
Kalmtool used for Mobile Robot Navigation

Lars V. Mogensen ∗ Nils A. Andersen ∗ Ole Ravn ∗ Niels K. Poulsen ∗∗

∗ Department of Electric Engineering, Automation, Tech. Univ. of Denmark,
Build. 326, DK-2800, Kgs. Lyngby, Denmark, lvm, naa,

or@oersted.dtu.dk
∗∗ Department of Informatics and Math. Modelling, Tech. Univ. of Denmark,

Build. 321, DK-2800, Kgs. Lyngby, Denmark, nkp@imm.dtu.dk

Abstract:
This paper presents an application of a simulation platform for sensor fusion in mobile robotics. The
platform is based on the Kalmtool toolbox which is a set of MATLAB tools for state estimation of
nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as several other
state of the art filters. Two robotic platforms are considered, a Medium-size Mobile Robot and a Hako
tractor. The system models for the vehicles are derived and by using Kalmtool suitable filter coefficients
are found.

1. INTRODUCTION

When designing and building complex systems good tools
are essential for success. Good tools supports the user on
the different levels of abstraction. Typically this ranges from
mathematical formulation and simulation of the algorithms
over numerical implementation to verification and validation of
the actual device in real-time. In this paper it is demonstrated
how the tool, Kalmtool, is used in connection to sensor fusion.
The algorithms are based on the Kalman filter technique and are
applied on models of two different outdoor robotic platforms.

Kalmtool is a collection of Matlab implementations for sim-
ulation and estimation in connection with nonlinear dynamic
systems. The development of the toolbox has been driven by
the application which is navigation of mobile robots. In this
context location and mapping are corner stones.

Since it was suggested, the extended Kalman filter (EKF) has
undoubtedly been the dominating technique for nonlinear state
estimation. Nevertheless, the EKF is known to have several
drawbacks. These are mainly due to the Taylor linearization of
the nonlinear transformations around the current state estimate.
The linearization requires that Jacobian of state transition and
observation equations are derived. This is often a quite com-
plex task. Moreover, sometimes there are points in which the
Jacobians are not defined. In addition to the difficulties with
implementation, convergence problems are often encountered
due to the fact that the linearized models describe the system
poorly.

There has been significant focus on this area recently, and
previous work includes several toolboxes and other platforms.
ReBEL (Recursive Bayesian Estimation Library) van der
Merwe (2004) is a Matlab toolkit of functions and scripts, de-
signed to facilitate sequential Bayesian inference (estimation)
in general state space models. The CAS Robot Navigation
Toolbox Arras (2004) is a tool for doing off-line off-board
localization and SLAM on mobile robots. The design of the
CAS toolbox decouples robot model, sensor models, features
and algorithms used giving the user ability to adapt the toolbox
by just modifying or adding the pieces in question. The toolbox

does not in its present form support the generation of real-time
code for use on the robot.

The implemented methods in Kalmtool are described in more
detail in Nørgaard et al. (2003), Sejerøe et al. (2005) and in
Sejerø et al. (2005).

The paper is organized as follows: Firstly, the overall design
philosophy behind the simulation platform is described and a
brief outline of the robotic platforms used is given. In section
4 a description of the models of the vehicles and sensors is
given. Section 5 gives an extensive example study as well as
a demonstration of the different scenarios for navigation of the
two mobile robots.

2. THE PLATFORMS AND THE TOOLBOX

The overall design philosophy has been to focus on the creation
of a simple, transparent, yet powerful platform making life
easier for the application developer as well as the algorithm
developer.

Transparency overcomes the barrier effect that is often expe-
rienced when using tools that at first sight seem very user-
friendly, but when used on real problems become difficult to
handle due to the inherent complexity.

The approach taken uses MATLAB as a numerical and graph-
ical basis for developing the platform. The platform is driven
from Simulink as this provides a shorter path to implementation
using for instance Realtime Workshop and makes it simple to
use real data for comparison.

The philosophy of the Kalmtool toolbox is to provide an open
structure (see figure 1), which is easy to use and which enables
the user to investigate the inner workings of the estimation
algorithms. With this in mind, the structure of the Kalmtool
functions is open and a large selection of functions made
available. The functions are made to work in an online setting,
one time-step - one update, though this does not prohibit its
use in offline environments. The main changes are the breakup
of the estimation loop and the introduction of an a evaluator
function.
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Fig. 1. The structure of Kalmtool 3.

Changing the loop means that the functions can now be used
directly in an online setting provided that sufficient resources
are available.

Fig. 2. The evaluator function.
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Fig. 3. The Simulink layout of a continuous system.
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Fig. 4. The Simulink layout of a discrete time system

As seen in the above figures the user can easily add new algo-
rithm into the platform by modifying the MATLAB function in

the Estimation block and change the system by modifying the
system and measurement MATLAB blocks.

2.1 Algorithms

The Kalmtool toolbox Nørgaard et al. (2003), Sejerøe et al.
(2005) and Sejerø et al. (2005) is a nonlinear system param-
eter estimation toolbox. It is at the moment implemented in
MATLAB/Simulink which does not comply with the idea of
keeping the solution implemented in C and independent of
other programs (as previous versions).

The Kalmtool toolbox is interesting for evaluation of sensor
fusion algorithms, due to the advanced algorithms it provides,
which includes:

• Stationary Kalman filter
• Kalman filter
• Extended Kalman filter
• Unscented Kalman filter
• Divided difference filter, first order
• Divided difference filter, second order
• Sequential filter (projection Theorem)
• Sequential filter (Bayes Theorem)

This toolbox makes together with the simulation platform a
basis for navigation of mobile robots, where one of the key
issues is fusion of the results from various types of sensor with
quite different properties.

3. HARDWARE PLATFORMS

The Kalmtool is applied on simulation models of two platforms.
The two platforms are The Medium Mobile Robot (MMR, see
Figure 5) and the HAKO tractor (see Figure 6):

Fig. 5. Medium Mobile Robot.

The MMR robot The Medium Mobile Robot is an outdoor
robot, built after the differential motion principle. The vehicle
is mainly used for outdoor navigation and mapping purposes,
but can also be used indoor. The vehicle deploys a GPS (Global
Positioning System) and Odometry (Measurement of motion
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based on wheel sensors). Besides these sensors the robot plat-
form is also equipped with a Laser Scanner, a Gyro and a
control system.

Fig. 6. Hako tractor.

HAKO Tractor The HAKO tractor is an agricultural research
platform used for development of autonomous farming tech-
niques at The Royal Veterinary and Agricultural University.
Due to the diesel engine and the size of the vehicle the HAKO
tractor is only used for outside experiments. In its current form
the HAKO tractor and its security system needs constant super-
vision. The vehicle deploys GPS and Odometry for navigation
purpose.

4. MODELS

The models used in connection to Kalman filtering are the
process equations, which related to the vehicles, and the mea-
surements equations, which is models of the sensors.

4.1 Vehicles

In connection to mobile robots there exists two major type
steering. There is the Ackerman steering, which is known from
automobiles and most tractors, and there is the differential
steering which is mostly known from wheel-chairs, tanks and
larger tractors. The HAKO tractor has an Ackerman steering
whereas the MMR is controlled by means of a differential
steering.

HAKO tractor model The odometric model is based on the
geometry of the vehicle motion and a simplification of the
movement by the uni-cycle principle. The main property of the
Ackerman vehicle movement in a circle is, that the center points
on the front and rear axle are covering concentric arches, see
figure 7. The three parameters that mainly decide the odometric
motion of the vehicle is L the distance between the axles, φ
the steering angle and dk driven distance. R is the radius of the
vehicle movement.

Let x and y denote the coordinates for the center point between
the non steering back wheels, θ is the heading of the vehicle
and let dk be the driven distance of the vehicle.

The odometric model of the vehicle is given by the following
model:

xk+1 = xk + δdk cos(θk +
δθk

2
)

yk+1 = yk + δdk sin(θk +
δθk

2
) (1)

θk+1 = θk + δθk

x

yk
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Fig. 7. Ackerman model in discrete time.

where the control input contains the covered distance δdk and
the steering angle φk.

ūk =

[

δdk

φk

]

(2)

The relation between the steering angle φk and the change in
vehicle heading δθk is given by:

δθk =
δdk

L
· tan(φk) (3)

MMR model The discrete model of the differentially steered
vehicle is depicted in figure 8, in order to present the variables
and geometry. The parameters that mainly describe the odo-
metric motion of the vehicle are the driven distances of the two
wheels and B the distance between them. The driven distance
of the two wheels is proportional to the diameter of the wheel,
represented by dwr and dwl on figure 8.
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Fig. 8. Differential model in discrete time.

The state equation is the same as for the Ackerman steered
vehicle, i.e. (1). However, the control input is the covered
distance δdk and the change in rotation of the robot δθk.

ūk =

[

δdk

δθk

]

(4)

4.2 Sensors

GPS The Global Positioning System (GPS) is a system that
uses satellites to determine a position on earth. The GPS system
uses well known satellite positions and precise measurements
of the distance from GPS receiver to the satellites, to calculate
a position measurement (px,py) on the surface of the earth.

[

px

py

]

=

[

x
y

]

+

[

ex

ey

]

Here x and y are the true position whereas ex and ey are
uncertainty in the GPS position.
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Odometry This form of sensor is based on encoders attached
to the wheels or motor. The measurement is simply the distance
(ml and mr) the wheels has travel during a sampling period, i.e.

[

mr

ml

]

=









δdk +
B

2
δθk

δdk −
B

2
δθk









+

[

εr

εl

]

By measuring how far the wheels have turned, it is possible to
calculate how far the vehicle has moved and how the heading
has changed. If this calculation is done often enough, the small
changes in distance and direction can be summed up to give
a representation of position and heading relative to the starting
point. The result of this method is highly dependent of knowing
the vehicle proportions precisely, since any error will be added
to the position, which will then drift.

4.3 Total system models

In bot case the robots can be modelled in discrete time by a state
space description

xk+1 = f (xk,uk,vk)

zk = g(xk,ek)

where the the process noise, vk ∈N(0,Q), and the measurement
noise ek ∈ N(0,R), are assumed to be sequences of zero mean
white noise.

5. SIMULATIONS AND EXPERIMENTS

5.1 HAKO

The simulation experiments are performed in order to demon-
strate the usability of the Kalmtool platform.

The covariance matrices, Q and R, has ben determined such
that the overall system including the Kalman filter gives a
reasonable performance.

To check if the filter converges as expected, the HAKO tractor
is tested with a straight test run. The tractor is driven 10 m with
the filter off and then 50 m with the filter on. The result is very
satisfactory. Figure 9 shows the position. The filter position,
Figure 9, converges very smoothly after about 12 s and 1.5 m
of driving, and shows good results as to the capabilities of the
sensor fusion algorithm, when running on the HAKO tractor.

The algorithm has been compared to some benchmark test, such
as the so-called fish tail maneuver (see Figure 10), where the
tractor shifts its track and direction by turning, reversing and
turning (much like a three-point turn in a car).

As can be seen from Figure 10 the estimate of the position is
almost spot on from the beginning, no matter what the starting
angle of the filter is. The maximum easting error is 7 cm which
is hardly visible on the figure. This is due to the choice of large
starting value for the error covariance matrix Qk and the low
noise on the GPS measurement.

Simulation of a turn-test in Figure 11 shows that the algorithm
work very well with the HAKO tractor.

The row skip maneuver is quite relevant for an agricultural ve-
hicle as the HAKO tractor. Simulation of a row skip maneuver
also shows that the algorithm work very well with the HAKO
tractor.
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Fig. 9. Simulation of HAKO running straight run to check for
convergence of the filter - Position plot.
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Fig. 10. Simulation of HAKO running fishtail maneuver -
Position plot. The result is visually identical to the one
found in Reske-Nielsen et al. (2006).
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Fig. 11. Simulation of HAKO running turn test maneuver -
Position plot.

5.2 MMR

As with the HAKO, the MMR is tested in the simulator in order
to understand the capabilities of the filter and make it more
likely to succeed in real life tests. However, only real life test is
shown here.
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Fig. 12. Simulation of HAKO running row skip maneuver -
Position plot.

Parking lot The test run is carried out on a tarmac with
different gradients. This proved to be rather interesting, as the
directional stability of the robot makes it challenging to make
test runs exceeding 50 m.
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Fig. 13. Real life test of MMR stationary in parking lot -
Position plot. The figure shows the drift of the GPS.

First an experiment is conducted where the MMR is kept on a
stationary position. The result of the stationary test indicates
that there is a substantial drift on the GPS when using it in
the parking lot, see Figure 13. The variance is 8.5 m in the
northing direction and the 4.3 m in the easting direction. In the
stationary situation the position converges nicely and shows a
variance of only 0.5 m in the northing direction and 0.2 m in the
easting direction. The test of the GPS shows that the variance
for the GPS measurement is set fairly low, but since the noise
is reduced when the vehicle is driving; the noise is not changed
for the later tests.

The direction drifts like the internal odometry. This is not
corrected much by the GPS measurement, since the vehicle is
not moving, see Figure 14. The drift is 0.06 deg/min which
is very satisfactory, considering the odometry is based on a
calibrated system using both wheel encodes and gyro. This is
what could be expected of a calibrated system, but the low
confidence in the GPS makes it interesting to see how it will
perform when the vehicle is moving.
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Fig. 14. Real life test of MMR stationary in parking lot -
Heading plot. The vehicle heading is drifting as expected,
which is also picked up by the Kalman filter.
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Fig. 15. Real life test of MMR driving in parking lot - Position
plot.

Next a new experiment is conducted where the MMR is com-
manded to run on a straight line. As can be seen from the test
result in Figure 15 the filter position converges fine and it tends
to follow the GPS measurement as it move forward.
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Fig. 16. Real life test of MMR driving in parking lot - Heading
plot.
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Figure 16 shows some convergence even though the drive is
rather short, but that is also partly explained by the initialization
value. The filter was initialized with a good initial heading, not
more than 15 deg off the true heading. This does account for
some of the good performance. When the GPS measurement
does not drift too fast, the filter converges to the correct value.

Dyrehaven The runs carried out in Dyrehaven (a wood land
area close the university), tests the sensor fusion solution when
driving longer stretches and hopefully with better GPS cover-
age. Figure 17 and Figure 18 show that the filter converges like
the simulation predicted. Using the modeled variances for the
filter does make the filter converge, but not as fast or stable as
the HAKO tractor.
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Fig. 17. MMR real life test in Dyrehaven - Position plot. MMR
INS position is the internal odometry and gyro based
position estimate.
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Fig. 18. MMR real life test in Dyrehaven - Heading plot. Final
variance is σ = 0.1 rad

The stationary test indicates that the drift on the GPS persists
when using it in Dyrehaven. The variance is 2.5 m in the nor-
thing direction and 1.9 m in the easting direction, significantly
lower than for the parking lot test. Positioning the robot on
the road solely using the GPS cannot be done, with precision
recorded. The test in Dyrehaven showed that the position could
drift off the road when driving. Local guidance from other
sensors is therefore needed. The Lat/Lon to UTM conversion
algorithm shows the promised precision, taking the precision

of the extraction of the road information from an on-line map
into account.

The estimate is not optimal as it is oscillating as the simulations
have shown. The variance of the stationary angle taken on
the last half of the run is σheading = 0.1 rad and the largest
deviation from the road is 5 m with a bias to the right of the
GPS measurements and the road.

6. CONCLUSION

In this paper we have applied a toolbox (Kalmtool) on models
of two different mobile robot platforms. Kalmtool is a set
of MATLAB procedures for state estimation for nonlinear
systems. It contains functions for extended Kalman filtering
as well as for the two new filters, the DD1 filter and the DD2
filter. It also contains functions for the Unscented (standard and
scaled) Kalman filter as well as three versions of particle filters.

One mobile robot is an agricultural vehicle (HAKO tractor)
designed for experiments in the fields. The other robot is a
Medium Mobile Robot (MMR), which is designed for indoor
as well as outdoor experimental purposes.

The result of this work is a series of successful applications of
the navigation platform. It has also proven to be a simple, trans-
parent and yet a powerful platform for navigation experiments.
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