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Abstract: Groups of satellites flying in formation require maintaining the specific relative
geometry of the formation with high precision. This requirement implies to consider the problem
of relative station keeping in a renewed framework. In this framework, issues related to the
derivation of reliable relative models as well as to the peculiarity of the synthesis problems
must be jointly considered. This paper presents some preliminary results of a robust multi-
objective control approach applied to the station keeping of a low Earth observation system,
i.e. the interferometric cartwheel, patented by CNES. This wheel is made up of three receiving
spacecrafts, which follow an emitting Earth observation radar satellite. The particular geometry
of this formation of satellites leads to the derivation of a simplified uncertain state-space model.
Atmospheric drag perturbations are included in the linearized equations of the relative motion
and the atmospheric density part of the definition of the atmospheric drag force is considered
to be uncertain due to its dependence upon the solar activity. In the first part of the paper,
an uncertain polytopic state-space model is derived. The second part describes the station
keeping strategy of the formation. The station keeping strategy is performed using pure passive
actuators. Due to the high stability of the relative eccentricity of the formation, only the relative
semi major axis has to be controlled. Differential drag due to a differential orientation of the
solar panel is used here to control relative altitude. A robust multi-objective control strategy
via state-feedback is developed and tested as autonomous orbit controller. These results are
analyzed via highly non linear simulations performed on a platform of CNES.

Keywords: Robust Multi-objective control, Space vehicles, Formation flight, Differential drag
control

1. INTRODUCTION

Formation flight of satellites is one of the most prominent
subjects of interest among space agencies and labs [1], [13],
[11]. This interest is mainly due to the advantages of using
numerous spacecrafts flying in a close formation rather
than a single larger spacecraft. This new paradigm in
space mission design would allow the reduction of mission
costs as well as risks during the launching phase. Adding
flexibility through reconfiguration and robustness through
redundancy to space-based programs is also one of the
major goal of these new developments. Moreover, enhance-
ments in the quality of scientific instruments distributed
on the formation is expected when designing a telescope
with a greater focal distance and for interferometry appli-
cations for instance. D. Massonnet has proposed the idea,
patented by CNES [8], of using passive Myriade micro-
satellites flying in a specific close formation named the
interferometric cartwheel with an emitting SAR (Synthetic
Aperture Radar) satellite [9]. Thanks to a specific orbital
configuration defined by a slight eccentricity and adequate
phasing, the formation of three satellites apparently re-
versely rolls along an ellipse which center follows the orbit
of the reference satellite. Different possibilities have been

proposed for the reference satellite: European satellites
ENVISAT-L [10], TERRASAR-X [17] or Japanese satellite
ALOS.

This paper presents some preliminary results of a robust
multi-objective control approach applied to the station
keeping of the interferometric cartwheel. In general, groups
of satellites flying in formation requires maintaining the
specific relative geometry of the formation with high pre-
cision. This requirement implies to consider the problem
of relative station keeping in a renewed framework. In
this framework, issues related to the derivation of reliable
relative models as well as to the peculiarity of the synthesis
problems must be jointly considered. Here, atmospheric
drag perturbations are included in the linearized equations
of the relative motion and the atmospheric density part of
the definition of the atmospheric drag force is considered to
be uncertain due to its dependence upon the solar activity.
In the first part of the paper, an uncertain polytopic state-
space model adapted to the specific orbital configuration of
the wheel is derived. The second part describes the station
keeping strategy of the formation. Two kinds of constraints
are imposed by the interferometric devices : a constraint on
the distance between the wheel and the radar satellite, and
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constraints on the distance between the wheel satellites.
The first constraint is fulfilled with a classical chemical
station keeping strategy that has been defined in [4] and
is not recalled here. The second one is fulfilled using pure
passive actuators. Differential drag is used here to control
relative altitude. The amount of surface area in the direc-
tion of satellite motion may be altered by controlling their
global attitude or the differential orientation of the solar
panel between two satellites of the formation. A robust
multi-objective state-feedback control system is developed
to modulate the drag force exerted on each satellite of the
formation in response of the inter-satellite positional error.
Due to the high stability of the relative eccentricity of
the formation, only the relative semi major axis has to be
controlled via the mean nodal elongation. These results are
analyzed via highly non linear simulations performed on a
platform of CNES showing the interest of this simplified
approach.

2. A SIMPLIFIED DYNAMICAL MODEL OF THE
INTERFEROMETRIC CARTWHEEL

The first step of the synthesis procedure consists in deriv-
ing a sufficiently simple model of the relative motion of the
formation for synthesis purpose. The reference orbit in the
Earth-Centered Inertial frame Ri is described via the usual
orbital elements (a, e, i, Ω, ω, M) respectively defined
as the semi-major axis, eccentricity, inclination, right as-
cension of the ascending node, argument of periapsis and
mean anomaly. The orbital parameters are particularly
suited to describe the geometry and the relative motion
attached to the interferometric cartwheel.

2.1 The geometry of the wheel

The interferometric cartwheel is a formation made up of
three receiving micro-satellites located from 30 km to 150
km behind or ahead of the reference satellite. The three
satellites are located at the edges of a triangle turning
on a wheel at 5 to 10 km of distance from each other
(cf. figure 1). The orbit of the reference satellite is quasi-
circular (eccentricity e = 7.1355 10−5) and defined by its
semi-major axis a of orbital period T .
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Fig. 1. Motion of the wheel during an orbital period

The orbits of the receiving satellites A, B, C have the
same major-axis but with a slight modification in the
eccentricity (ei = e+∆e, i = A,B,C). The relative motion
of the three satellites with respect to the reference orbit
is an ellipse defined in the reference orbital plane. The
semi-major axis of this ellipse is given by 2a∆e while the
semi-minor axis is a∆e (cf. figure 2).
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Fig. 2. Geometry of the interferometric cartwheel

When building a wheel composed of three satellites with
an identical extra eccentricity, arguments of perigee ωi

of receiving satellites must be equally distributed every
120 deg. along the orbit (cf. figure 3). As will be seen in
the sequel, the particular geometry of this formation of
satellites leads to the derivation of a simplified uncertain
state-space model.
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Fig. 3. Eccentricty vectors for the receiving satellites

Considering that each receiving satellite roll along its own
wheel, the problem of station keeping of a unique wheel
for the three satellites amounts to respect the following
requirements.

- Orbital planes of the individual wheels are identical.
- The centers of the individual wheels follows the same

quasi-circular orbit i.e. all semi-major axis of individ-
ual wheels are identical to the semi-major axis of the
reference orbit.

- The eccentricities of each individual wheel are identi-
cal.

- The mean argument of latitude αi = ωi + Mi must
be the same for all receiving satellites.

As in the reference [4], the problem of station keeping of
the wheel mainly consists in controlling the relative posi-
tions of the centers of the individual wheels all along the
orbit. The center of the wheel is principally characterized
by the mean argument of latitude α = ω+M . It is therefore
assumed that eccentricity is not affected by the different
orbital perturbations. The simplified station keeping strat-
egy of the wheel proposed in this paper amounts to control
the relative deviations δαi, i = A, B, C against the
perturbation induced by the atmospheric drag differential
force. The next subsection is dedicated to the derivation of
the state-space model utilized for the synthesis of a multi-
objective control law.

2.2 Linearized differential equations of relative motion

A convenient frame used in orbital mechanics when atmo-
spheric drag perturbation is considered is defined by the

rotating frame R = {−→t ,−→n ,−→w } where
−→
t is along the orbit

velocity vector, −→w is normal to the orbit plane and −→n is
chosen to complete the right-hand set of orthogonal coor-
dinate frame unit vectors. The relative dynamics between
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two satellites of the wheel used in this paper are based on a
particular form of Gauss’s Variational Equations (GVEs)
including the atmospheric drag perturbation. In addition
to the advantages detailed in [12], the use of orbital ele-
ment differences is more convenient for the interferometric
cartwheel description than the typical cartesian coordi-
nate (Clohessy-Wiltshire) frame. Remember that the only
orbital perturbation considered in the synthesis model is
due to the atmospheric drag. The acceleration due to the
atmospheric drag is classically given by:

−→γ f = γt
−→
t = −ρSCDv

2

2msat

−→
t =

Bρv
2S

2

−→
t (1)

where S is the satellite cross-sectional area along the
velocity vector, CD is the drag coefficient, ρ is the local
atmospheric density, msat is the mass of the satellite and
v is the inertial velocity of the spacecraft. As the con-
sidered orbits are quasi-circular orbits and the associated
eccentricity is quite small, it is necessary to introduce the
eccentricity vector [ex ey]′ and to define a nonsingular
set of modified orbital parameters. Considering that the
atmospheric drag does not introduce any perturbation on
the inclination i and the right ascension of the ascending
node Ω, we get the following set of modified GVEs.

(2)

da

dt
= SBρ

√
µ · a

[

1 + 2e cos ν + e2

1 − e2

]

3/2

(2a)

dex

dt
= SBρ(ex + cos αν)

√

µ(1 + 2e cos ν + e2)

a(1 − e2)
(2ex

)

dey

dt
= SBρ (ey + sin αν)

√

µ(1 + 2e cos ν + e2)

a(1 − e2)
(2ey

)

dα

dt
= SBρ

sin ν

e

(

1 −
√

1 − e2

(

1 +
e2

1 + e cos ν

))

× (2α)

√

µ(1 + 2e cos ν + e2)

a(1 − e2)
+

√

µ

a3

where αν = ν + ω and ν is the true anomaly. The surface
area adjustments are made by changing the attitude of
the solar panel of the satellite. This type of passive
actuation for the orbit control of a satellite has already
been considered in [7], [6]. Let Sb and Sp be respectively
the surface area of the body and of the solar panel of
the satellite. ϕ is the angle between the panel and the
velocity vector (cf. figure 4). Denoting the global surface
area of the reference satellite as Sr = Sb + Spϕ, the
control signal is defined by δS = Spδϕ. δϕ = ϕi − ϕr

where ϕr = 15 deg =
π

12
rad. is the angle of the solar

panel of the reference satellite. Note that the variations
of attitude of the solar panel has to fulfill the constraints

− π

12
≤ δϕ ≤ π

12
. It is recalled that the control objective is

ϕ
Sb

Sp

Vector ⊥ to the orbit

Solar panel

Velocity v

Fig. 4. Solar panel attitude

to control the relative semi-major axis δa and the relative

mean argument of latitude δα between two satellites of the
wheel by assuming the relative eccentricity is not drifting.
It is also assumed that the rate of change of the relative
semi-major axis is constant. This amounts to only consider
secular drift induced by orbital perturbations.

δa = δa0 + δ̇a t (3)

A linearization of the GVEs (2) with respect to e ≃ 0
coupled with the computation of the first variations.

d δa

dt
=
∂ȧ

∂a
δa+

∂ȧ

∂α
δα+

∂ȧ

∂S
δS

d δα

dt
=
∂α̇

∂a
δa+

∂α̇

∂α
δα+

∂α̇

∂S
δS

(4)

lead to the derivation of the simplified state-space model
for the relative motion of the wheel submitted to atmo-
spheric drag.







d δα

dt

d2 δα

dt2







=

[

0 1

0 0

]





δα

d δα

dt



 +





0

− 3µ

2a2
Bρ Sp



 δϕ (5)

The dynamic model (5) is a double integrator for which
the input matrix B is supposed to be uncertain due to the
variation of the coefficient Bρ as will be seen in the sequel.

2.3 Linear polytopic continuous-time state-space model

The parameter Bρ depends upon the density ρ of the upper
atmosphere for which highly sophisticated models exist in
the literature. ρ is obviously related to the composition of
the upper atmosphere but is also greatly affected by the
incident solar flux (the incident radiation coming from the
sun). It affects the atmospheric density through heating
from Extreme Ultraviolet Radiation (FEUV ) that heats the
upper atmosphere. One Solar Flux Unit (SFU) is defined
as 1 SFU = 1 × 10−22 watt

m2Hz . The figure 5 depicts the
time evolution of the semi-major axis for a constant solar
activity FEUV = 100 SFU.

ȧ
m

/j

Days

Days

a
k
m

Fig. 5. a and ȧ for a constant solar activity (100 SFU)

It can be shown that this evolution may be approximated
by the following equation.

ȧ = Bρv
2(Sb + Spφ)

√

a3

µ
(6)

Identifying ȧ for typical values of the constant solar flux
(FEUV = 100 and FEUV = 200) allows to deduce extreme
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values for the parameter Bρ reflecting the variability of
the density due to a variable solar activity. Finally, we
end up with a very simple linear polytopic model that is
reminiscent to the modelling used in the reference [5].

ẋ(t) =

[

0 1
0 0

]

x(t) +

[

0
b

]

u(t) (7)

where b ∈ [b , b] with b = −3µ

a2
Bρ Sp and 0 < b. The

next section is dedicated to the synthesis of a robust multi-
objective state-feedback controller for the polytopic model
(7).

3. AN ANALYTICAL SOLUTION FOR THE ROBUST
MULTI-OBJECTIVE CONTROL OF THE
POLYTOPIC DOUBLE INTEGRATOR

The main control objectives are first, to realize the abso-
lute station keeping of the wheel behind the emitting radar
satellite and second, to maintain the relative geometry
of the cartwheel. As mentioned in the introduction, it
is assumed in this paper that the first goal is achieved
thanks to a classical chemical station keeping strategy
exposed in [15]. The second set of maneuvers is aimed at
controlling the relative mean nodal elongation δα between
each couple of satellites of the wheel in a range of ± 0.004
deg or a margin of 500 m [15] of distance in face of various
orbital perturbations. Here below is developed a multi-
objective control strategy based on a robust state-feedback
pole placement of the closed-loop relative dynamics of the
model (7) in some specific region of the complex plane. A
set of state-feedback controllers fulfilling the robust pole
placement requirement is graphically sketched out and
the robust H2 optimal state-feedback law is analytically
identified.

3.1 Robust pole placement via state-feedback

The first requirement imposed on the closed-loop relative
dynamics is that time responses must be be sufficiently
damped and fast without saturating the actuators which
maximal value is limited to ± π

12 . It is therefore required
that the closed loop poles of the model (7), when applying
a state-feedback control law, must be robustly located in
the region depicted at figure 6 for all variation of the
parameter b ∈ [b , b]. This region, as the intersection
of three LMI regions [2], is an LMI region composed
of a half-plane, a disk and a sector. It is characterized
by three parameters α1, r, ξ and is denoted D(α1, r, ξ).
Writing down the conditions for the poles of the closed-

r

Im

Re
ψ

α1

Fig. 6. D(α1, r, ξ) LMI region for robust pole placement

loop uncertain dynamical matrix A =

[

0 1
bK1 bK2

]

to

belong to D(α1, r, ξ) leads to the following constraints on
the entries K1 and K2 of the state-feedback controller.

- Damping condition and disk condition for complex
poles:

2ξ√
b
≤ −K2√

−K1

, −K1 <
r2

b
(8)

- Relative stability condition:

2α1

b
≥ K2 , K2 >

−K1

α1
+
α1

b
2α1

b
≥ K2 ,

2√
b
<

−K2√
−K1

(9)

- Disk condition:

K2 >
K1

r
− r

b
,

−2r

b
< K2 ,

2√
b
<

−K2√
−K1

(10)

These conditions allow to plot the non convex bounded set
of realizable gains KD in the (K1,K2) plane for a given
region D(α1, r, ξ) (see figure 7). This set may be empty
if the parameters α1, r, ξ define a too stringent region
depending upon the range of variations of the uncertain
parameter b. It is then possible to give explicit constraints
on α1, ξ and r.

b

b
<

−r
α1

,
2rα1

b
+
r2

b
> − α2

bξ2
(11)

For a standard choice of ξ =
√

22, conditions (11) im-
ply to have a ratio r

α1

of about 20. This mixed graphi-

cal/analytical method is possible because of the simplicity
of our model. In case of more complex uncertain dynamics,
a Lyapunov approach may be used instead [2].

3.2 Analytical solution for the multi-objective control
problem

In order to limit the activity of the actuators as well as the
transient oscillations energy of the mean nodal elongation
time response, an H2 performance criterion is defined on
the following standard model [14]:

ẋ =

[

0 1
0 0

]

x +

[

0
b

]

u +

[

0
1

]

w = Ax + Buu + Bww

z =

[

1 0
0 0

]

x +

[

0
1

]

u = Czx + Dzuu

u(t) = Kx(t)

(12)

where w is a perturbation and z the controlled output. De-
noting the closed-loop transfer from z to w by Tzw(K, b),
the robust multi-objective control problem to solve is de-
fined by the following min-max problem:

min
K∈KD

max
b∈[b , b]

‖Tzw(K, b)‖2 (13)

Using the standard definition of the H2 norm of a system
in terms of the controllability grammian, the previous
problem may be recast as the following.

min
K ∈ KD

P ∈ S+
n

max
b∈[b , b]

Trace[Cz(K)PC ′
z(K)]

under A(K, b)P + PA′(K, b) +BwB
′
w = 0

(14)

where Cz(K) =

[

1 0
K1 K2

]

. After some elementary de-

velopments, we end up with the parametric optimization
problem:

min
K∈KD

g(K1, K2) =
1 + K2

1
− K2

2
K1b

2b2K1K2

(15)
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Plotting the level set of the function g(K1,K2) over the
realizability region KD leads to the identification of the
optimal pair (K∗

1 ,K
∗
2 ) and of the worst-case H2 norm of

Tzw.

−1.3 −1.28 −1.26 −1.24 −1.22 −1.2 −1.18 −1.16 −1.14 −1.12 −1.1

x 10
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−8200
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K
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d
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s
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Fig. 7. Region of realizability in the (K1,K2) plane and

robust optimal solution for D(−1.5, 35,

√
2

2
)

KD
H2

=

[

−α2

1
(
−2

b
+

1

b
)

2α1

b
days

]

=
[

K∗
1

K∗
2

]

‖Tzw(KD
H2

, b)‖2 =

√

1 + K∗2
1

− K∗2
2

K∗
1
b

2b2K∗
1
K∗

2

(16)

These results are now simulated on a professional plat-
form of simulation developed by the CNES, named
PSIMU c© and using a set of realistic data.

4. SIMULATION RESULTS

For the synthesis of the multi-objective control law, the
range of variations for b is given by the identification
of extreme solar activity for respectively a solar flux of
100 and 200 leading to b ∈ [0.0003658 ; 0.0038]. It is
therefore possible to design a multi-objective controller
that robustly places the closed-loop poles in the region

D(−1.5, 35,

√
2

2
) and minimizes the H2 norm of the trans-

fer Tzw(K, b) in the worst-case.

KD
H2

= [−11704 −8202 days ]
‖Tzw(KD

H2
, b)‖2 = 4067.3

(17)

In order to analyze this last control law, the orbital pa-
rameters are defined in table 1 for the specification of the
geometry of the wheel. Note that the difference of the ini-
tial ν is equivalent to a difference of mean nodal elongation
of a×δν = 45 m and that no measurement noise has been
considered in the following simulations. The figures 8 and 9

Leader Follower

a 7007137 m 7007137 m

e 7, 1355 10−5 7, 1355 10−5

Ω 0 0

i 97 deg 97 deg

ω 0 0

ν 0 6, 4220 10−6 rad

Table 1. Orbital parameters

give the time response of the relative δφ, a×δα and relative
semi-major axis for a constant solar activity including a
very complete set of orbital perturbations (atmospheric

drag, solar radiation pressure, sun and moon perturbing
accelerations, zonal and tesseral of order 10 gravitational
perturbations). The station keeping objectives appear to
be satisfied in terms of precision since we get 8 10−5 deg.
for the mean nodal elongation. A simulation, not presented
here for conciseness reasons, performed on a longer horizon
(360 days) shows that the apparent drifting at the end of
the simulations presented here corresponds to a long-term
(300 days) oscillation of 30 m (2.4 10−4 deg.) amplitude
for the mean nodal elongation. This periodic perturbation
may come from the fact that zonal harmonic perturbations
(J2 for instance) have not been considered in the design of
the control law.

δ
a

m

Days

a
δ
α

m
δ
φ

d
eg

Fig. 8. Constant solar activity FEUV = 100 SFU

δ
a
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a
δ
α

m
δ
φ

d
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Fig. 9. Constant solar activity FEUV = 200 SFU

Finally, a simulation of the control law is performed by
considering a real solar activity depicted in figure 10. This
activity has been measured during 70 days from October
1983 and shows extreme values of solar flux ranging from
90 SFU to 300 SFU.
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Fig. 10. Solar activity in October 1983

The time responses of figure 11 clearly demonstrates the
capacity of the control law to reject high level pertur-
bations. The obtained precision of the station keeping
appears to be satisfactory.

δ
a

m

Days

a
δ
α

m
δ
φ

d
eg

Fig. 11. Time evolution for a real solar activity

5. CONCLUSION

A very simple model (double integrator for the dynamic
of the relative mean nodal elongation) of the relative
motion of the interferometric cartwheel has been used
for the design of a robust station keeping control law
via passive actuation and differential drag control. These
preliminary results appear to be really promising when
compared to the ones presented in [5]. We believe that
this first paper may pave the way for more involved
studies in the future. More complex uncertain models for
the relative motion of the wheel (including semi-major
axis and eccentricity dynamics) should be elaborated.
Additional orbital perturbations have to be taken into
account to get more insensitive control laws with respect to
periodic perturbations effects. Another way to tackle this
last issue could be to consider mean orbital parameters
leading therefore to the synthesis of a sampled-data control
system.
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