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Abstract: Signed directed graph (SDG) is an important qualitative model that is used to describe large-
scale complex systems and the cause-effect relationships among variables. It has been successfully applied 
in fault diagnosis, hazard assessment and other areas. In the fault isolation problem, the task is to find the 
fault origin that causes the abnormal phenomenon. However, as the basis of analysis, the inference method 
based on SDG, is simply a traversal search or a rule-based expert system. Because of the redundant or 
disordered information, the efficiency of these algorithms is quite low. Rough set theory provides an idea 
of handling vague information and can be used to data reduction, thus it can be introduced to the fault 
isolation problem (a kind of decision problems) to optimize the decision rules. The decision algorithm is 
proposed in this paper, in which the generation and reduction methods of the rules are related to the 
structure of the SDG model. We combine the algebraic and logical expression ways to achieve the purpose. 
Moreover, due to the convenience of expressing granularity, the decision algorithm is still applicable when 
the types of the faults we concerned are changed or reformed. Finally, an example of a 65t/h boiler system 
is carried out to illustrate and validate the proposed method, and some future trends of this method are also 
discussed.  

 

1. INTRODUCTION 

Signed directed graph (SDG) is a modelling method for 
complex systems to exhibit the process behaviours. A SDG 
uses nodes to represent process variables and uses branches 
between nodes to represent the cause-effect relations between 
variables (Iri et al., 1979). The sign on the node represents 
the direction of the variable deviation. The sign on the branch 
represents the direction of influence and takes the value of 
“+”, “-” or “0”. The sign “+” implies that a positive (negative) 
deviation leads to a positive (negative) deviation. When the 
sign on the edge is “-”, an increase (decrease) leads to 
decrease (increase). Up to now, SDG has been broadly used 
in many areas, especially for large-scale systems such as 
enterprises. The most typical application covers fault 
diagnosis and hazard assessment based on the fault inference 
along consistent paths (Yang et al., 2005).  

The SDG-based fault isolation is actually a traversal search 
(usually deep-first) along the consistent paths in the graph to 
find the fault origin (Iri et al., 1979). This approach uses the 
deep-level knowledge of the system and shows the 
propagation path of each fault. Kramer et al. (1987) proposed 
to use rules and expert systems to make inference. Yang et al. 
(2007a) introduced structural residual to simplify the rules. 
These approaches, however, have many disadvantages – each 
fault is located on a single node and the type is only the value 
deviation caused by device malfunction or misoperation; 
when multiple faults or complex faults occur, it is hard to 
identify them, so we have to add extra nodes to denote 
complex faults (Yang et al., 2006b); the algorithm is fixed 
and not easy to be adjusted if the actual demands of users or 

the choices of fault types are changed. Yang et al. (2006c) 
proposed a hierarchical description of SDG, which reveals 
some granularity, but the decomposition and concentration 
methods have not been well established. The rough set theory 
provides a new idea of this problem. 

The rough set theory was presented by Pawlak (1982, 1991) 
and becomes an effective new mathematical approach to 
uncertain and vague data analysis. Rough sets describe a kind 
of roughness in knowledge representation by the idea of 
indiscernibility between elements (more formally, 
indiscernibility relations). Rough set theory can be used in 
many areas, among which data reduction is an important 
application in data mining. In an information system or 
decision system, mass decision rules can be reduced and 
simplified by data reduction. Moreover, the operations 
among rules can be used to change the granularity or 
roughness. Therefore, by regarding the fault isolation 
problem as a decision problem, we can use rough set theory 
to improve the inference efficiency. 

This paper is organized as follows: In Section 2, the basic 
concepts of rough set theory and decision algorithm are 
introduced. Combined with the background of the fault 
isolation problem and the method of SDG, the fault isolation 
algorithm is proposed in Section 3. Section 4 gives an 
example of a boiler system to illustrate the proposed method. 
In Section 5, the conclusions and prospective applications are 
discussed. 

2. DECISION SYSTEM AND DECISION ALGORITHM 
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2.1  Basic Concepts 

In order to describe a decision problem, we should first give 
some definitions, which are the fundamental concepts of 
rough set theory (Pawlak, 1982, 1991; Liu, 2001). 

Definition 1 (Decision system). An information system is a 
formal structure viewed as a four-tuple of the form 

 

S = <X, Q, V, f>,                                                               (1) 

 

where, X is a finite universe of discourse including all 
elements (objects) we are interested in some problem 
description; Q is a finite set of attributes used in the 
description of elements of X; V describes values of all 
attributes; f is called a decision function 

 

f: X×Q→V,                                                                       (2) 

 

indicating the attribute of the element. If the attribute set V is 
divided into two disjoint sets called condition attributes (C) 
and decision attributes (D), then such information systems 
are referred to as decision tables 

 

S = <X, Q, ∪C D , f>.                                                      (3) 

 

Definition 2 (Indiscernibility). With the same information 
system S in mind, denote by A a subset of attributes, A∈Q. 
We say that two objects (x and y) are indiscernible by the set 
of attributes A in S iff f(x,a) = f(y,a) for every a in A. 

Indiscernibility forms an equivalence relation in X, 

 

IND(A) = {(x,y)∈X×X | f(x,a) = f(y,a) for all a∈A} (4) 

 

Definition 3 (Partition and class). Given the information 
system S and its condition attributes C and decision attributes 
D, X|IND(C) and X|IND(D) are the partitions of the universe 
X on the attribute sets C and D respectively. The elements in 
the sets X|IND(C) and X|IND(D) are called condition classes 
and decision classes respectively. 

Definition 4 (Consistency). Given the information system S 
and its condition attributes C, if each condition class 
E∈X|IND(C) has the same decision value, then we call E is 
consistent, otherwise we call E is inconsistent. For a decision 
table S, if all the condition classes are consistent, then S is 
consistent; otherwise S is inconsistent. 

Definition 5 (Core and reduct). For an information system S 
with a subset A∈Q, attribute a∈A is dispensable if IND(A)= 
IND(A\{a}). Otherwise we call a to be indispensable. The set 
of all indispensable attributes of A is called a core of A, 
denoted by CORE(A). A minimal set of attributes that 
discerns all objects in S that are discernable by A and cannot 
be further reduced is called a reduct of A, denoted by 
RED(A). The intersection of all reducts of A is a core of A 

 

CORE(A) = all reducts∩ RED(A).                                       (5) 

 

CORE(A) is composed of such attributes that cannot be 
removed from A without causing any loss in the quality of 
classification.  

As to the expressions of the decision algorithm, besides the 
table form, we can also express it in logic form. 

Definition 6 (Rough logic). Rough logic language (RLL) is 
composed of attribute set Q, value set q q∈= ∩ QV V  ( qV  is 
the value set of the attribute q), logic connectives, and well 
formed formulas (wffs): 

(1) (q,v) is an atomic formula, where q∈Q, v∈Vq, and 
atomic formulas are all wffs; 

(2) If ϕ  and ψ  are formulas, then ϕ∼ , ϕ ψ∧ , ϕ ψ∨ , ( )ϕ , 
and ϕ ψ→  are all wffs; 

(3) The result of operating the formulas defined in (1) and (2) 
by logic connectives for limited times, is a wff. 

Definition 7 (Granule). Function f-1(ϕ ) denotes the object set 
in which the element satisfies the wff ϕ . A granule is 
defined as Gr = (ϕ , f-1(ϕ )). 

By the operation of wffs, granules are also changed and 
describe things from different levels. For example, if two 
wffs are operated by ‘ ∨ ’, the corresponding granules 
combines into a bigger one. So the granularity is lower 
because we cannot distinguish the initial two granules.  

2.2  Decision Algorithm 

By the above definitions, we can describe a decision 
algorithm by a decision table or rough logics. A decision 
table can be regarded as a set of formulas. We should deal 
with all the possible decision rules and obtain a concise and 
self-contained decision algorithm. The way of inference is as 
follows (Liu, 2001): 

(1) List all the possible rules as Table A (as Table 1), with 
each row denoting a rule ϕ ψ→ , where ϕ  denotes the 
values of the condition attributes are assumed and ψ  denotes 
the decision to be obtained. For convenience, we can give 
each attribute value a notion. 
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Table 1.  The framework of a decision table 
Attributes 

Objects            Q 
X 

Condition 
attributes 

C 

Decision 
attributes 

D 
   

(2) Try to delete each condition attribute in turn and test the 
consistency of the formula and obtain the reducts and the 
core. Delete all the elements except the cores and get Table B. 
There are several methods to test the consistency. For 
example, 

– Each condition class E ∈ X|IND(C) has the same 
decision value. 

– For each object x, the condition class covering x is 
contained in the decision class covering x.  

– For every two decision rules ϕ ψ→  and ' 'ϕ ψ→ , 
we have ' 'ϕ ϕ ψ ψ= → = . 

(3) Calculate the reducts of each rule by use of Table B, and 
get Table C. 

(4) Delete redundant rules and thus get Table D. 

(5) Educe the rules and the decision algorithm according to 
Table D. 

The decision algorithm derived here assures the minimization 
of the resulted condition attribute set. Theoretically it is an 
NP-hard problem (Pal et al., 2001). 

3. FAULT ISOLATION ALGORITHM BASED ON THE 
SDG MODEL 

Fault isolation problem is an instance of decision problem. 
The purpose is to determine the system state, that is, normal 
or abnormal? Where does the fault occur? What kind of fault?  

In expert systems, the decision is realized by rules. It is 
similar here that in order to express the decision problem in 
the framework of rough set theory, we should transform the 
problem expression into decision table or rough logics at first.  

The basic method is to take the variable set as the condition 
attribute set, and to take all the possible samples 
(combinations of all the variable values) as the objects, and to 
take the system states as the decision values. In SDG, the 
values of the variables are “+”, “-”, or “0”, so the condition 
attribute set is composed of these three signs. The decision 
attribute is the system state including all the kinds of faults 
and a normal state.  

According to the structure of the SDG, we can get some 
observations: 

Observation 1. If two variable sets have no intersection and 
no branches linking them, then the rules concerning these two 
sets are independent. For example, in Fig. 1, variable a and 
{b, c, d} are separate, so in Table 2, b, c, and d can be 
reduced in the 1st row, and a can be reduced in the 2nd and 
3rd rows.  

 
 

 

Fig. 1. An example of SDG. 

Table 2.  An example of the decision table 
 a b c d State

1 + / / / F1 
2 / + / / F2 
3 / / + / F3 
4 0 0 0 0 Normal

 
Observation 2. If two or more nodes in SDG have the same 
downstream node, then the core is null, because the conjunct 
node and its upstream nodes can all be reduced. In Table 2, 
the 2nd and 3rd rows are reducts and there are other reducts 
omitted here. 

Considering the different granularity, the rules can be 
combined or disjoined. In the SDG in Fig. 1, if we only pay 
attention to the fault of two clusters, a and {b, c, d}, then the 
2nd and 3rd rows can be combined together.  

The advantages of this method are: Firstly, it can figure out 
the complex fault problem that is hard to handle by the search 
on SDG. Secondly, faults can be classified into different 
types and combined into different granules according to our 
actual needs, and are not limited to the value deviation of the 
variables. Thirdly, the samples are possible decision rules 
that can be created by the actual measurement or by inference 
on SDG. So this method takes SDG method into account to 
the sample generation, but for real-time inference, it also uses 
the expert system to improve the efficiency. 

4. EXAMPLES 

A 65t/h steam boiler system, which is widely applied in 
large-scale petrochemical enterprise, is taken as our example 
system. We implement it by simulation software PS (Wu, 
2002) with its flow chart shown as Fig. 2. Some key variables 
in the process are controlled by single loops, and valves can 
be manipulated manually or automatically. There are 16 
controlled variables in the model: inlet flow rate of the boiler, 
FR-01; outlet flow rate of the overheated steam, FR-02; flow 
rate of the cooling water, FI-03; flow rate of the soften water, 
FR-04; flow rate of the smoke, FI-06; flow rate of the fuel oil, 
FR-07; flow rate of the deoxidizing water to be catalyzed, FI-
08; pressure of the smoke at the exit, PI-05; oxygen 
percentage of the smoke, AI-01; pressure of the main steam, 
PIC-01; pressure of the high pressure gas, PIC-02; pressure 
of the liquid hydrocarbon, PIC-03; pressure of the deaerator, 
PIC-04; water level of the top steam drum, LIC-01; water 
level of the deaerator, LIC-02; and temperature of the 
overheated steam, TIC-01. Besides, key variables in the 
process include the temperature of the hearth, TI-07; the flow 
rate of the inlet air, FA; and the flow rate of the high-, 
medium- and low-pressure gas denoted by FH, FM and FL 
individually. The SDG of this system is established by Yang 

a b 
c

d 
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et al. (2006a), shown as Fig. 3, which illustrates the cause-
effect relationships among the key variables. 

 

 

Fig 2 Flow chart of the boiler system. 

 

 

Fig 3 SDG of the boiler system. 

The most typical faults are operational malfuctions, because 
each controlled variable is involved in a control loop and is 
controlled by a valve, and the open of the loop or the wrong 
settings may lead to the corresponding fault, that is, the 
deviation of the controlled variable. Besides, there are other 
kinds of faults caused by complicated or compositive reasons. 
These faults are listed in Table 3 together with their 
consequences. 

Table 3.  Typical faults of the boiler system 
Notation Name Consequence 

F2 Full of water in 
steam drum 

Inlet reduces heavily 

F3 Lack of water in 
steam drum 

Water level decreases gradually

F4 Fire All the gas muzzles are

extinguished extinguished; pressure and 
temperature of the stream 
decrease 

F5 Power off Several phenomena 
F6 Failure in the 

cooler 
Temperature of overheated steam 
reduces; cooling water reduces 
abnormally, etc. 

 
First, we consider three operational malfunctions C1, C8, and 
C7, which correspond to the deviation of PIC-04, PIC-02, 
and PIC-03 individually. According to SDG, we can search 
along the consistent paths to find out the consequence of each 
operational malfunction, the affected variables of which are 
listed in Table 4.  

Table 4.  The affected variables of three 
operational malfunctions 

 PIC-04 TIC-01 PIC-02 PIC-01 PIC-03 AI-01
C1 + 0 0 0 0 0 
C8 0 + 0 + + - 
C7 0 + + + 0 - 

 
According to the above decision algorithm, this table can be 
regarded as a decision table (Table 5) by adding a row 
denoting normal state, whose condition attributes are all the 
variables and whose decision attribute is the state of the 
system. Obviously this table is consistent. And because of the 
redundancy, the column of PIC-01 and AI-01 can be deleted. 
In the first row, which determines the fault C1, the columns 
except PIC-04 are reducible and thus PIC-04 is the core. In 
the next two rows, all the attributes are reducible, so there are 
no cores. But we can reduce PIC-04 and choose one or two 
attributes to combine a reduction. In its SDG, PIC-04 is a 
separate node, so it becomes the only attribute after reduction. 
PIC-02 and PIC-03 have the same downriver nodes, so at 
least one of these two attributes must be chosen to identify 
the two faults. Here we have validated the two observations 
in Section 3.  

Table 5.  Decision table when considering three 
operational malfunctions 

PIC-04 TIC-01 PIC-02 PIC-01 State
+ 0 0 0 C1 
0 + 0 + C8 
0 + + + C7 
0 0 0 0 Normal

 
Finally we obtain the decision table by collecting all the 
reductions, shown in Table 6.  

Table 6.  Reduced decision table when 
considering three operational malfunctions 

PIC-04 TIC-01 PIC-02 PIC-03 State
+ / / / C1 
/ / / + C8 
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/ + 0 / C8 
/ / + / C7 
/ + / 0 C7 
0 / 0 0 Normal

 
The decision rules are written with rough logic formulas as 
follows: 

(PIC-04,+)→C1 

(PIC-03,+)→C8 

(TIC-01,+)∧ (PIC-02,0)→C8 

(PIC-02,+)→C7 

(TIC-01,+)∧ (PIC-03,0)→C7 

(PIC-04,0)∧ (PIC-02,0)∧ (PIC-03,0)→Normal 

Or we can combine them as 

(PIC-04,+)→C1 

(PIC-03,+)∨ ((TIC-01,+)∧ (PIC-02,0))→C8 

(PIC-02,+)∨ ((TIC-01,+)∧ (PIC-03,0))→C7 

(PIC-04,0)∧ (PIC-02,0)∧ (PIC-03,0)→Normal 

Obviously, the so-called normal state is not a real normal 
state, because there are many other faults that have not been 
considered here. Moreover, the combinational faults, such as 
the simultaneous fault of C8 and C7, are also not considered 
here. We note that these two faults compose a fault on the 
superior level or lower granularity, which means the flow rate 
of the medium-pressure gas FM is deviated and ignore its 
original cause.  

Up to now, we find that the search method and the method 
proposed in this paper can both meet the demands of the fault 
isolation problem in large-scale complex systems. SDG 
method demonstrates the propagation process of the faults, so 
it is more applicable in the system analysis. However the 
method in this paper reduces the variables to be considered, 
so it is more applicable in the real-time diagnosis.  

When a fault occurs, the affected variables are probably not 
located in a concentrated area, but in several parts that are not 
connective in the graph. For example, when power off (F5), 
many variables will be abnormal and they consist of several 
origins. Table 7 is a sample set of the typical faults. 

Table 7.  Sample set of the typical faults 
 C1 C8 C7 F2 F3 F4 F5 F6

PIC-04 + 0 0 0 0 0 0 0 
FR-04 0 0 0 0 0 - - 0 
LIC-02 0 0 0 0 0 0 + 0 
FR-01 0 0 0 + - - - 0 
FI-08 0 0 0 0 0 0 - 0 

LIC-01 0 0 0 + - 0 - 0 
FI-03 0 0 0 0 + - - - 

FR-02 0 0 0 0 - - - 0 
TIC-01 0 + + 0 0 0 - - 
PIC-02 0 0 + 0 0 0 0 0 
PIC-01 0 + + 0 0 - - 0 
PIC-03 0 + 0 0 0 0 0 0 
FR-07 0 0 0 0 0 0 - 0 
FI-06 0 0 0 0 0 0 0 0 
PI-05 0 0 0 0 0 0 + 0 
AI-01 0 - - 0 0 + 0 0 
PI-03 0 0 0 0 0 - 0 0 
 

By the above algorithm, we can execute the data reduction to 
get the decision table (Table 8) and decision rules.  

Table 8.  Decision table without reduction 
PIC-04 LIC-01 FI-03 FR-04 PIC-02 PIC-03 State

+ 0 0 0 0 0 C1 
0 0 0 0 0 + C8 
0 0 0 0 + 0 C7 
0 + 0 0 0 0 F2 
0 - + 0 0 0 F3 
0 0 - - 0 0 F4 
0 - - - 0 0 F5 
0 0 - 0 0 0 F6 
0 0 0 0 0 0 Normal

 

5. CONCLUSIONS 

This paper combines the theories of SDG and rough sets to 
improve the inference efficiency of decision problem and 
uses them to the fault isolation problem. It shows the 
flexibility of building the rules and classifying the faults. The 
decision algorithm proposed here implemented is to obtain 
the minimum set to achieve the purpose. 

Also, this method can be used in other problems, such as 
sensor location problem in system design. In order to monitor 
the state or performance of the system, many sensors are 
placed on the devices to measure the variables. Theoretically, 
more sensors located in more places are better for fault 
detection, but because of economic and technical limitations, 
we cannot use too many sensors. The basic principles are set 
to be able to detect all the faults (i.e. detectability) and to 
distinguish between different faults (i.e. identifiability) (Yang 
et al., 2007b). These two principles are consistent with the 
decision problem. Thus we can choose the minimum attribute 
set as the sensor location set. And we can expand, reduce, or 
reform the table according to the demands of the fault 
isolation task.  
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