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Abstract: Many problems from control theory can be stated as so-called robust LMI problems.
In this paper, the theorem of Ehlich and Zeller, a powerful tool for analyzing polynomials and
rational functions, will be presented and applied to the robust LMI problems which are used to
analyze uncertain systems.

Keywords: Robust linear matrix inequalities, Relaxations, convex optimization

1. INTRODUCTION

Linear matrix inequalities (LMI), which have the form

F (λ) = F0 + λ1F1 + ... + λhFh < 0,

where the Fi are constant symmetric s × s matrices and
the λi are decision variables, are used to describe many
problems stemming from control theory (cf. Boyd et al.
(1994)). The task of solving an LMI is to find a point in
the solution set Λ := {λ|F (λ) < 0}.
A typical LMI problem is the Lyapunov inequality: If for a
linear, time-invariant, autonomous system with a constant
system matrix A ∈ R

s×s a symmetric, positive definite
matrix P ∈ R

s×s exists which fulfills the inequality

AT P + PA > 0,

we know that the system is asymptotically stable. For
problem statements of this kind powerful approaches are
available (cf. Nemirovski and Gahinet (1994), Nesterov
and Nemirovski (1994)). Unfortunately sometimes not all
parameters of an LMI are known. There are several rea-
sons, e.g. sensor and implementation errors, calculation
(floating point) errors or an approximation of nonlinear
systems by uncertain linear systems. Let δ = [δ1, · · · , δq]
denote the vector of parameter uncertainties, which is
bounded by an interval vector ∆ ∈ R

q. Now we can formu-
late the problem statement with h uncertain parameters
as

F (λ, δ) = F0(δ) + λ1F1(δ) + · · · + λhFh(δ) (1)

with the solution set

Ω =
{

λ ∈ R
h|F (λ, δ) < 0 ∀δ ∈ ∆

}

.

This is called the robust LMI problem.

Solving such a robust LMI problem is NP-hard, because
(1) leads to an infinite number of conventional LMIs to
solve.

In this paper we pay special attention to optimization
problems under robust LMI conditions. In the past,
several asymptotically exact approaches have been pro-
posed to relax robust LMI problems with polynomial

parameter dependence. Bliman (2006) and Ohara and
Sasaki (2001) proposed methods based on the Kalman-
Yakubovich lemma. In Scherer (2005), an approach based
on Polya’s theorem is presented. If we define the poly-
nomial p(δ) to be a quadratic form corresponding to the
robust LMI (1), i.e.

p(δ) := zT F (λ, δ)z, ∀z ∈ R
s, (2)

the theory of sum-of-squares (cf. Parillo (2000), Lasserre
(2001)) can be applied to robust LMIs, which was, for
example, shown in Scherer and Hol (2006). For robust
stability analysis, see Oliveira and Peres (2005) and its
bibliography.

In this paper we present the theorem of Ehlich and
Zeller, which can be used to analyze the positivity (and
negativity) of polynomials and rational functions on a
compact interval. In the past we applied this method to
find guaranteed bounds for the domain of attraction of
dynamical polynomial systems (cf. Tibken et al. (1999))
or in the context of polynomial positivity (cf. Tibken and
Dilaver (2003), Tibken and Dilaver (2004), and Tibken and
Dilaver (2005)). In this publication we apply this theorem
to a scalarized robust LMI problem and verify this method
on several examples.

2. THEOREM OF EHLICH AND ZELLER

This section will closely follow the corresponding sections
in Tibken et al. (1999), Tibken and Dilaver (2003), Tibken
and Dilaver (2004), and Tibken and Dilaver (2005). In the
following ∆ = [a, b] denotes a nonempty compact interval
with ∆ ⊂ R. For an algebraic variable δ ∈ ∆ we define the
set of N(∈ N) Chebychev points in ∆ as

X(N,∆) :=
{

δ(j), j = 1, ..., N
}

, where

δ(j) =
a + b

2
+

b − a

2
cos

(

(2j − 1)N

2N

)

.

For any continuous function f defined on a set I the norm

‖f‖I
:= max

δ∈I
|f(δ)| ,
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is the usual maximum norm. Let pm be the set of poly-
nomials p in one variable with deg(p) = m. Then the
following equality

‖p‖∆
= C

(m

N

)

||p||X(N,∆)
with N > m and (3)

C
(m

N

)

:=
[

cos
(mπ

2N

)]−1

is valid for every p ∈ pm and every nonempty compact
interval ∆. This result was given by Ehlich and Zeller
(1964). For the minimum and maximum of a polynomial
p in the set I we use the notation

pI
min := min

δ∈I
p(δ) and pI

max := max
δ∈I

p(δ),

respectively. Using (3), the following inequalities

p∆
max ≤ 1

2

{(

C
(m

N

)

+ 1
)

pX(N,∆)
max

−
(

C
(m

N

)

− 1
)

p
X(N,∆)
min

}

(4)

p∆
min ≥ 1

2

{(

C
(m

N

)

+ 1
)

p
X(N,∆)
min

−
(

C
(m

N

)

− 1
)

pX(N,∆)
max

}

,

(5)

which are valid for every p ∈ pm and N > m, are given by
Ruttmann (1982).

The inequalities (3), (4) and (5) are valid for polynomials
in one variable. They can be extended to polynomials of
q variables if we use the following replacements. First of
all, we replace the interval ∆ by ∆̂ = [a1, b1]× ...× [aq, bq],
which represents a hyperrectangle or an interval vector.
We introduce the abbreviation mh for the degree of p
with respect to the h-th variable δh and define the set
of Chebychev points by

X
(

N̂ , ∆̂
)

:= X(N1, [a1, b1]) × ... × X(Nq, [aq, bq])),

where Nh is the number of Chebychev points for the h-th
variable δh in the interval [ah, bh]. Then the inequalities

p∆̂
max ≤ 1

2

{

(K + 1) pX(N̂,∆̂)
max − (K − 1) p

X(N̂,∆̂)
min

}

(6)

p∆̂
min ≥ 1

2

{

(K + 1) p
X(N̂,∆̂)
min − (K − 1) pX(N̂,∆̂)

max

}

(7)

with

K =

q
∏

h=1

C

(

mh

Nh

)

under the conditions Nh > mh, h = 1, ..., q are valid.

The results above can be applied to rational functions r(δ)
with

r(δ) =
p(δ)

q(δ)

and p, q ∈ pm, q(δ) 6= 0 (δ ∈ ∆). If we define

κ :=
|q|X(N,∆)

max

|q|X(N,∆)
min

and replace

K :=
C
(

m
N

)

+ 1 +
(

C
(

m
N

)

− 1
)

κ

C
(

m
N

)

+ 1 −
(

C
(

m
N

)

− 1
)

κ

and the inequalities

C
(m

N

)

+ 1 −
(

C
(m

N

)

− 1
)

κ > 0

and N > m are fulfilled , then the inequalities

r∆̂
max ≤ 1

2

{

(K + 1) pX(N̂,∆)
max − (K − 1) p

X(N̂,∆)
min

}

(8)

and

r∆̂
min ≥ 1

2

{

(K + 1) p
X(N̂,∆)
min − (K − 1) pX(N̂,∆)

max

}

(9)

are valid.

Remark 1. With the theorem of Ehlich and Zeller it is pos-
sible to make a statement about the positivity (or negativ-
ity) of polynomials on an interval ∆ since min

δ∈∆
p(δ) > 0 is

a necessary and sufficient condition for p(δ) > 0 ∀δ ∈ ∆
and max

δ∈∆
p(δ) < 0 is a necessary and sufficient condition for

p(δ) < 0 ∀δ ∈ ∆, respectively. Hence if the inequalities

(K + 1) p
X(N̂,∆̂)
min − (K − 1) pX(N̂,∆̂)

max > 0

and N > m, as defined above, are valid we know that the
positivity of p(δ) is guaranteed on the complete interval
∆.

3. RELAXATION METHODS

If we define the polynomial p(δ) to be a quadratic form
corresponding to the robust LMI (1), i.e.

p(δ) := zT F (λ, δ)z, (10)

we can apply the theorem of Ehlich and Zeller. Further-
more we define

p
(

δ(i)
)

:= zT F (λ, δ(i))z (11)

as the polynomial p(δ) at the Chebychev point δ(i) ∈
X (N,∆).

3.1 Method 1

Theorem 1. If all inequalities

(K + 1)F (λ, δ(j)) − (K − 1)F (λ, δ(k)) < 0 (12)

are satisfied for all i, j = 1, ..., N , the robust LMI problem
F (λ, δ) < 0 is satisfied ∀δ ∈ ∆ as well. In other words,
(12) is a sufficient condition for F (λ, δ) < 0.

Proof. Since

max
δ∈∆

p(δ) ≤ 1

2

[

(K + 1) max
i=1...N

p(δ(i))

−(K − 1) min
i=1...N

p(δ(i))
] (13)

is a result of the theorem of Ehlich and Zeller, we achieve

(K + 1) max
i=1...N

p(δ(i)) − (K − 1) min
i=1...N

p(δ(i)) < 0 (14)

as a sufficient condition for max
δ∈∆

p(δ) < 0.

Due to the fact that inequality (14) is no LMI condition,
we have to replace it by N2 inequalities of the form

(K + 1)p(δ(j)) − (K − 1)p(δ(k)) < 0 j, k = 1, ..., N.

Using definition (11) we get

(K + 1)zT F
(

λ, δ(j)
)

z − (K − 1)zT F
(

λ, δ(k)
)

z < 0,

j, k = 1, ..., N,∀z ∈ R
s,

which we can rewrite as

(K + 1)F
(

λ, δ(j)
)

− (K − 1)F
(

λ, δ(k)
)

< 0.
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Remark 2. Please note that the number of conventional
LMIs used to represent one robust LMI depends quadrat-
ically on the number of chosen Chebychev points.

Remark 3. This method is a direct implementation of the
theorem of Ehlich and Zeller. Since the bounds given by
the theorem of Ehlich and Zeller converge against the exact
minimum/maximum of the polynomial, the bounds of this
method will converge as well.

3.2 Method 2

If we introduce two new symmetric matrices PT, PB ∈
R

s×s as decision variables in the form

max
i=1...N

p(δ(i)) ≤ zT PT z ∀ z ∈ R
s

min
i=1...N

p(δ(i)) ≥ zT PB z ∀ z ∈ R
s,

we can propose another method to solve robust LMI
problems.

Theorem 2. If all inequalities

F
(

λ, δ(i)
)

≤ PT (15)

F
(

λ, δ(i)
)

≥ PB (16)

(K + 1)PT − (K − 1)PB < 0 (17)

are satisfied ∀i = 1, ..., N , the robust LMI problem
F (λ, δ) < 0 is satisfied ∀δ ∈ ∆ as well.

Proof. With (11) follows

max
i=1...N

zT F
(

λ, δ(i)
)

z ≤ zT PT z ∀z ∈ R
s

min
i=1...N

zT F
(

λ, δ(i)
)

z ≥ zT PB z ∀z ∈ R
s

(18)

which we can be rewritten as

F
(

λ, δ(i)
)

≤ PT

F
(

λ, δ(i)
)

≥ PB

i = 1, ..., N . (19)

If we utilize (11) in (13), we get

(K + 1) zT PT z − (K − 1)zT PB z < 0,

which is equivalent to

(K + 1)PT − (K − 1)PB < 0.

Remark 4. With Method 2, we need 2N + 1 conventional
LMIs to solve one robust LMI instead of N2 with the first
method.

Remark 5. The first method is a direct implementation
of the theorem of Ehlich and Zeller, whereas in the second
method piecewise quadratic functions are approximated by
quadratic functions (18). Thus we expect that the second
method will yield more conservative results than the first
one.

3.3 Quality control

With the methods proposed above we get an inner bound-
ary of our solution set Ω, which we will call Ωi. This is
because our two methods use sufficient conditions.

If we verify our robust LMI at the Chebychev points only,
i.e. without using the theorem of Ehlich and Zeller, we
fulfill the necessary conditions, so that we get an outer
boundary of Ω, which we will call Ωo.

If the goal is to solve an optimization problem of the form

γ = min
F (λ,δ)<0, ∀δ∈∆

g(λ) (20)

for a performance function g(λ) it is clear that we get a
lower bound for γ, if we solve the problem

γl = min
F (λ,δ(j))<0, j=1,...,N

g(λ) (21)

and an upper bound, if we solve the problem

γu = min
(12)

g(λ) (22)

or
γu = min

(15)−(17)
g(λ). (23)

Thus, the exact value is bounded as follows:

γL ≤ γ ≤ γu

and we have a direct quality control. We observe that
the bounds can be improved by increasing the number of
Chebychev points. A second important observation is that
the problems (21), (22) and (23) are optimization problems
with a finite number of LMIs as constraints and thus can
be solved with existing software.

4. EXAMPLES

4.1 Stability analysis

As mentioned in the introduction, the asymptotic stability
of a linear, time-invariant, autonomous system with a
constant system matrix A ∈ R

s×s can be verified if a
symmetric, positive definite matrix P ∈ R

s×s exists which
fulfills the inequality

AT P + PA > 0.

If some of the parameters of the system matrix A are
dependent on an uncertain but constant parameter δ =
[δ1, · · · , δq] ∈ ∆ we have to rewrite our problem statement
as

AT (δ)P (δ) + P (δ)A(δ) > 0 P > 0. (24)

The problem is discussed further in Chesi et al. (2005).

For this example we use the approach that P (δ) depends
linearly on the uncertain parameters, i.d.

P (δ) = P0 + δ1P1 + · · · + δqPq.

To verify that the inequality P (δ) > 0 is fulfilled, it is
sufficient to verify this inequality only at the 2q corners of
the hypercube ∆. See Schwenk and Tibken (2008) for a
more efficient relaxation than vertexization.

Let us consider a simple system with quadratic parameter
dependence given by

ẋ(t) =

(

−2 + δ2 0
2 −2

)

x(t).

We have one uncertain parameter δ and it is obvious that
the system is asymptotically stable if |δ| <

√
2. If we apply

our methods we get the following results:

Number of Chebychev |δ| (method 1) |δ| (method 2)
points N
10 1.390971 1.390971
20 1.408676 1.408676
50 1.413339 1.413339
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Upper bound for max(p(δ)) (Method 2)

Lower bound for max(p(δ))

Fig. 1. Upper and lower bound for max p(δ).

Two things are noteworthy: Firstly, there does not seem
to be a difference between the results of our two proposed
methods. Secondly, with an increasing number of Cheby-
chev points the results converge against the exact result.

4.2 Optimization of polynomials

As shown in Oishi (2006), the maximization of a scalar
polynomial over a set ∆ can be written as

min x
subject to x − p(δ) ≥ 0 (∀δ ∈ ∆),

(25)

which is a robust LMI minimization problem with the
decision variable x and the uncertain parameter δ. We will
consider the polynomial

p(δ) = −5δ2
1δ2 − 5δ1δ

2
2 + 9δ1δ2

on the interval δ = [0, 1] × [0, 1]. With classic methods
we get the unique maximum p(0.6, 0.6) = 1.08. With our

second method and N = (150)
2

= 22500 Chebychev points
we get an upper bound for the maximum of xi = 1.0805,
which is a good approximation of the exact maximum. As
can be seen in Fig. 1, the bounds for the maximum of p(δ)
do not monotonically increase or decrease, but we expect
better results for larger values of N .

4.3 L2 gain analysis for linear systems with scheduling
parameter

In Azuma et al. (2000) an LMI approach to analyze linear
systems of the form

Φ :
ẋ(t) = A(δ(t))x(t) + B(δ(t))w(t), x(0) = 0,
y(t) = C(δ(t))x(t)

which depend polynomial on a scheduling parameter δ(t),

was proposed. It is assumed that δ(t) ∈ [0, 1] and
∣

∣

∣
δ̇(t)

∣

∣

∣
≤

vmax ∀t ∈ [0,∞) with vmax > 0. x(t) ∈ R
s is the state,

w(t) ∈ R
u the disturbance and y(t) ∈ R

l the observed
output of Φ. For an internally stable linear system Φ with
scheduling parameter , the L2 gain of Φ was given by

G(Φ) := sup
w∈L2,w 6=0

‖y‖L2

‖w‖L2

.

Furthermore a theorem about the internal stability and
the L2 gain was proposed.

Theorem 3. (Azuma et al. (2000)). The system Φ is inter-
nally stable and G(Φ) is less than γ if there exists a matrix
function P (δ) defined on [0, 1] such that

P (δ) > 0 (26)

dP

dδ
(δ) < 0 (27)











(

AT (δ)P (δ) + P (δ)A(δ)

+σvmax

dP

dt
(δ)

)

CT (δ) P (δ)B(δ)

C(δ) −I 0
BT (δ)P (δ)) 0 −γ2I











< 0

(28)

for all δ ∈ [0, 1] and σ = ±1.

In Azuma et al. (2000) a model of a gasturbine engine with
the following parameters was considered :

ẋ(t) =
[

A0 + δA1 + δ2A2

]

x(t)
+
[

B0 + δB1 + δ2B2

]

w(t)
y(t) = Cx(t)

A0 =

[−4.3650 −.67230 −.33630
7.0880 −6.5570 −4.6010

−2.4100 7.5840 −14.310

]

,

A1 =

[−.56081 .85534 .58923
.66981 −1.3750 −.99093

−3.1917 1.7971 −.58870

]

,

A2 =

[

.66981 −1.3750 −.99093
−2.8963 1.5292 10.516
−3.5777 2.8389 1.9087

]

,

B0 =

[

2.374 .7485
1.366 3.444
.9461 9.619

]

, B1 =

[−.16023 −.35209
.11622 −2.4839

−.11058 −4.6057

]

,

B2 =

[

.15623 .13063
−.49582 4.0379
−.030616 .89473

]

, C =

[

0 1 0
0 0 1

]

.

The optimization problem is to find the minimum γ as an
upper bound for the L2 gain. It can be formulated as

min
(26)−(28)

γ.

We will examine this problem for the case where P (δ)
depends quadratically on δ, i.e.

P (δ) = P0 + δP1 + δ2P2

and vmax = 10.

Condition (26) leads with our first method to N2 conven-
tional LMIs, with the second one to 2N + 1 conditions. It
is quite obvious that m1 := deg P (δ) = 2.

Since condition (27) is linear in δ, it is sufficient to verify
this LMI at the bounds of the interval ∆ = [0, 1], i.e.

P1 < 0
P1 + 2P2 < 0.

So we need to verify only two conditions, independently of
the chosen method and the number of Chebychev points.

The two conditions in (28) lead with our first method to
2N2, with the second method to 4N+2 conventional LMIs.
The degree is m2 = 4.
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Fig. 2. Guaranteed bounds for γ.
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γ
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γ
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Fig. 3. Difference between our two methods.

In summary, we need to verify with the first method 3N2+
2, with the second one 6N + 5 conventional LMIs. This
means for N = 50 Chebychev points, that the number
of conditions to solve with the first method is 18.5 times
larger than with the second method. We get the following
bounds for γ:

γu,1 ≤ 1.12361726
γu,2 ≤ 1.12365007
γl ≥ 1.11940421

As can be seen, the difference between the upper and lower
bound is less than 10−2. What attracts more attention is
the fact that the difference between γu,1 and γu,2, which
are the optimization results of our two methods, is less
than 10−4. So we can suggest that the conservatism of
Method 2 compared to the first method does not legitimate
the higher complexity (extra memory, computation time)
of the first method.

As can be seen in Fig. 2, the difference between the result
of our two methods compared to the result using the
sufficient conditions is not visible. But it is still existent,
as shown in Fig.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4

1.5

1.6

1.7

1.8

1.9

2

a

y

 

 

lower bound for max |f
a
|

upper bound for max |f
a
| (method 1)

upper bound for max |f
a
| (method 2)

Fig. 4. Upper and lower bounds for the absolute value of
the supremum of fa on ∆ (10 Chebychev points)

4.4 Rational functions

In Scherer and Hol (2006) the absolute value of the
supremum of a rational function fa(δ) on a compact set ∆
is computed by minimizing the decision variable y in the
LMI

(

y fa(x)
fa(x) y

)

> 0 for all x ∈ ∆.

Then the optimal value is equal to supx∈∆ |fa(δ)|. We will
analyze the rational function

fa (δ1, δ2) = − a2δ2
1δ2

2 + 2a2δ2
2 + aδ2

1δ2
2 + 2aδ2

1δ2

2 − 2a2δ2
2 − δ2

1 + a2δ2
1δ2

2

− 2aδ2
2 + δ2

1δ2 + δ2
1 − 2δ2 − 2

2 − 2a2δ2
2 − δ2

1 + a2δ2
1δ2

2

on the compact set

∆ :=
{

(δ1, δ2) ∈ R
2| − 0.8 ≤ δ1 ≤ 0.7,−0.65 ≤ y ≤ 0.7

}

for 20 equidistant values of a ∈ [0, 1]. This function is taken
from Scherer (2005).

If we apply both methods with N = 10 Chebychev points,
we get upper and lower bounds for the absolute value of
the supremum of fa on ∆ as shown in Fig. 4. In contrast
to the first example we can see here a small difference
between the results of the two methods.

If we use N = 100 Chebychev points we get an enclosure,
as shown in Fig. 5. This solution can only be found by
the second method, because for the first method we would
need to verify 108 LMIs which is not solvable with the
LMI toolbox from MATLAB due to the large size of the
problem.

For the case a = 0.9 and N = 100 we get the following
values for the min and max of the denominator

|q|X(N,∆)
max = −0.8598 and

|q|X(N,∆)
min = 1.4292,

which yield the correction factor

K = 1.0024 with κ = 2.4375.

With these factors we get an upper bound

yu = 1.4320
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Fig. 5. Upper and lower bounds for the absolute value of
the supremum of fa on ∆ (100 Chebychev points)

and a lower limit
yl = 1.4292

for the absolute value of the supremum of fa on ∆.

5. CONCLUSIONS

The theorem of Ehlich and Zeller was used to get guar-
anteed information about the positivity of a polynomial
or a rational function on a compact interval. We applied
a method based on this theorem to robust LMI problems
which are known to have a wide range of applications in
stability and performance analysis of uncertain systems.

The difference between the calculated bounds and the
exact solution and the complexity both depend on the
number of Chebychev points. Thus it is possible to balance
between conservatism and the calculation effort. Even with
a small number of Chebychev points our method delivers
guaranteed bounds for the exact value.

Because the first method is a direct implementation of the
theorem of Ehlich and Zeller, we know that for N → ∞
our results will converge asymptotically against the exact
solution. The second method seems to converge as well,
but future work will be necessary to verify and prove it
mathematically. Since the first method depends quadrat-
ically on the number of Chebychev points and delivers
only minimally better results than the second method,
one should prefer the second method which depends only
linearly on the number of Chebychev points even though
proof of the convergence is outstanding.
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polynomialen Näherungslösungen bei Randwertaufgaben
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