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Abstract: In this paper, we present a modeling and control strategy for a cable suspended
structure called the ‘SpiderCrane’. By avoiding heavy mobile components, the design of this
crane makes it particularly useful for work requiring high speeds. The modeling of such a multiple
cable mechanism is challenging due to the number of constraints arising from cable interactions.
From a control theoretical point of view, such mechanical systems are underactuated, which
gives rise to challenging control issues.
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1. INTRODUCTION

Gantry cranes are all pervasive in the heavy engineering
industry. Precise payload positioning by an overhead crane
is difficult due to the fact that the payload may exhibit
a pendulum-like swinging motion. This demands truly
efficient control strategies. Motivated by this desire to
achieve fast and precise payload positioning while mini-
mizing swing, several researchers have proposed various
control strategies for overhead crane systems. See Oh and
Agrawal (2003); Fang et al. (2003); Liu et al. (2004).
The problem with classical cranes is that the large inertia
of the boom or the gantry limits rapid acceleration and
deceleration since these may give rise to large inertial
forces. For applications demanding fast weight handling
a new crane design has been proposed by the Laboratory
of Automatic Control at École Polytechnique Fédérale de
Lausanne, see Buccieri et al. (2005). Its main feature is the
absence of heavy mobile components. The heavy elements
of the mechanical structure are fixed and the positioning is
done by cables that carry the load. As a result, this crane
can work at considerably higher speeds.

The control of mechanical systems in a nonlinear setting
has received much attention in the past decade. Amongst
the techniques developed, a general and promising one

? This work was supported in part by the Laboratoire

d’Automatique at École Polytechnique Fédérale de Lausanne, EPFL,

Switzerland.

has been the interconnection and damping assignment
passivity-based control (IDA-PBC) methodology. The idea
here is to synthesize a controller that stabilizes the closed-
loop system about a desired equilibrium and imparts cer-
tain characteristics to the closed-loop response by modi-
fying the energy function and adding damping. In Acosta
et al. (2005) and Ortega et al. (2002), IDA-PBC techniques
are used to stabilize underactuated mechanical systems.
The asymptotic stabilization of the classical ball-and-beam
system and a novel inertia wheel pendulum is achieved
through a new parametrization of the closed-loop inertia
matrix. The IDA-PBC methodology is extended to the
class of underactuated mechanical systems with kinematic
constraints in Blankenstein (2002). Fujimoto et al. (2003),
presented a coordinate transformation for trajectory track-
ing control of port-controlled Hamiltonian systems. The
stabilization of a gantry crane system modeled with pulley
dynamics leading to holonomic constraint using IDA-PBC
is described in Banavar et al. (2006) and Kazi et al. (2007).

Still other researchers have proposed controllers synthe-
sized from the differential flatness property of these sys-
tems to follow a specified trajectory, see Fliess et al.
(1995); Maier and Woernle (2000); Kiss et al. (1999). Flat
systems are equivalent to linear ones via a special type of
feedback called endogenous. For such systems, the control
inputs as well as all the internal state variables can be
expressed in terms of a particular set of outputs (flat
outputs) and a finite number of their time derivatives. This
correspondence is useful for motion-planning tasks, where
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the parameterization of the flat outputs implies the one of
the original state and inputs.

In this paper, we consider a planar version of the Spider-
Crane consisting of two pylons as shown in Fig. 1. We refer
to this mechanism as the 2D SpiderCrane. Our objective
is twofold:

• Point-to-point transfer of the payload
• Minimize cable swing along the way.

We solve the problem using the IDA-PBC methodology.

The paper is organized as follows: Section 2 presents the
dynamic model of the 2D SpiderCrane and formulates the
problem. Section 3 provides a brief introduction to the
IDA-PBC theory applied to such systems. We also discuss
the IDA-PBC controller design for the robust stabilization
of the 2D-SpiderCrane model under consideration. Simula-
tion results for the controller designed with the IDA-PBC
approach are discussed in Section 4. We wrap up the paper
with some concluding remarks in Section 5.

2. SPIDERCRANE MODEL

Consider the 2D SpiderCrane shown in Fig. 1. The posi-
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Fig. 1. 2D SpiderCrane mechanism

tioning of the load is done by adjusting the lengths l1 and
l2. The model being underactuated and constrained by
two holonomic constraints, it essentially captures all the
control-theoretical perspectives of SpiderCrane discussed
in Buccieri et al. (2005). Here, the position of the load is
given by (x, y) with the load mass being m. The positions
of the two motors are (xa, ya) and (xb, yb) with the corre-
sponding rotary inertias taken as Ia and Ib. The ring has
mass M and the position (xR, yR). The load is attached
to the ring using a cable with fixed length of L3. For the
purpose of this study, we make the following assumptions:

(1) The cable is massless and inelastic
(2) Dissipative forces on the cart and the winch are

negligible
(3) Both the pylons are assumed to be at the same height.

2.1 Dynamics of 2D SpiderCrane

We first develop the dynamic model for the complete
system to bring out some intrinsic system dynamics related

issues. We begin with the following set of configuration
variables

q = [xR yR θ l1 l2]
T

(1)

where θ ∈ [0, 2π) denotes the payload angle about the
vertical axis, xR ∈ IR1 denotes the ring position along
the X-coordinate axis, yR ∈ IR1 denotes the ring po-
sition along the Y -coordinate axis and l1, l2 represent
the cable lengths. The control u ∈ IR2 is defined as

u = [F1 F2]
T

where F1 and F2 represent the control-force
inputs acting on the first and second cable, respectively.
Note that the rotary actuation of the winch translates to
the winding/unwinding action of the cable. The control
objective is to move the payload from any position qi =

[xRi yRi θi l1i l2i]
T

to the desired position specified

as qd = q∗ = [xRd yRd θd l1d l2d]
T
. At rest, the

system has necessarily θd = 0. The set of coordinates q
as defined above is constrained by the following holonomic
constraints:

C1(q) = (xR)2 + (yR − ya)2 − (l1)
2 = 0

C2(q) = (xR − xb)
2 + (yR − yb)

2 − (l2)
2 = 0

}

(2)

The Lagrangian with the coordinate set q for the 2D
SpiderCrane can be expressed as

L =
1

2
q̇T M(q)q̇ − V (q) (3)

where,

M(q) =








M + m 0 mL3 cos θ 0 0
0 M + m mL3 sin θ 0 0

mL3 cos θ mL3 sin θ mL3
2 0 0

0 0 0 Ia 0
0 0 0 0 Ib








(4)

is the inertia matrix and the potential energy V (q) is given
as

V (q) = (M + m)gyR − mgL3 cos θ. (5)

The constraints (2) can be represented at the velocity level
as AT (q)q̇ = 0:

[
xR (yR − ya) 0 −l1 0

(xR − xb) (yR − yb) 0 0 −l2

]









ẋR

ẏR

θ̇

l̇1
l̇2









= 0. (6)

Note that A(q)λ represents the constraint forces. The
Lagrange multipliers λ(t) are uniquely determined by the
requirement that the constraints AT (q(t))q̇(t) = 0 have to
be satisfied for all t. The annihilator of AT (q) is generated
by the span of the columns of the matrix

S(q)
4
=












0 0 1
0 1 0
1 0 0

0
(yR − ya)

l1

xR

l1

0
(yR − yb)

l2

(xR − xb)

l2












.

Hence, the admissible system motions lie in the range of
S(q) or, in other words, the vector q̇ must be of the form
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q̇ = ηS(q). Clearly for the following two configurations
of the 2D SpiderCrane the Lagrange multipliers are not
uniquely defined:

• the ring mass is at the first pulley with l1 = 0
• the ring mass is at the second pulley with l2 = 0.

Hence, these two points are excluded from our domain of
operation.

2.2 Decoupled SpiderCrane Model

For the purpose of designing a control law, we consider the
2D SpiderCrane as a decoupled system as shown in Fig.
2. We first develop a control law based on the IDA-PBC
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Fig. 2. 2D SpiderCrane gantry cart

methodology considering Fx and Fy as control inputs. We
pose our problem as the control of the payload mass m
suspended by a cable from the ring of mass M on which
we have the two actuating forces Fx and Fy. Henceforth,
we shall refer to this subsystem as the gantry mechanism.
Given the trajectories of Fx and Fy, we then compute the
cable tensions using the geometry of the problem.

The configuration variables for the gantry mechanism are
q = (xR, yR, θ)T and the Lagrangian can be expressed as

L(q, q̇) =
1

2
q̇T M(q)q̇ − V (q) (7)

where,

M(q) =





(M + m) 0 mL3 cos θ
0 (M + m) mL3 sin θ

mL3 cos θ mL3 sin θ mL3
2



 , (8)

and V (q) = (M + m)gyR − mgL3 cos θ. (9)

The resulting Euler-Lagrange equations are:

Fx = (M + m)ẍR + (mL3 cos θ)θ̈ − (mL3 sin θ)θ̇2

Fy = (M + m)ÿR + (mL3 sin θ)θ̈ + (mL3 cos θ)θ̇2

+(M + m)g

0 = (mL3cos θ)ẍR + (mL3sin θ)ÿR + (mL3
2)θ̈

+mgL3 sin θ.

We now consider to the Hamiltonian formulation using the
Legendre transformation. The total energy of the system
is represented by the Hamiltonian function

H(q, p) =
1

2
pT M−1(q)p + V (q) (10)

where q ∈ IRn and p ∈ IRn are the generalized position
and momenta, M(q) = MT (q) > 0 is the inertia matrix,
and V (q) is the potential energy as defined in (8) and (9),
respectively. If we assume that the system has no natural
damping, the equations of motion can be written as

[
q̇
ṗ

] [
0 In

−In 0

] [
∇qH
∇pH

]

+

[
0

G(q)

]

u (11)

with u = [Fx Fy]T . Note that for the 2D-SpiderCrane
model, the matrix G(q) takes the form

G(q)

[
1 0
0 1
0 0

]

. (12)

Its full-rank left annihilator G⊥ (such that G⊥G = 0) is
given as G⊥ = [0 0 1] .

2.3 Pulley Dynamics
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Fig. 3. Pulley-cable schematic

Consider the cable and pulley mechanism as shown in
Fig. 3. Here βi and τi represent the pulley angle and
motor torque exerted by the motor, respectively, for the
ith pulley. We can express the forces acting on the cart in
terms of the cable tensions t1 and t2 as follows:

[
Fx

Fy

]

=

[
− cos α1 cosα2

sinα1 sin α2

] [
t1
t2

]

+

[
0

Mg

]

, (13)

where α1 and α2 are as shown in Fig. 3. With the rotary
inertias Ia and Ib for the first and the second pulley, the
pulley dynamics read

[
Ia 0
0 Ib

] [
β̈1

β̈2

]

=

[
τ1

τ2

]

− r

[
t1
t2

]

. (14)

Here r1 = r2 = r is the pulley radius. Also, the no-slip
constraint on the ith pulley gives rβ̇i = l̇i. Combining (13)
and (14) with the no-slip constraint, we can express the
motor torques in terms of Fx and Fy as follows:

[
τ1

τ2

]

= r

[
cos α1 − cos α2

− sin α1 − sin α2

]−1 [
Fx

Fy − Mg

]

+ r

[
Ia 0
0 Ib

] [
l̈1
l̈2

]

(αi > 0, i = 1, 2). (15)

Note that the above equation is subject to singularity,
which occurs when the two cables lie along a straight line.
Also note that l̈1 and l̈2 can be found from successive
differentiation of the constraint equation (2).
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3. IDA-PBC METHODOLOGY APPLIED TO 2D
SPIDERCRANE

3.1 Basic Idea

In this section, we briefly discuss the IDA-PBC methodol-
ogy developed in Ortega et al. (2002); Blankenstein et al.
(2002). Motivated from (10), the desired (closed-loop) en-
ergy function is assumed to have the following form:

Hd(q, p) =
1

2
pT Md

(−1)(q)p + Vd(q) (16)

where Md = Md
T > 0 and Vd represent the (to be defined)

closed-loop inertia matrix and potential energy function,
respectively. We will require that Vd have an isolated
minimum at q∗, that is

q∗ = arg min Vd(q). (17)

The desired port-controlled Hamiltonian dynamics are
taken of the form

[
q̇
ṗ

]

= [ Jd(q, p) − Rd(q, p) ]

[
∇qHd

∇pHd

]

(18)

where the terms

Jd = −Jd
T =

[
0 M−1Md

−MdM
−1 J2(q, p)

]

Rd = Rd
T =

[
0 0
0 GKvGT

]

≥ 0

represent the desired interconnection and damping struc-
tures, respectively. The matrix Rd is included to add
damping into the system, which is expressed as,

udi = −KvGT∇pHd (19)

with Kv = Kv
T > 0. In the IDA-PBC method, the control

effort consists of the following two basic steps:

• Energy shaping ues, where we modify the total energy
function of the system to assign the desired equilib-
rium (q∗, 0)

• Damping injection udi, to achieve asymptotic stabil-
ity.

Hence, the control input is given as

u = ues(q, p) + udi(q, p). (20)

To obtain the energy shaping term, ues, we express u in
(11) from (20) and (19) and then use (18):

[
0 In

−In 0

] [
∇qH
∇pH

]

+

[
0

G(q)

]

ues

=

[
0 M−1Md

−MdM
−1 J2(q, p)

] [
∇qHd

∇pHd

]

. (21)

While the first row of (21) is trivially satisfied, the second
set of equations can be expressed as

Gues = ∇qH − MdM
−1∇qHd + J2Md

−1p. (22)

If G is invertible, that is, if the system is fully actuated,
we can uniquely solve for the control input ues given any
Hd and J2. In the underactuated case, G is not invertible

but only full column rank, and ues can only influence the
terms in the range space of G. This leads to the following
set of constraint equations that must be satisfied for any
choice of ues:

G⊥{∇qH − MdM
−1∇qHd + J2Md

−1p} = 0 (23)

where G⊥ is a full-rank left annihilator of G, that is,
G⊥G = 0. Equation (23), with Hd given by (16), is a set of
nonlinear PDEs with unknowns Md and Vd, with J2 a free
parameter, and p an independent coordinate. If a solution
for this PDE can be obtained, the resulting control law ues

reads

ues =

(GT G)
−1

GT (∇qH − MdM
−1∇qHd + J2Md

−1p).(24)

The PDEs (23) can be separated into the terms that
depend on p and the terms that are independent of p and
can be equivalently written as

G⊥{∇q(p
T M−1p)

−MdM
−1∇q(p

T Md
−1p) + 2J2Md

−1p}= 0 (25)

G⊥{∇qV − MdM
−1∇qVd}= 0. (26)

From here onwards, we refer to (25) as KE PDE for kinetic
energy and (26) as PE PDE for potential energy. For
further details on solving these PDEs, the interested reader
is referred to Ortega et al. (2002).

3.2 Solving the PDEs for the 2D SpiderCrane

Since the desired equilibrium is a natural equilibrium of
the system, we focus on shaping the potential energy of the
system alone, thus leaving the kinetic energy unchanged.
So we let Md = M . In an attempt to influence the unactu-
ated coordinate θ through modifying the interconnection
structure we choose J2 skew-symmetric and linear in p as
follows

J2 = k

[
0 0 ẏR

0 0 −ẋR

−ẏR ẋR 0

]

. (27)

Clearly, it satisfies the KE PDE. We use k ≥ 0 as
a tuning parameter to influence the swing by changing
interconnection structure. Providing this degree of freedom
is the essence of IDA-PBC.

We now look for the solution of the PE PDE. With
G⊥ = (0 0 1), the potential energy PDE (26) takes
the form ∇q3

V −∇q3
Vd = 0, which is solved to give

Vd = −mgL3 cos θ + Φ(xR, yR). (28)

Here, Φ is any arbitrary differentiable function whose se-
lection is governed by the condition (17). If we choose Φ to
be a quadratic function then we recover a PD like control
law as in Fang et al. (2003). Here we use exponential
function for the closed loop potential energy shaping. This
choice is based on a comparatively large workspace of crane
type systems compared to their counterpart- rigid robots.
Exponential functions being steeper than quadratic, for a
large deviation from the desired position the rate at which
the system moves to the eqilibrium is faster as compared
to the quadratic function. This yields
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Vd(q) =−mgL3 cos θ + kpx
(exp (xR − xR∗) − xR) +

kpy
(exp (yR − yR∗) − yR) (29)

where q∗ = (xR∗, yR∗, 0) denotes the equilibrium config-
uration and kpx

, kpy
> 0 are used as tuning parameters.

Clearly, with θ ∈ (−π
2 , π

2 ), the gradient and Hessian con-
ditions for (17) are satisfied.

To compute the final control law, we first determine the
energy-shaping term ues from (24), which, in this case,
takes the form

ues =

[
−kpx

(exp (xR − xR∗) − 1)
(M + m)g − kpy

(exp (yR − yR∗) − 1)

]

+

[
kẏRθ̇

kẋRθ̇

]

. (30)

The controller design is completed with the damping
injection term (19), which yields

udi = −KvGT q̇ = −

[
kaẋR + kbẏR

kbẋR + kcẏR

]

.

We consider Kv to be a symmetric and positive definite

matrix of the form Kv =

[
ka kb

kb kc

]

. The role of the

tuning parameters has a clear interpretation. The gains
kpx

, kpy
are like proportional gains and act on the errors

in the configuration variables, which contributes to the
proportional-like term in the control law. The Kv terms
acts on the derivatives of the error and injects damping
into the system. The other terms in the final control law
also assume a nice physical interpretation

u =

[
−kpx

0
0 −kpy

] [
exp (xR − xR∗) − 1
exp (yR − yR∗) − 1

]

︸ ︷︷ ︸

proportional-like

+

[
0

(M + m)g

]

︸ ︷︷ ︸

gravity term

−

[
ka kb

kb kc

] [
ẋR

ẏR

]

︸ ︷︷ ︸

damping

+

[
0 kθ̇

−kθ̇ 0

] [
ẋR

ẏR

]

.

︸ ︷︷ ︸

gyroscopic

(31)

4. SIMULATION STUDY

The system parameters are taken as M = 0.5 kg for
ring mass and m = 1 kg for payload mass to match
the laboratory-scale model of the SpiderCrane. For the
simulations, the tuning parameters were selected as ka =
6, kb = 0, kc = 20, kpx

= 3, kpy
= 7. The desired equilib-

rium position is chosen as [xR∗ yR∗ θ∗] = [0.5 1.0 0].
Fig. 4 illustrates the controller performance with initial
conditions of the swing angle as 10 deg, xR = 0.7 m,
yR = 0.7m. The effect of gyroscopic forces on cable swing
by changing the interconnection structure is visible in Fig.
5. Here, we use all parameters same as in the simulation
for Fig. 4 except for k, the tuning parameter in matrix J2.
Compare the swing experienced by the ring trajectory in
(xR, yR) sub-plot with the payload trajectory in (x, y) sub-
plot in these two figures. Clearly, the IDA-PBC control
law provides an ability to influence the payload swing
by changing interconnection structure. We further demon-
strate the controller performance with an initial condition
of 30 deg in Fig. 6 to emphasize a dominantly nonlinear

case of a comparatively large swing angle. Here, all other
parameters are kept the same as in the case of Fig. 4.

The last simulation depicts the robustness property of the
IDA-PBC controller (Fig. 7). Here we change the cart mass
to 1.5 kg and the payload mass to 3 kg while keeping
the same controller parameters as in Fig. 4. The system
response does not change significantly but the control
effort is observed to be significantly larger.
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Fig. 4. Simulation for initial swing θ = 10◦, k = 10.
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5. CONCLUSIONS

We have presented a controller design procedure for a 2-
dimensional version of the SpiderCrane model. The de-
sign procedure is based on the IDA-PBC mehtodology
wherein we shaped the potential energy of the system
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k = 10.
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Fig. 7. Simulation results for robustness.

using exponential function. We have also exploited the
freedom in the interconnection matrix J2 in the IDA-PBC
framework to influence the cable sway which is an unactu-
ated coordinate. The resulting control law, as observed in
the simulations, was found to be performing well for the
control objective of point-to-point control with swing min-
imization. The performance of the nonlinear controller for
the large swing angle, beyond the linearizable region, is an-
alyzed by simulation. The robustness inherent to passivity-
based controllers was observed in the simulations. Future
efforts will focus on extending this methodology to the
3-dimensional SpiderCrane mechanism.
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