(t) sin kωt dt, k = 1, 2, . . . (4)

and ω = 2π/T. For p(t) according to (Fig. 2) is

bk(α1, . . . , αn) =
4A

kπ

(

on+k +

n∑

i=1

(−1)i cosωkαi

)

,

where
0 < α1 < α2 < · · · < αn < T/2 (5)

are switching times and n is number of pulses in half-
period. To simplify the notation, we used and now define
the following symbol as the test of odd parity

om =
1 − (−1)m

2
=

{
0 for even m,

1 for odd m.

Without loss of generality we restricted only to period 2π
because of more simple notation. All the results αi are
possible to resolve to origin period according to T

2π αi.

Then the solution of optimal PWM problem is given by
the following set of equations

bk(α) =

{
ak for k = 1, . . . , nC

0 for k = nC + 1, . . . , n,
(6)

where n = nC + nE is number of pulses in half period,
α = (α1, . . . , αn) are unknown variables, nC is a number
of terms ak describing a function f(t) and generating a
baseband (controlled harmonics). The last nE equations
describe zero band of higher harmonics (eliminated har-
monics). The solution certainly must respect condition (5).

2.1 Polynomial Equations

The system of equations (6) is nonlinear trigonometric.
Finding its solution is possible only with using numerical
iterative methods Sun and Grotstollen [1994] and their
convergence is considerably dependent on initial iteration.
Regarding these facts let us do simplifying by convert-
ing to polynomial system by substitution for Chebyshev
polynomials of first kind. This substitution for cosine was
used for example in Czarkowski et al. [2002] for solution
of optimal single-phase quarter-wave three-level PWM
waveform. The substitution is done according to following
trigonometric identity (multiple-angle formula)

cos(nα) = Tn(cos(α)),

where Tn is n-degree Chebyshev polynomial of first kind
and it is hold Tn(x) = tn,0 + tn,1x + · · ·+ tn,nxn. Then let
us convert k-th harmonics bk(α) to polynomial

bk(x) =
4A

πk

(

on+k +

n∑

i=1

(−1)iTk(xi)

)

(7)

in variables x = (x1, . . . , xn). Now the trigonometric
system (6) can be transform to polynomial system

bk(x) =

{
ak for k = 1, . . . , nC

0 for k = nC + 1, . . . , n.
(8)

This system is already possible to solve using other meth-
ods. For example Groebner basis method, or eliminating
method based on solving resultant and a lot of others. The
origin unknowns αi from xi are obtained by

αi = arccosxi, i = 1, . . . , n. (9)

If inequality (5) is given for αi, then for xi must hold

−1 < xn < · · · < x2 < x1 < 1. (10)

Now, the polynomial system (8) is possible to transforming
by substitution for power sums pi to the following linear
system

b2i−1(p) =
4A

(2i − 1)π

(

on+2i−1 −

i∑

j=1

t2i−1,2j−1p2j−1

)

= a2i−1

i = 1, 2, . . . ,

⌈
nC

2

⌉

,

b2i(p) =
4A

2iπ

[

on+2i −

(

(−1)ion +

i∑

j=1

t2i,2jp2j

)]

= a2i

i = 1, 2, . . . ,

⌊
nC

2

⌋

, (11)
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b2i−1(p) = on+2i−1 −

i∑

j=1

t2i−1,2j−1p2j−1 = 0

i =

⌈
nC

2

⌉

+ 1, . . . ,

⌈
n

2

⌉

,

b2i(p) = on+2i −

(

(−1)ion +

i∑

j=1

t2i,2jp2j

)

= 0

i =

⌊
nC

2

⌋

+ 1, . . . ,

⌊
n

2

⌋

,

where p = (p1, . . . , pn) are special power sums

pi =
n∑

j=1

(−1)j+1xi
j = xi

1 − · · · + (−1)n+1xi
n. (12)

It is clear that this system of equations is in lower trian-
gular form and variables with odd and even indexes are
independent on each other. Therefore the system can be
solved like as two separate systems of linear equations.
In addition this system is special, terms are coefficient of
Chebyshev polynomials tn,i. Therefore, let us solve this
problem without generating the coefficients of Chebyshev
polynomials and sequentially solving the system (11) using
standard algorithm for triangular matrices. The solution
is

p2i = on − 2−2i π

A

i∑

k=1

( 2i

i − k

)
k a2k , i = 1, 2, . . . ,

⌊
nc

2

⌋

,

p2i = on − 2−2i π

A

bnc
2 c
∑

k=1

( 2i

i − k

)
k a2k , i =

⌊
nc

2

⌋

+ 1, . . . ,

⌊
n

2

⌋

p2i−1 = on+1 − 2−2i π

A

i∑

k=1

(2i − 1

i − k

)
(2k − 1) a2k−1, (13)

i = 1, 2, . . . ,

⌈
nc

2

⌉

,

p2i−1 = on+1 − 2−2i π

A

dnc
2
e

∑

k=1

(2i − 1

i − k

)
(2k − 1) a2k−1 ,

i =

⌈
nc

2

⌉

+ 1,

⌈
nc

2

⌉

+ 2, . . . ,

⌈
n

2

⌉

.

(We proof this according to the Gauss-Banachiewitz
decomposition for Chebyshev polynomials of the first
kind.) Thus the solution in unknown pi is easily obtained
in O(nnC) steps of operations. The solution of modified
power sums system (12), where pi is according to (13),
leads back to unknowns xi.

2.2 Modified power sums

The solution of optimal PWM problem for odd waveforms
dependence only on computing the modified power sums
system (12) where the right hand sides are solved accord-
ing to (13). This system is very similar to standard power
sums

∑n
i=1 xk

i = pk, k = 1, . . . , n that is easily solvable
by Newton’s identity.

For following steps it is better to solve this type of modified
system of power sums

pj(y1, . . . , yn) =

k∑

i=1

yj
i −

n∑

i=k+1

yj
i , j = 1, . . . , n, (14)

where k ≤ bn
2 c. When k > bn

2 c, we can multiply the
equation system (14) by −1 and convert it to the case

k < bn
2 c. The system (14) can be also easily obtained by

reassorting variables from the system (12).

Generally, the total number of solutions (14) is k!(n −
k)!. They all are combinations of two sets that origins
by permutation of elements of vectors y+ = {y1, . . . , yk}
and y− = {yk+1, . . . , yn}. Therefore, for modified power

sums (14), where
∑n

i=1 yj
i and

∑n
i=k+1 yj

i are symmetric
polynomials, is given

pj(y1, . . . , yk, yk+1, . . . , yn) =

pj(yπ1(1), . . . , yπ1(k), yπ2(k+1), . . . , yπ2(n)).

{yπ1(1), . . . , yπ1(k)} is arbitrary permutation of the set y+

and {yπ2(k+1), . . . , yπ2(n)} is arbitrary permutation of the

set y−.

2.3 Converting to optimal PWM problem

The equation (12) is converted to (14) by the following
way. If n is even number then n/2 variables with sign plus
and the same number with sign minus are in system (12).
Therefore, converting to (14) is easily done by introducing
new variables according to

y+ = {yi = x2i−1, i = 1, . . . , k} (15)

y− =
{
yi+n/2 = x2i, i = 1, . . . , k

}

and k = n
2 . If n is odd number then

⌈
n
2

⌉
variables with sign

plus and
⌊

n
2

⌋
variables with sign minus are in the system

(12). Therefore, converting similar to case with even n
leads to k >

⌊
n
2

⌋
that is not in agreement with condition

k ≤ bn
2 c of equation (14). Therefore, each equation is

necessary to multiply by −1. Then this substitution can
be done

y+ =
{

yi = x2i, i = 1, . . . ,
⌊n

2

⌋}

(16)

y− =
{

yi+bn/2c = x2i−1, i = 1, . . . ,
⌈n

2

⌉}

with k =
⌊

n
2

⌋
. The signs of right sides must be changed

pi := −pi. The solution x1, . . . , xn of optimal PWM prob-
lem is obtained as follow. From all the solution only one
is chosen. The one that is in agreement with the condition
(10), it means that all terms y+ and y− are real numbers
belonging to interval (−1, 1). As all terms y+ and y−

can be permutated, then terms y+ and y− are sorted in
descending order, it is y+ := {1 > y1 > · · · > yk > −1, },
y− := {1 > yk+1 > · · · > yn > −1}. Therefore we get
x = {x1, . . . , xn} = {y1, yk+1, y2, yk+2, . . . , yn, yk} by reas-
sorting variables x1, . . . , xn according to (15) for even n.
For odd n the solution x1, . . . , xn we get by reassorting (16)
that is x = {x1, . . . , xn} = {yk+1, y1, yk+2, y2, . . . , yk, yn}.
Finally the condition (10) for x must hold.

2.4 Solving Modified Power Sums

In this section the algorithm for solution the modified
system of power sums (14) is described. The solution
is derived from Padé approximation Chudnovsky and
Chudnovsky [1999], Czarkowski et al. [2002], Brezinski
[2002] and Baker and Graves-Morris [1996]. The problem
of this system was solved in Wu and Hadjicostis [2005] but
the authors did not use Padé approximation and theory of
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orthogonal polynomials that play a crucial role in solution
of the whole problem.

We will find the solution as the zeros of polynomials

Pk(y) =

k∏

i=1

(y − yi) = yk + pk,k−1yk−1 + · · · + pk,0, (17)

Qn−k(y) =

n−k∏

i=1

(y − yi+k) = yn−k + qn−k,n−k−1yn−k−1 + . . .

· · · + qn−k,0. (18)

Then let us do logarithmic derivative

Pk(y)

Qn−k(y)
=

∏k
i=1(y − yi)

∏n−k
i=1 (y − yi+k)

and we get

P ′
k(y)

Pk(y)
−

Q′
n−k(y)

Qn−k(y)
=

k∑

i=1

1

y − yi
−

n−k∑

i=1

1

y − yi+k
.

The series 1
y−z at y = ∞ is

∑∞
j=0

zj

yj+1 . Then

P ′
k(y)

Pk(y)
−

Q′
n−k(y)

Qn−k(y)
=

∞∑

j=0

p+
j

yj+1
−

∞∑

j=0

p−j
yj+1

, (19)

where p+
j =

∑k
i=1 yj

i , p−j =
∑n−k

i=1 yj
i+k with pj = p+

j −

p−j . Therefore the previous equation (19) is in the form

P ′
k(y)

Pk(y)
−

Q′
n−k(y)

Qn−k(y)
=

∞∑

j=0

pj

yj+1
. (20)

By integrating (20) we have

Pk(y)

Qn−k(y)
= y2k−n exp(−

∞∑

j=1

pj

jyj
). (21)

If we solve the series of right side (21) at y = ∞ then the
problem leads to the Padé approximation.

2.5 SHE problem and Padé approximation

Now we must solve the unknown coefficients of polyno-
mials Pk(y) and Qn−k(y) usig Padé approximation of
function

y2k−n exp(−

∞∑

j=1

pj

jyj
) = y2k−n exp

∞∑

j=1

vjy
−j ,

where vj =
pj

j , j = 1, 2, . . . .Therefore it is necessary to

solve the series expansion of function

g(y) = exp

∞∑

j=1

vjy
−j =

∞∑

i=0

giy
−i at y = ∞. (22)

The solution is carried out according to Knuth [1997]

and it is g0 = 1, gk = − 1
k

∑k
j=1 pjgk−j , k = 1, . . . ,∞,

that is computation of elementary symmetric polynomials
according to Newton’s formula.

Detail form of equation (21) considering (22) leads to

Pk(y) = Qn−k(y)y2k−n(g0 + g1y
−1 + g2y

−2 + . . . ) =

= (yn−k + qn−k,n−k−1y
n−k−1 + · · · + qn−k,0) y2k−n ·

·(g0 + g1y
−1 + g2y

−2 + . . . ) =

= yk + pk,k−1y
k−1 + · · · + pk,0.

First, let us consider the case when

n odd number and k = bn
2 c : The Padé approximation

[k, k+1]y−1g(y) = Pk(y)
Qk+1(y) is solved. The multiplying of the

previous form and comparing the coefficients of the same
powers (the coefficients with negative power are equal
zero) leads to the following system







g0 g1 · · · gk+1

g1 . .
. ...

... . .
.

g2k+1

gk+1 · · · g2k+1 g2(k+1)








·







qk+1,0

...
qk+1,k

qk+1,k+1







=







0
...
0

Kk







, (23)

where qk+1,k+1 is leading coefficient of polynomial
Qk+1(y) and equal to one 1. It is normalization condition,
in that case, the polynomials are called monic. Then the
last equation of previous system is reduced. Kk is appro-
priate constant. Therefore we solve the system








g0 g1 · · · gk

g1 . .
. .

..
... . .

.
g2k

gk · · · g2k g2k+1








·







qk+1,0

qk+1,1

...
qk+1,k







=







−gk+1

−gk+2

...
−g2k+1







. (24)

It is a linear system with Toeplitz structure (Hankel
matrix) in size [k+1×k+1]. For solution it is possible to use
special fast Levinson - Durbin algorithm with complexity
O(n2) (for more details see Golub and Loan [1996])) or
even super fast algorithm with complexity O(n ln n2) (see
Bini and Pan [1994]). Standard algorithms for general
linear systems need O(n3) complexity operations.

Unknown polynomial coefficients Pk(y) are easily obtained
from known polynomial coefficients Qk+1(y) as follows






pk,k−1

pk,k−2

.

..
pk,0







=








0 . . . 0 g0

..

. . .
.

. .
.

g1

0 . .
.

. .
. .

..
g0 g1 . . . gk−1








·







qk+1,1

qk+1,2

.

..
qk+1,k







+







g1

g2

.

..
gk







. (25)

Again, we have system with special structure. It is lower
triangular Toeplitz matrix and its multiplying is easily
done by fast algorithms with complexity O(n log n) (for
more details see Bini and Pan [1994].)

n even number and k = n
2 : The procedure is similar

to previous section. Lets derive appropriate equations
for computing the coefficients of polynomials Pk(y) and
Qk(y). In this case it is y2k−n = 1, e.i. Padé approximation

is solved [k, k]g(y) = Pk(y)
Qk(y) . The coefficients of polynomial

Qk(y) is solved according to







g1 g2 · · · gk

g2 . .
. ..

.
... . .

.
g2k−1

gk · · · g2k−1 g2k








·







qk,0

qk,1

...
qk,k−1







=







−gk+1

−gk+2

...
−g2k







(26)

and the coefficients of polynomial Pk(y) are obtained as
follows






pk,k−1

pk,k−2

.

..
pk,0







=








0 . . . 0 g0

..

. . .
.

. .
.

g1

0 . .
.

. .
. .

..
g0 g1 . . . gk−1








·







qk,0

qk,1

.

..
qk,k−1







+







g1

g2

.

..
gk







. (27)
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2.6 The SHE problem and orthogonal polynomials

The theory of orthogonal polynomials and Padé approx-
imation leads to the fact that founded polynomials are
orthogonal and other important formulas and theorems
are characteristic for them, for more details see Brezin-
ski [2002] or Bultheel and Van Barel [1997], Baker and
Graves-Morris [1996]. Comparing the systems (23,24) and
the system of moments for orthogonal polynomials (see
Brezinski [2002]) determine that polynomials Qn−k(y) a
Pk(y) (see (17)) are orthogonal. Therefore the following
formulas hold:

2.7 Three-term recurence formula for polynomials Q(y) a
P (y)

The three-term recurrence formula for odd n is

Qk(y) = (y + bk)Qk−1(y) − ckQk−2(y) (28)

where

bk = −
L[yQ2

k−1
(y)]

Kk−1
(29)

ck =
Kk−1

Kk−2
(30)

and where

K−1 = K0 = 1, Kk =

k∑

i=0

gk+iqk,i. (31)

The initial conditions are Q−1(y) = 0, Q0(y) = 1,
and linear moment functional in (29) is L[yk] = gk. The
linear moment functional L of polynomial is defined follows

L
[
∑n

i=0 liy
i
]

=
∑n

i=0 liL[yi].

The polynomial Pk(y) is associated polynomial to Qk+1(y)

in Padé approximation [k, k + 1]y−1g(y) = Pk(y)
Qk+1(y) . The

polynomial Pk(y) is sometimes called the polynomial of
second kind and undergoes to this recurrence formula

Pk(y) = (y + bk)Pk−1(y) − ckPk−2(y) (32)

with the different initial conditions P−1(y) = −1, P0(y) =
0 and bk, ck are according to (29,30) and (31).

The three-term recurrence formula for even n is similar
previous patterns. According to equation (26) it is adjacent
family of orthogonal polynomials in Padé approximation

[k, k]g(y) = Pk(y)
Qk(y) and is characterized by this recurrent

formula

Qk(y) = (y + bk)Qk−1(y) − ckQk−2(y) (33)

where bk, ck are according to (29,30) with

K−1 = 1, K0 = g1, Kk =

k∑

i=0

gk+i+1qk,i (34)

and initial conditions are Q−1(y) = 0, Q0(y) = 1 and
linear moment functional in (29) is L[xk ] = gk+1.

Finding the recurrent formula for polynomial Pk(y) is
more difficult due to the fact that Pk(y) is not associated
polynomial to the Qk(y) (because the degree of Pk(y) is
same as degree of Qk(y)). It is hold

Pk(y) = Qk(y) + assoc(Qk(y)).

Therefore it is

Pk(y) = (y + bk)Pk−1(y) − ckQk−2(y) (35)

where bk, ck are according to (29,30) and (34) and initial
conditions are

P−1(y) = Q−1(y) + assoc{Q−1(y)} = 0 + (−1) = −1,

P0(y) = Q0(y) + assoc{Q0(y)} = 1 + 0 = 1

and in (29) is L[xk] = gk+1.

2.8 Determinantal formula

As solved polynomials are orthogonal, they undergo to
other special patterns. These polynomials are possible to
solve as determinants of special polynomial matrices.

Determinantal formula for odd n:

Q(y)k+1 = Dqk+1
det










g0 g1 . . . gk gk+1

g1 . .
.

. .
. ..

.
.
.. . .

.
. .

.
g2k−1

gk gk+1 . . . g2k−1 g2k

1 y . . . yk yk+1










(36)

and

P (y)k = Dpk
det













g0 g1 . . . gk−1 gk

g1 . .
.

. .
. ...

... . .
.

. .
.

g2k−2

gk−1 gk . . . g2k−2 g2k−1

0 1 . . .

k−1∑

i=0

giy
k−i−1

k∑

i=0

giy
k−i













,(37)

where k = bn
2 c and Dqk+1

, Dpk
are normalization factors

so that Q(y)k+1, P (y)k are monomials. Similar formulas
can be derived for even n.

2.9 Eigenvalues computation

The zeros of Qk+1(y) and Pk(y) it is possible to obtained
as eigenvalues of special matrix

Jk+1 =











−b1 1 0 . . . 0

c2 −b2 1
.. .

...

0 c3 −b3
. . . 0

..

.
. . .

. . .
. . . 1

0 . . . 0 ck+1 −bk+1











. (38)

It is hold for odd n that
Qk+1(y) = det(yIk+1 − Jk+1)

Pk(y) = det(yIk − J ′

k),
(39)

where J ′
k is the matrix obtained by suppressing the first

row and the first column of Jk+1. So, the zeros of Qk+1(y)
are the eigenvalues of Jk+1 and the zeros of Pk(y) are
the eigenvalues of J ′

k. General patterns are described in
Brezinski [2002]. These polynomials are also the solution
of special differential equations.

The position of zeros of orthogonal polynomials is also very
important. Each n-degree polynomial in an orthogonal
sequence has all n of its roots real from interval (−1, 1),
distinct, and strictly inside the interval of orthogonality.
The roots of each polynomial lie strictly between the
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roots of the next higher polynomial in the sequence. This
important property can be used in numerical finding the
zeros in iterative algorithm - the choice of the first iteration
in Newton’s method. The position of zeros of polynomial
P (y) and Q(y) is depicted in (Fig. 4). The sequences
of roots of polynomials P (y) and Q(y) in (Fig. 4) are
generated from example in introduction section.
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Fig. 4. The roots position of orthogonal polynomials for
example in introduction section. ◦, • and �, � are the
roots of P (y) and Q(y) for even respectively odd n.

3. CONCLUSION

This paper presents a contribution to theory of optimal
PWM problem for odd symmetry waveforms and gives
efficient algorithms for fast calculation of PWM switching
sequence. Some new results or expansion of know results
regarding the optimal odd PWM problem are derived in
this paper. The results are summarized in the following
part.

(1) After variables transformation the solution of the
optimal PWM problem is given by the zeros of two
polynomials P (y) and Q(y) that are suitable sorted.

(2) The polynomials P (y) and Q(y) are given by Pk(y)
Qn−k(y) =

y2k−n exp(−
∑∞

j=1
pj

jyj ), where k =
⌊

n
2

⌋
and pj =

∑k
i=1 yj

i −
∑n

i=k+1 yj
i , j = 1, . . . , n, where yi, i =

1, . . . , k are the zeros of Qk(y) and yi, i = k+1, . . . , n
are the zeros of Pn−k(y).

(3) The polynomials Q(y) and P (y) give also the solution
of a Padé approximation and therefore constitute a
set of orthogonal polynomials where the polynomial
P (y) is the associated polynomial (or polynomial of
second kind) to Q(y) for odd n. In case even n, the
polynomials Q(y) and P (y) are adjacent family of
orthogonal polynomials.

(4) The solution of optimal PWM problem can be ob-
tained through
(a) Hankel (Toeplitz) system (24, 25) for odd n and

(26, 27) for even n. The complexity of a fast
algorithm is O(n log n2).

(b) The simple three term recurrence relationship
hold (28, 32) for odd n and (33, 35) for n even.
The complexity is O(n2).

(c) Determinants of special polynomial matrices (36,
37) for odd n.

(d) Eigenvalues of special matrices (38) and (39) for
odd n.

As shown above, the solution of optimal odd PWM wave-
form depend only on solving Toeplitz system which can
be solved very efficiently. Also it is possible to use other
mentioned methods such as three term recurrence formula,
polynomial matrix determinant or eigenvalue computa-
tions. Therefore with high-performance DSP capabilities,
it is possible of on-line construction of arbitrary wave-
forms. Areas of applications are active filters, digital audio
amplifiers and other problems where selected harmonic
elimination is needed.

Here, it is necessary to mentioned that the appropriate
matrix is ill-conditioned when direct applying algorithm
based on solving of the Hankel system. This problem
complicates the solution for large n. In case of CAS it
is important to extend precision of real numbers.

It is also important to say that our solution is consistent
with the solution of Czarkowski et al. [2002] in case of
quarter-wave symmetric waveforms, i.e. even harmonics
are zero. In addition in this study, the polynomial P (y)
is solved. Its roots are always reversed to polynomial Q(y)
therefore there are no need to compute it.

Of course, the three- or multi-level pulse width modulated
waveform can be converted to bi-level PWM waveform.
The other interesting problem is to apply the theory of
orthogonal polynomials and fast algorithms to the three-
phase connection.
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