
Explicit Formulas for ISS Stabilization of
Nonlinear Systems Subject to Bounded

Inputs and Disturbances

Hisakazu Nakamura ∗ Nami Nakamura ∗ Hirokazu Nishitani ∗

∗ Nara Institute of Science and Technology, Takayama 8916-5, Ikoma,
Nara, 631-0192 Japan (e-mail:hisaka-n@is.naist.jp)

Abstract: Control Lyapunov functions (CLFs), CLF based controller designs and disturbance
attenuation have attracted much attention in nonlinear control theory.
However, little research exists that considers both the input constraint and the disturbance
attenuation problems. For input constrained systems, we cannot stabilize under unbounded
disturbances in general. Therefore, we propose an input-to-state stabilizable robust control
Lyapunov function (ISS-RCLF) and an asymptotically stabilizable robust control Lyapunov
function (AS-RCLF) for an input-restricted nonlinear system. In this paper, we propose a
stabilizing controller for input and disturbance constrained nonlinear systems using ISS-RCLF,
which becomes continuous if an ISS-RCLF has an ISS-CLF small control property. Moreover,
we clarify the condition to be satisfied for an AS-RCLF and an ISS-RCLF, and when a proper
function becomes an ISS-RCLF. Finally, we show the effectiveness of the proposed method by
computer simulation.

1. INTRODUCTION

Control Lyapunov functions (CLF) and CLF-based con-
troller designs have attracted much attention in nonlinear
control theory. Control of nonlinear systems with input
constraints is also considered to be an important problem,
and there exists some research on stabilization using CLF
[10, 11, 12]. Recently, we proposed generalized controllers
for input constrained nonlinear systems using CLF [14, 15].

On the other hand, disturbance attenuation is an impor-
tant problem in control theory. Input-to-stability (ISS)
plays quite an important role in the problem [3, 4, 17].
Sontag and Wang [9] proposed a controller that achieves
ISS, and Liberzon et al. [13] proposed a controller that
guarantees integral input-to-state stability (iISS). More-
over, Krstić and Li [8] proposed an inverse optimal con-
troller that achieves input-to-state stability.

However, there exist few studies that consider both the
input constraint and the disturbance attenuation problems
[6] and there is no research based on CLFs. In this paper,
we consider the disturbance attenuation problem for in-
put constrained nonlinear systems. For input constrained
systems, we cannot stabilize the origin with unbounded
disturbances. Hence, we may not apply previously pro-
posed methods using an input-to-state stabilizable control
Lyapunov function (ISS-CLF) or an integral input-to-
state stabilizable control Lyapunov function (iISS-CLF)
directly to input constrained nonlinear systems. Therefore,
we propose an input-to-state stabilizable robust control
Lyapunov function (ISS-RCLF) and an asymptotically
� This work was supported by Grant-in-Aid for Young Scientists(B)
(19760288) and Grant-in-Aid for Special Purposes (19569004).

stabilizable robust control Lyapunov function (AS-RCLF)
for an input-restricted nonlinear system.

In this paper, we propose a stabilizing controller for input
and disturbance constrained nonlinear systems using ISS-
RCLF, which becomes continuous if an ISS-RCLF has an
ISS-CLF small control property. Moreover, we clarify the
condition to be satisfied for an AS-RCLF and an ISS-
RCLF, and when a proper function becomes an ISS-RCLF.
Finally, we show the effectiveness of the proposed method
by computer simulation.

2. PRELIMINARIES

In this paper, we consider a disturbance attenuation prob-
lem for input constrained nonlinear systems. We introduce
our previous results on nonlinear control of bounded-
input nonlinear systems. We use the following notations:
R>0 := (0,∞) and R≥0 := [0,∞).

In this section, we consider a stabilization problem of the
following nominal input-affine nonlinear system (without
disturbances):

ẋ = f(x) + g(x) · u, (1)
where x ∈ R

n is a state vector, u ∈ U ⊂ R
m is an input

vector, and U is an input constraint. In this paper, we
suppose the following k-norm input constraint:

U = U1
k :=

⎧⎨
⎩u ∈ R

m

∣∣∣∣∣∣ ‖u‖k =

(
m∑

i=1

|ui|k
) 1

k

< 1

⎫⎬
⎭ . (2)

Furthermore, we assume that f : R
n → R

n, g : R
n →

R
n×m are continuous mappings, and f(0) = 0. Note that
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LfV and LgV denote (∂V/∂x) · f(x) and (∂V/∂x) · g(x)
respectively.

Then, we introduce definitions of Control Lyapunov Func-
tion (CLF) and Small Control Property (SCP):
Definition 1. (CLF). A smooth proper [3] positive-definite
function V : X → R≥0 defined on a neighborhood of the
origin X ⊂ R

n is said to be a local control Lyapunov
function for system (1) if the condition

inf
u∈U

{LfV + LgV · u} < 0 (3)

is satisfied for all x ∈ X\{0}. Moreover, V (x) is said to be
a control Lyapunov function (CLF) for system (1) if V (x)
is a function defined on the entire R

n and condition (3) is
satisfied for all x ∈ R

n\{0}. �

Note that if V : X → R≥0 is a local clf,
LgV = 0 =⇒ LfV < 0, ∀x ∈ X\{0}. (4)

Definition 2. (Small Control Property (SCP)). A (local)
control Lyapunov function is said to satisfy Small Control
Property (SCP) if for any ε > 0, there is a δ > 0 such that
0 	= ‖x‖ < δ =⇒ ∃‖u‖ < ε s.t. LfV + LgV · u < 0.

(5)
�

In our previous papers [14, 15], the following results were
obtained.
Lemma 1. We consider system (1) with input constraint
(2). Let V (x) be a local clf, P (x) be a function defined by

P (x) =
LfV

‖LgV ‖ k
k−1

, (6)

and a1 > 0 be the maximum such that
inf

u∈U1
k

{LfV + LgV · u} < 0,

∀x ∈ W1\{0} := {x|V (x) < a1}\{0}.
(7)

Then, the origin is asymptotically stabilizable in W1, and
P (x) < 1, ∀x ∈ {x ∈ W1| LgV 	= 0}. (8)

�
Proposition 1. We consider system (1) with input con-
straint u ∈ Ū1

k , where Ū1
k is the closure of U1

k . Let V (x)
be a local clf. Then, input

ui =

⎧⎪⎪⎨
⎪⎪⎩

− |LgiV | 1
k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV ) (LgV 	= 0)

0 (LgV = 0)
(i = 1, . . . , m)

(9)

minimizes the derivative V̇ (x, u) for each x. �
Proof 1. For fixed x, note that finding an input that
minimizes V̇ (x, u) implies minimization of LgV · u. Hence
we find an input ū that minimizes LgV · u in Ū1

k .

If LgV = 0, LgV · u = 0 for any u. Therefore, u = 0
minimizes LgV · u.

We consider the case LgV 	= 0. Consider a hyper-surface
Q : LgV · u = a2. Then, the considered problem is to
find the minimum of a2. Since Ū1

k is a compact convex

subspace, Q is tangent to Ū1
k and ‖ū‖k = 1 when a2 takes

its minimum.

Therefore ū satisfies the following conditions:
m∑

i=1

|ui|k − 1 = 0 (10)

and (|ū1|k−1 sgn(ū1), . . . , |ūm|k−1 sgn(ūm)
)

= −a3 (Lg1V, . . . , LgmV ) ,
(11)

where a3 > 0. By (10) and (11), input (9) is obtained. �
Theorem 1. We consider system (1) with input con-
straint (2). Let V (x) be a local clf, W1 be a domain defined
in Lemma 1, P (x) be a function defined by (6), c > 0 and
q ≥ 1 be constants. Then, input

ui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−P + |P | + c‖LgV ‖q

2 + c‖LgV ‖q
· |LgiV | 1

k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV )

(LgV 	= 0)
0 (LgV = 0)

(i = 1, . . . , m)
(12)

asymptotically stabilizes the origin in domain W1. More-
over, input (12) is continuous on W\{0}, and continuous
at the origin if V (x) has the SCP. �

3. RCLF AND ISS-CLF

Two major CLF relations for disturbance attenuation are
“Robust Control Lyapunov Function (RCLF)” proposed
by Freeman and Kokotović [1] and “Input-to-State Stabi-
lizable Control Lyapunov Function (ISS-CLF)” proposed
by Sontag and Wang [9] and Krstić and Li [7]. We intro-
duce these CLFs in this section.

In this paper, we consider the following input and distur-
bance affine nonlinear control system:

ẋ = f(x) + g1(x) · d + g2(x) · u, (13)

where x ∈ X ⊂ R
n is a state vector, d ∈ D ⊂ R

m1 is a
disturbance vector, u ∈ U ⊂ R

m2 is an input vector, and U
is a convex subspace containing the origin. We assume that
f : R

n → R
n, g1 : R

n → R
n×m1 and g2 : R

n → R
n×m2 are

continuous mappings, and f(0) = 0.
Definition 3. (RCLF [1]). A smooth proper positive-
definite function V : X → R≥0 is called a robust control
Lyapunov function (RCLF) for (13) if there exist cv ∈ R≥0

such that
inf
u∈U

sup
d∈D

{LfV + Lg1V · d + Lg2V · u} < 0

∀x ∈ {x|V (x) = c}
(14)

for all c > cv. �
Definition 4. (ISS-CLF [7]). A smooth proper positive-
definite function V : R

n → R≥0 is called an input-to-state
stabilizable Lyapunov function (ISS-CLF) for (13) if there
exists a K∞ function ρ such that the following implication
holds for all x 	= 0 and all d ∈ R

r:
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|x| ≥ ρ(|d|)
⇓ (15)

inf
u∈Rm

{LfV + Lg1V · d + Lg2V · u} < 0.

�

Function ρ plays important role in the following section
due to the fact that function ρ characterizes an ISS gain
[4] from disturbance input d to state x. The following is a
definition of Small Control Property for ISS-CLF.
Definition 5. (Small Control Property for ISS-CLF). An
ISS-CLF V (x) is said to have an ISS-CLF-SCP if for all
x 	= 0 and all d ∈ R

r,
|x| ≥ ρ(|d|)

⇓ (16)
inf
u

LfV + Lg1V · d + Lg2V · u < 0

and, in addition for any ε > 0, there exists δ > 0 such that
0 	= ‖x‖ < δ

⇓ (17)
∃‖u‖ < ε s.t. LfV + Lg1V · d + Lg2V · u < 0.

�

Note that the condition (17) is weaker than the require-
ment in Krstić and Li [8].

We often use “local uniform Lagrange stability” defined as
the following in the analysis using an RCLF [5]:
Definition 6. (Local Uniform Lagrange Stability). The ori-
gin of a system ẋ = f(x, d) is said to be locally uniformly
Lagrange stable if for each R ∈ (0, Rm) there exists S > 0
such that each solution x(·) is continuable on [t0, +∞) and

‖x0‖ < R ⇒ ‖x(t)‖ < S for each t ≥ t0. (18)
If Rm = ∞, the system is called uniformly Lagrange
stable.

Moreover, the origin of a control system ẋ = f(x, u, d)
is said to be locally uniformly Lagrange stabilizable if
there exists a controller u = k(x, t) such that the origin of
the closed system ẋ = f(x, k(x, t), d) is locally uniformly
Lagrange stable. �

4. INPUT-TO-STATE STABILIZABLE ROBUST
CONTROL LYAPUNOV FUNCTION (ISS-RCLF)

In the previous section, we introduced RCLF and ISS-
CLF, however, these functions are not suitable for input
constrained nonlinear systems. We address the reason in
this section.

We also consider system (13) in this section. An ISS
control problem considers an unbounded disturbance d(t)
[8]. However, we cannot stabilize the origin of (13) by a re-
stricted input for all uniformly continuous L2 disturbances
in many cases.

Then, we assume the following restricted disturbance:
d ∈ U1

k1
:= {d|‖d‖k1 < 1}, (19)

where k1 > 1 is a constant.

The problem to be solved in this paper is stated as the
following:
Problem 1. Consider system (13) and assume distur-
bance constraint (19) and the following input constraint:

u ∈ U1
k2

:= {u|‖u‖k2 < 1}, (20)

where k2 > 1 is a constant.

The problem is to construct a controller that stabilizes the
origin for all disturbances in the sense of local uniform
Lagrange stability, in addition, if d ∈ L2 is uniformly
continuous, the controller asymptotically stabilizes the
origin. �

Note that “RCLF” only guarantees the existence of u
such that the origin is locally Lagrange stable, and does
not guarantee the existence of locally asymptotically sta-
bilizing control u without disturbance. Thus, “RCLF” is
not suitable for asymptotic stabilization of systems under
uniformly continous L2 disturbances, and “ISS-CLF” is
not convenient for input and disturbance constrained non-
linear systems. Hence, we propose an ISS robust control
Lyapunov function (ISS-RCLF) and an asymptotically
stabilizable robust control Lyapunov function (AS-RCLF)
that are inspired by ISS-CLF and RCLF:
Definition 7. (ISS-RCLF and AS-RCLF). Consider the
following system:

ẋ = f(x) + g1(x) · d + g2(x) · u, (21)

where d ∈ U1
k1

, u ∈ U1
k2

and f(0) = 0.

Then, a smooth proper positive definite function V : R
n →

R≥0 is called an AS-RCLF for (21) if the following are
satisfied:

(1) there exist constants c+ and c− satisfies c+ ≥ c− ≥ 0
such that

inf
u∈U1

k2

sup
d∈U1

k1

{LfV + Lg1V · d + Lg2V · u} < 0 (22)

for all x ∈ {x ∈ R
n|c− ≤ V (x) ≤ c+}.

(2) there exists a continuous (non-strictly) increasing
function ρ : [0, 1) → [0, c−) satisfies limr→1 ρ(r) =
c− such that the following implication holds for all
x ∈ {x|V (x) < c−} and all d ∈ R

r:

V (x) ≥ ρ(‖d‖k1)
⇓ (23)

inf
u∈Rm

{LfV + Lg1V · d + Lg2V · u} < 0.

If c+ = +∞, function V is called a global AS-RCLF.
Moreover, function V is said to be an ISS-RCLF if ρ
satisfies the following condition:

(3) ρ is strictly and satisfies ρ(0) = 0.

�

An AS-RCLF is not useful for controller design indeed.
However, sometimes we must consider an AS-RCLF for a
certain kind of a control problem. Thus, we introduced an
AS-RCLF.
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5. CONTINUOUS CONTROLLER DESIGN

In the previous sections, we proposed ISS-RCLF and AS-
RCLF. In this section, we propose a controller design
scheme with the ISS-RCLF and the AS-RCLF.

First, we show the asymptotic stabilizable domain with
obtained AS-RCLF in the following theorem:
Theorem 2. Consider system (13) with disturbance con-
straint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Let V (x) be

an AS-RCLF and P3(x) be a function defined by

P3(x) =
LfV + ρ†(V (x))‖Lg1V ‖ k1

k1−1

‖Lg2V ‖ k2
k2−1

, (24)

where function ρ† : R → R>0 is defined as follows:

ρ†(x) :=
{

1 (x ≥ c−)
sup ρ−1(x) (x < c−) (25)

Then, c+ satisfies the following equation:
P3(x) < 1 ∀x ∈ W3 := {x|V (x) < c+}, (26)

and the origin is locally uniform Lagrange stabilizable in
W3. Moreover, the origin of the system is stabilizable for
all uniformly continuous d ∈ L2. �

Then, we can show the following main theorem of the
paper:
Theorem 3. Consider system (13) with disturbance con-
straint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Assume

d ∈ L2 is uniformly continuous, and let V be an AS-RCLF,
W3 be a domain defined in Theorem 2, P3(x) be a function
defined in (24), c > 0 and q ≥ 1 be constants. Then, input

ui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−P3 + |P3| + c‖Lg2V ‖q

2 + c‖Lg2V ‖q
· |Lg2iV | 1

k−1

‖Lg2V ‖
1

k−1
k

k−1

sgn(Lg2iV )

(Lg2V 	= 0)
0 (Lg2V = 0)

(i = 1, . . . , m)
(27)

stabilizes the origin in domain W3 in the sense of local
uniform Lagrange stability and asymptotically stabilizes
the origin if d ∈ L2 is uniformly continuous. Moreover, if
V (x) is ISS-RCLF, input (27) is continuous on W3\{0},
and it is also continuous at the origin if V (x) has the ISS-
CLF-SCP. �
Proof 2. When x ∈ {x|c− < V (x) < c+, Lg2V 	= 0},

ui = −
{

P2 +
c(1 − P2)‖Lg2V ‖q

2 + c‖Lg2V ‖q

} |Lg2iV | 1
k2−1

‖Lg2V ‖
1

k2−1
k2

k2−1

· sgn(Lg2iV ). (28)

Note that infd∈U1
k1

V̇ (x) < 0 ∀x ∈ {x|c− < V (x) <

c+, Lg2V = 0}, and we can obtain the following inequality:

sup
d∈U1

k1

V̇ (x) ==
c(P2 − 1)‖Lg2V ‖q‖Lg2V ‖ k2

k2−1

2 + c‖Lg2V ‖q
< 0 (29)

∀x ∈ {x|c− < V (x) < c+}. (30)
This shows the origin of the system is locally uniformly
Lagrange stable with Filippov solution.

By the same discussion, we can obtain V̇ (x) < 0 for all
x ∈ W3\{0} when ‖d‖k1 < ρ†(V (x)) by using (27).

Note that ‖d‖k1 → 0 as t → ∞ if d ∈ L2 is uniformly
continuous. Therefore, input (27) asymptotically stabilizes
the origin if d ∈ L2 is uniformly continuous.

The continuity of (27) except at the origin is established
if the following are proved:

(1) (27) is continuous on {x ∈ W3| Lg2V 	= 0}.
(2) lim

Lg2V →0

P3 + |P3| + c‖LgV ‖q

2 + c‖LgV ‖q
= 0 except at the ori-

gin.

If V (x) is an ISS-RCLF, it is obvious that the first
condition is satisfied. Note that the following is true in
W3:

Lg2V = 0 ⇒ LfV + ρ†(x)‖Lg1V ‖ k1
k1−1

< 0 (31)

Then, LfV + ρ†(x)‖Lg1V ‖ k1
k1−1

< 0 in a small neighbor-

hood of x ∈ {x ∈ W1| Lg2V = 0, x 	= 0}. If LfV +
ρ†(x)‖Lg1V ‖ k1

k1−1
< 0 and LgV 	= 0,

P3 + |P3| + c‖Lg2V ‖q

2 + c‖Lg2V ‖q
=

c‖Lg2V ‖q

2 + c‖Lg2V ‖q
.

Hence, the second condition is satisfied in W3. Therefore,
(27) is continuous on W3\{0}.
If Lg2V = 0, input constraint u ∈ U1

k2
is clearly satisfied.

According to the assumption of P3 < 1 in W3, if LgV 	= 0,

‖u‖k2 =
P3 + |P3| + c‖Lg2V ‖q

2 + c‖Lg2V ‖q
< 1. (32)

Therefore, input constraint u ∈ U1
k2

is satisfied.

If V (x) has the ISS-CLF-SCP, there exists a δ < 1 such
that ‖Lg2V ‖q < δ and LfV + ρ†(V (x))‖Lg1V ‖ k1

k1−1
<

δ‖Lg2V ‖ k2
k2−1

in a small neighborhood of the origin, and

δ → 0 as x → 0. According to the direct calculation of (32)
with the above conditions, we achieve lim

δ→0
‖u‖k2 < lim

δ→0
(2+

c)δ = 0. �

Now, we can prove Theorem 2.
Proof 3. (Proof of Theorem 2). The controller (27) sta-
bilizes the origin in the sense of local uniform Lagrange
stability in W3 and asymptotically stabilizes if d ∈ L2 is
uniformly continuous. �

Thus we solved Problem 1. We proposed a continuous
stabilizing controller in Theorem 3. Although the lack of
smoothness of the controller does not become a practical
problem in many cases, if k1 = k2 = 2, V is an ISS-RCLF
and ρ† is smooth, the following smooth controller based
on Lin’s controller [11] is also available:

ui =

⎧⎨
⎩−P3 +

√
P 2

3 + ‖Lg2V ‖2
2

1 +
√

1 + c‖Lg2V ‖2
2

· Lg2iV

‖Lg2V ‖2
(Lg2V 	= 0)

0 (Lg2V = 0)
(i = 1, . . . , m).

(33)
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In Theorem 3, we can construct a continuous controller
if V has the ISS-CLF-SCP. We can relax the assumption
and obtain the following proposition:
Theorem 4. Consider system (13) with disturbance con-
straint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Let V be

an ISS-RCLF and a local CLF having the SCP for the
following nominal control system:

ẋ = f(x) + g2(x)u. (34)
Then, V has the ISS-CLF-SCP. �
Proof 4. By the SCP, there exists a δ such that ‖Lg2V ‖ <
δ and

LfV < δ‖Lg2V ‖ k2
k2−1

(35)

in the neighborhood of the origin. This means there exists
a strictly increasing function ρ̂ : R≥0 → R≥0 satisfies
ρ(0) = 0 such that

LfV + ρ̂(V (x))‖Lg1V ‖ k1
k1−1

< δ‖Lg2V ‖ k2
k2−1

. (36)

Therefore, V is an ISS-RCLF having the ISS-CLF-SCP.�
Remark 1. We can easily redesign function ρ. Note that
a redesigned function ρ̂ must satisfy the following equa-
tion:

lim
r→1

ρ̂ ≤ c+. (37)

Otherwise, a disturbance may move the state to a set
{x|V (x) ≥ c+}.
Remark 2. If there does not exist c+, we cannot stabilize
the system for all disturbance d ∈ U1

k1
. However, if V is

a local CLF, there must exist δ > 0 such that we can
stabilize the system with input u ∈ U1

k2
for all disturbance

d ∈ U δ
k1

by the discussion in this section. This means if we
normalize the disturbance, we can apply controller (27).

Now, we can construct a controller that achieves local
input-to-state stability. The following proposition for ISS
gain [4] can be obtained straightforward:
Proposition 2. Consider system (13) with disturbance
constraint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Assume

d ∈ L2 is uniformly continuous, and let V be an ISS-RCLF,
W3 be a domain defined in Theorem 2, P3(x) be a function
defined by (24), c > 0 and q ≥ 1 be constants. Assume V
and ‖ · ‖k2 satisfies the following conditions:

α(‖x‖2) ≤ V (x) ≤ ᾱ(‖x‖2)
k · ‖d‖2 ≤ ‖d‖k2 ≤ k̄ · ‖d‖2,

(38)

where α and ᾱ are K∞ functions, k and k̄ are positive con-
stants. Then, controller (27) guarantees the following local
ISS gain γ of the closed-loop system in the neighborhood
of the origin:

γ(s) = α−1 ◦ ρ(k̄ · s). (39)
�

6. CONDITIONS FOR ISS-RCLF

We have already defined AS-RCLF and ISS-RCLF. There
exists a natural question whether a smooth proper positive
definite function V is an AS-RCLF. We discuss the topic
in this section.

We can obtain the following lemmas by the same discus-
sion as Proposition 1:
Lemma 2. We consider system (13) with input constraint
u ∈ Ū1

k2
, and let V : R

n → R≥0 be a smooth func-
tion. Then, the following input minimizes the derivative
V̇ (x, u, d) for each x:

ui =

⎧⎪⎪⎨
⎪⎪⎩

− |Lg2iV | 1
k2−1

‖Lg2V ‖
1

k2−1
k2

k2−1

(Lg2V 	= 0)

0 (Lg2V = 0)

(40)

�
Lemma 3. We consider system (13) with disturbance
constraint d ∈ Ū1

k1
, and let V : R

n → R≥0 be a smooth
function. Then, the following disturbance maximizes the
derivative V̇ (x, u, d) for each x:

di =

⎧⎪⎪⎨
⎪⎪⎩

|Lg1iV | 1
k1−1

‖Lg1V ‖
1

k1−1
k1

k1−1

(Lg1V 	= 0)

0 (Lg1V = 0)

. (41)

�

According to these lemmas, we can prove the following
proposition.
Proposition 3. Consider system (13) with disturbance
constraint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Let V (x)

be a proper function and P2(x) be a function defined by

P2(x) =
LfV + ‖Lg1V ‖ k1

k1−1

‖Lg2V ‖ k2
k2−1

. (42)

If there exists c > 0 such that P2(x) < 1 for all x ∈
{x|V (x) = c}, V is an RCLF.

On the other hand, V is not an RCLF if for all c > 0, there
exists x ∈ {x|V (x) = c} such that P2(x) ≥ 1. �
Proof 5. By Lemma 2 and Lemma 3,

inf
u∈U1

k2

sup
d∈U1

k1

{LfV + Lg1V · d + Lg2V · u}

= LfV + ‖Lg1V ‖ k1
k1−1

− ‖Lg2V ‖ k2
k2−1

. (43)

According to the assumption that there exists c > 0 such
that P2(x) < 1 for all x ∈ {x|V (x) = c}, we have

inf
u∈U1

k2

sup
d∈U1

k1

{LfV + Lg1V · d + Lg2V · u} < 0 (44)

(∀x ∈ {x|V (x) = c}). (45)
Therefore, V is an RCLF for X = {x|V (x) ≤ c}.
Furthermore, V is a global RCLF if the supremum of c
is ∞.

Otherwise, for all c > 0 there exist x ∈ {V (x) = c} such
that

inf
u∈U1

k2

sup
d∈U1

k1

{LfV + Lg1V · d + Lg2V · u} ≥ 0. (46)

Thus V is not an RCLF. �
Theorem 5. Consider system (13) with disturbance con-
straint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Let V (x) be
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an RCLF. Assume V (x) be a local CLF for the following
nominal system:

ẋ = f(x) + g2(x)u, (47)
and W1 ∩ W2 	= φ, where W1 is defined in (7),

W2 := {x|V (x) ∈ C}, (48)
where

C := {c|P2 < 1 ∀x ∈ {x|V (x) = c}}. (49)
Then, V (x) is an AS-RCLF, c− = infx∈W1∩W2 V (x) and
c+ is the supremum of V (x) such that

P2(x) < 1, ∀x ∈ {x|c− < V (x) < c+}. (50)
�

Proof 6. First, we prove that Condition 1) in the defini-
tion of AS-RCLF is satisfied. According to the assumption
that V (x) is an RCLF and W1 ∩ W3 	= φ,

inf
u∈U1

k2

sup
d∈U1

k1

{LfV + Lg1V · d + Lg2V · u} < 0 (51)

∀x ∈ W2. This implies the existence of c− and c+.

Then, we show condition 2). If ‖d‖ = 0,
inf

u∈U2
k2

{LfV + Lg1V d + Lg2V u} < 0 (52)

by the assumption. This means condition 2) is satisfied
for d = 0. By the continuity of Lg1V and existence of c−,
there exists a function ρ : [0, 1) → [0, 1). �
Remark 3. Note that V is not an AS-RCLF if W1 ∩
W2 = φ. This means the asymptotically stabilizable set
is quite different from the uniformly Lagrange stabilizable
set. Note that there exists a case in which the state cannot
return to the origin when the disturbance is added.

The function ρ can be easily calculated. I will show the
example in section VII. Note that we can obtain an
ISS-RCLF by redesigning the obtained AS-RCLF as the
following proposition:
Proposition 4. Consider system (13) with disturbance
constraint d ∈ U1

k1
and input constraint u ∈ U1

k2
. Let V (x)

be an AS-RCLF. Then, V is an ISS-RCLF with respect to
function ρ̃ such that

ρ̃(0) = 0
lim
r→1

ρ̃(r) ≤ c+

ρ̃(r) ≥ ρ(r) ∀r ∈ [0, 1).

(53)

�

7. EXAMPLE

We proposed a controller in the previous section. In
this section, we confirm the effectiveness of the proposed
method by an example. We consider the following simple
nonlinear system:

ẋ = x3 − 1
2
x +

1
2
d + u, (54)

where x ∈ R, d ∈ R and u ∈ R. Consider the following
function:

V (x) =
1
2
x2. (55)

First, we check the existence of set W without the distur-
bance. In this example,

P =
1
2
|x|(2x2 − 1), (56)

and we obtain

W =
{

x

∣∣∣∣V (x) <

1
72

((
108 − 6

√
318
) 1

3
+
(
6
(
18 +

√
318
)) 1

3
)2
}

. (57)

Then we calculate a set W3. Note that

P2 =
1
2
(|x|(2x2 − 1) + 1), (58)

and we obtain c− = 0 and c+ = 1/2. Then, ρ(r) ≡ 0∀r < 1.
Now, we can construct the following controller for the
system by using (27):

u1 = −P2 + |P2| + |x|
2 + |x| sgn x. (59)

However, the controller is not continuous at the origin. Fig.
7 is a simulation result. The state converges to the origin,
however, we can observe chattering in the input.

0 2 4 6 8 10
-0.5

0

0.5

1

Time

S
ta

te
, 

In
p

u
t,

 D
is

tu
rb

an
ce

x

u

d

Fig. 1. Simulation Result: Discontinuous Control

Fortunately, V has an SCP without disturbances. Hence,
we can construct a continuous controller via redesigning
function ρ. We choose function ρ as the following:

ρ̃(d) =
1
2
d. (60)

Note that ρ̃ satisfies ρ̃ ≥ ρ. In this case, we obtain
ρ̃†(V (x)) = ρ̃−1(V (x)) = 2V (x) (61)

and we can calculate P3 as

P3 =
1
2
(|x|(2x2 − 1) + x2

)
. (62)

Then, we obtain the following continuous controller by
(27):

u2 = −P3 + |P3| + |x|
2 + |x| sgn x. (63)

We show a simulation result in Fig. 7. The state converges
to the origin, and the input also smoothly converges to 0.

Figure 7 illustrates a simulation result using Kidane’s
original controller [14]. This shows that a controller that
does not mention disturbances cannot stabilize the origin.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15177



0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

S
ta

te
, 

In
p

u
t,

 D
is

tu
rb

an
ce

x

u

d

Fig. 2. Simulation Result: Continuous Disturbance Atten-
uation Control
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Fig. 3. Simulation Result: Control without Considering
Disterbance

8. CONCLUSION

In this paper, we proposed an asymptotically stabilizable
robust control funtion (AS-RCLF) for input constrained
nonlinear systems.

We addressed some conditions for an AS-RCLF and when
a proper function becomes an AS-RCLF. Moreover, we
proposed a stabilizing controller for input and disturbance
constrained nonlinear systems using AS-RCLF, which is
continuous when an ISS-RCLF has an ISS-CLF small
control property. Finally, we confirmed the effectiveness
of the proposed method by computer simulation.

The inverse optimal control is very important in distur-
bance attenuation [8]. However, we could not mention
“inverse optimality” in this paper, though the inverse op-
timal controller for input constrained systems has already
been proposed [16]. The reason is there still exist many
problems in applying Krstić’s or Freeman’s method to
input constrained systems, and the challenge remains for
future works.
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