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Abstract: Lock-in range is one of the key parameters which govern the dynamic performance of a phase-
locked loop (PLL). For low-order PLLs, coarse formulas can be derived under certain assumptions and 
approximation for designing loop filters to achieve the performance requirement. However, it is difficult, if 
not impossible, to establish such relations for high-order PLLs. In this paper, we propose a new loop filter 
design which, in addition to satisfying the prescribed lock-in range specification, achieves several other 
performance requirements as well, such as small noise bandwidth and good transient response (small 
settling time, small overshoot). The proposed method is applicable to PLLs of any order. 

 

1. INTRODUCTION 

Over the last few decades, the PLL principle (Best, 2003; 
Gardner, 2005) has been proved to be very useful in a wide 
spread of engineering applications, such as carrier phase 
tracking, timing recovery, and servo control, etc (Hsieh and 
Huang, 1996). In order to cope with the increasingly tough 
performance requirements, high-order PLLs are desirable. 
Yet, the analysis and design of high-order PLLs are difficult 
(Carlosena and Manuel-Lazaro, 2007) and insufficient. For 
example, it is required that the loop filter of a PLL, in 
addition to stabilizing the loop, is low-pass so as to eliminate 
the high-frequency terms from the detector output. The 
importance of this requirement involves validity of the results 
derived based on linear models of the PLLs. However, 
current theory focuses only on lower-order PLLs; hence there 
lacks a useful method for the design of higher-order low-pass 
loop filters that guarantee loop stability as well as the other 
performances. On the other hand, lock-in range is one of the 
key parameters which govern the dynamic performance of a 
PLL. From the control’s point of view, this particular range is 
closely related to the domain-of-attraction of a PLL. It can be 
evaluated through the nonlinear equation ( )L K F j Lω ω=  
where is loop gain (Best, 2003). For the lower-order loop 
filters, the lock-in range could be derived, based on certain 
assumptions and approximation, in terms of the loop gain and 
the coefficients of the filter. However, to the best knowledge 
of the authors, there lacks such results for higher-order loop 
filters. 

K

Motivated by the problems pointed out earlier, we propose a 
new loop filter design (applicable to any order) to deal with 
several performance requirements, such as noise bandwidth, 
transient response, and lock-in range. Trade-off among the 
conflict design objectives will be made via convex 
optimization over linear matrix inequalities (LMIs) (Boyd et 
al., 1994; Scherer et al., 1997; Gahinet et al., 1995) in 

conjunction with appropriate adjustment of certain design 
parameters. The paper is organized as follows. In Section 2, 
the preliminaries and problem statement are given. In Section 
3, the design of PI form loop filters is presented. Section 4 
shows the simulation results. Finally, Section 5 gives the 
conclusion. 

The definition of the 2H  norm (
2

• ) of a real-rational stable 
transfer function can be found in (Boyd et al., 1994). The 
symbol ℜ denotes the set of all real numbers. Throughout 
this paper, a signal in time domain and frequency domain are 
denoted by lower case and upper case, respectively. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

2.1  Basic Model of  PLL 

u

û

du

N÷

Loop
Filter

Counter

Phase
Detector

VCO

 

Fig.1 PLL schematic model 

The PLL model used here is depicted in Fig. 1 (Best, 2003; 
Gardner, 2005), which consists of a phase detector, low-pass 
loop filter ( )F s , and voltage controlled oscillator (VCO). 
The inputs to the phase detector are the two signals: the sum 
of the carrier and noise  that is stationary, Gaussian, 
bandpass and zero mean (Gardner, 2005), i.e., 

( )n t

0( ) 2 sin( ( )) ( )du t A t w t n tθω= + + , 

and the VCO output 

ˆ( )u t 0 ˆ2 cos( ( ))t w tθω= + . 
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The phase detector produces, assuming the high frequency 
term is eliminated by the low-pass filter, the output signal 

ˆ( ) [sin( ) ( )]d du t A w w n tθ θ ′= − +  

where represents the net effect caused by the noise . For 
small phase errors and small input phase disturbance , 
the PLL can be further approximated by the linear model as 
depicted in Fig 2 (Gardner, 2005). 

n′ n
n ( )w t

Wθ

Ŵθ

nW

vK
s

U

dK

1
N

PD LF

Counter VCO

( )F s

( ) 0∞ =

 
Fig. 2 PLL linear model approximation 

2.2  PROBLEM STATEMENT 

The design objectives are as follows. 

(i)    Closed-loop stability, 

(ii)  Perfect asymptotical tracking (i.e. e ) subject to 
the deterministic test signals ,  with 

, 
( ) kw t tθ = 0,1,2,...,k m=

0nw =

(iii) Good transient response (i.e., small settling time, small 
overshoot, etc), 

(iv)  Noise attenuation (assuming  to be white noise), nw

(v)   Guaranteed lock-in range Lω . 

For (ii) and low-pass property requirement, PI form filters are 
considered. For (iii), placing the dominant poles in the conic 
sector region (see Fig. 3(a)) with smaller θ  results in smaller 
percent overshoot. Similarly, placing the dominant poles in 
the semi-infinite vertical strip (see Fig. 3(b)) with larger  
results in smaller settling time. 

1h

θ

s-plane ( )a     

1h−

s-plane

( )b  

Fig.3 (a) conic sector (b) semi-infinite strip  1( , )h−∞ −

For (iv), note that the variance of VCO output phase is given 
by 

2
ŵθ

σ
2

ˆ
1 ( ) ( )

2 n nw w wT j d
θ

ω ω ω
π

∞

−∞
= Φ∫  

where  represents the transfer function from  toˆ nw wT
θ nw ŵθ , 

and ( )
nw ωΦ  is the power spectral density (PSD) function of 

the noise . If  is white Gaussian, i.e., , 
then 

nw nw 0( )
nw NωΦ =

2
ŵθ

σ
2

ˆ0 02
2= =

nw w nN T N B
θ

 

where  (Hz) denotes the noise bandwidth of . It is 

clear that small noise bandwidth  leads to small variance 
of the VCO output phase. In terms of the loop filter design, 
this can be achieved by minimizing the 

nB ˆ nw wT
θ

2

nB

H  norm of the 
closed-loop system  over all the stabilizing filters. 
Concerning (v), the lock-in range can be evaluated by solving 
the following nonlinear equation  

ˆ nw wT
θ

                                      ( )L K F j Lω ω=                              (1) 

where d vK K K N= . Fig. 4 gives a geometry interpretation 
of the solution to (1); that is, the intersection of the curve 

( )K F jω  and the straight line with unit slope. Obviously, 
filter 3F  has the largest lock-in range 3ω  among the three. 
This motivates us that, intuitively, one may choose a loop 
filter which has large dc gain and large first corner frequency 
for getting a large lock-in range.  

( )K F jω

ω

slope=1

1 2 3  ω ω ω

1F 3F2F

 

Fig.4 Geometry interpretation of the lock-in range 

3. PI FORM LOOP FILTER DESIGN  

In this section, a new method is proposed to design PI form 
loop filter for PLLs. First, we utilize the method presented in 
(Souza and Shaked, 1998; Chou et al., 2006) to transform the 
problem of designing a class of PI form filters into a static 
state feedback synthesis problem. Next, LMI constraint for 
guaranteed lock-in range is derived. Finally, a multi-objective 
state feedback synthesis technique is employed to find a loop 
filter that satisfies the design objectives mentioned in Section 
2.2. 

3.1 Problem Reformulation 

Wθ

Û

nW

vK
s

1 vK
s N

( )H s
Y

U

dK

Ŵθ= 1
N

Counter VCO

Loop Filter ( )F s

 

Fig.5 The reconstruction model of the PLL 
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Fig. 2 is redrawn as Fig. 5 with a m th-order loop filter loop 
filter ( )F s  of the form 

                             
0

1( ) ( )
m

v
i

i

iK f
F s H s

s N s=

= = ∑                         (2) 

In view of Fig. 5, the signal  can be described by ( )Y s

                     ( )1 ˆ( ) ( ) ( ) ( )nY s K W s W s U s
s θ= + −                   (3) 

Define state vector ( )sξ  as follows: 

[ ]1 2 3 1

1 1 1( ) ( ) , ( ) , , ( )

              ( ) , ( ) , ( ) , , ( )  

T

m

T
m

s Y s Y s Y s
K s s

s s s s

ξ

ξ ξ ξ ξ +

⎡ ⎤= ⎢ ⎥⎣ ⎦

=

"

"
 

and set ˆ( ) ( )Z s U s=  and ( ) ( )Y s sξ= . Then (3) becomes 

1
ˆ( ) ( ) ( ) ( )ns s W s W s U sθξ = + −  

Moreover,  

1( ) ( )i is s s sξ ξ −=   for   2,3, , 1i m= +"

With the notation defined above it is easy to check that the 
dynamic filter of the prescribed form (2) is converted into a 
static state feedback in the new coordinate, i.e., ˆ ( ) sU s F Y= ⋅  
where s sF KF= with 0[ ]s mF f= " f . Thus the original PI 
form filter design problem is equivalently transformed to a 
static state feedback control problem as illustrated in Fig. 6  

G
ÛY

Z W

sF
 

Fig.6 The equivalent state feedback model 

with  described by G

1 2

12

ˆ( ) ( ) ( ) ( )
ˆ( ) ( )

( ) ( )

s s A s BW s B U s

G Z s D U s

Y s s

ξ ξ

ξ

⎧ = + +
⎪⎪ =⎨
⎪ =⎪⎩

 

where
T

nW W Wθ⎡ ⎤= ⎣ ⎦ , 

1

1 ( 1) ( 1)

0
,m

m m m m

A ×

× + × +

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

0
I 0   

  [ ]1 2 1 ( 1)
2 ( 1)

1 0 0
 ,  -1 0 0 ,

1 0 0

T
T

m
m

B B
× +

× +

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

"
"

"

12 1.D =  

The resulting closed-loop system from w  to  is as follows. z

2 1( ) ( ) ( ) ( )

( ) ( )
s

zw
s

s s A B F s BW s
T

Z s F s

ξ ξ

ξ

⎧ = + +⎪
⎨

=⎪⎩
 

For 2H  minimization from  to  (i.e., the noise band- 
width minimization problem), the closed-loop system matrix 
is given by 

nw z

2 1

1
0

0

s

s

A B F B

F

⎡ ⎤⎡ ⎤
+⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

                                                           (4) 

3.2  The LMI Formulation of  Lock-in Range Performance 

In this subsection, we derive a LMI condition under which 
the desirable lock-in range gω  is guaranteed. Since the bode 
plot of any PI form filter starts from infinity at zero 
frequency and eventually decreases to a constant as the 
frequency goes to infinity, in view of Fig. 4, to have a larger 
lock-in range, the problem can be reformulated as finding a 
PI form filter ( )F s  that satisfies ( )g gK F jω ω> . To this 
end, first, it can be verified that for any m th-order ( ) PI 
form filter

1m ≥

( )F s , the expression 22 ( j )K F ω can be expanded 
as follows:  

2 1
22 2 2 2

0 12m
1

3
2 (2 2) 2

1 3
1

( ) ( 2 )

                             2

m
m m

i i i
i

m
m j

j j m
j

KK F j f f f f

f f f

ω ω
ω

ω

−
2 2

1
iω −

− +
=

−
− +

− +
=

⎡= + −⎢
⎣

⎤
+ + ⎥

⎦

∑

∑
 

Alternatively, it admits the following quadric form 
representation: 

22 ( ) ( ) T
s m sK F j F P Fω ω=  

where ( )mP ω  is a ( 1) ( 1m m )+ × +  symmetric matrix; 
specifically, for examples: 

4 2
2

2
1 22 4

2

0
01 1( ) ,  ( ) 0 0 .

0 1
0 1

P P
ω ω

ω
ω ω ω

ω ω
ω

⎡ ⎤−
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥−⎣ ⎦

 

The matrices ( )mP ω , 1,2,m = "  , possess certain properties 
in common as will be formally stated in the following lemma. 

Lemma 1: For any nonzero real number ω ,  the 
( 1) ( 1m m )+ × + matrices ( )mP ω , , have the 
following properties. 

1,2,m = "

(i) 1( )P ω  is positive definite and rank( 1( )P ω )=2. 

(ii) ( )mP ω  is positive semi-definite and rank( ( )mP ω )=2 for 
2,3,m = " . 
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Next, for a given positive integer  and nonzero real number m
ω , we perform the singular value decomposition (SVD) for 

( )mP ω  which reads  

                                                                       (5) ( ) T
mP Sω = ΣS

where [ ] ( 1) ( 1)
1 2 1, , , m m

mS s s s + × +
+= ∈ℜ"

I

 is unitary satisfying 

, and  TS S =

1

( 1) ( 1)

0
0 0 m m− × −

Σ⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠
 

with ( )1 1,diag 2σ σΣ =  and 1 2 0σ σ≥ ≥ . (Here we have used 
the rank property of Lemma 1). 

Define the set  as follows:  Ω

{ }1 ( 1) : ( ) ( ) 1  with  m T
s s c s cF F F M F F M M S× +Ω = ∈ℜ − − < = > ΛT TS

)2

where  

1

( 1) ( 1)

0
0 0 m m− × −

Λ⎛ ⎞
Λ = ⎜ ⎟

⎝ ⎠
 

with (1 1,diag ε εΛ =  and reall that s sF KF= . 

Lemma 2: Given the positive values gω , 1 2,ε ε

( )m gω

, with  

, and a positive integer m . Let P S
1 2,c c

1 2 1c c+ > TS= Σ as 

determined in (5). Let T
cF Sβ=  where 1 1β +[ m" ]β β= , 

and iβ  is defined by  

                                   1 i g
i

i i

c ω
β

ε σ
= +                               (6) 

for  and any positive value for . If a 

filter has its coefficient vector

1,2i = 3, , 1i m= … +

sF ∈ Ω , then the inequality 

( )g gK F jω ω>  holds. Suppose further that together with 
this loop filter the resulting PLL is stable and there exists no 
solution to (1) for the frequency range (0, )gω , then the lock-
in range Lω of the PLL is greater than gω .  

Proof: Any vector can be rewritten as the form sF ∈ Ω
T

s cF F x= + where s sF KF=  and 

{ }( 1) : 1  with  m T T
Ex x x Mx M S+∈ Ω = ∈ℜ < > ΛS  

Without loss of generality, we may assume T

222 2

1
2

2
2 2

1 2
1

( ) ( ) ( )

1                      ( )

T
g s m g s i i i

i

i i g g
i i

K F j F P F

c c

ω ω σ β γ

σ β ω
ε

=

=

= = + ≥

⎛ ⎞
≥ − = + ⋅ >⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑ ω
 

The rest of the assertion follows from the definition of the 
lock-in range. This proof is complete. ▉ 

Remark 1: Under the premise of Lemma 2 and the 
assumption , the task of finding a loop filter 
coefficient vector

0M >

sF ∈ Ω
1)

 is equivalent to finding the 
matrices 1 (mN × +∈ℜ ,  satisfying the 
following LMIs: 

( 1) ( 1)T m mM M + × += ∈ℜ

                                         TM S S> Λ ,                                  (7) 

                              .               (8) 
1

0
( )

c
T

c

N F M
N F M M

−⎛ ⎞
>⎜ ⎟−⎝ ⎠

In the affirmative case, 1 /sF NM K−= ∈ Ω . 

Remark 2: While cF  can be interpreted as the center of an 
ellipsoid, the lengths of the axes of the ellipsoid are related to 
M . The smaller M is, the larger the set Ω .  Hence 1 2,ε ε  
are usually chosen as small positive values so as to increase 
the chance of finding a solution.   

3.3 LMI Design of the Loop Filter 

In this subsection, we incorporate some other performances 
into consideration. Specifically, the problem is to design a PI 
form loop filter so that the closed-loop is stable with good 
transient response and guaranteed lock-in range. In addition, 
the noise bandwidth is as small as possible. In an attempt to 
solve the problem we consider to formulate it as the 
following optimization problem: 

                                        Minimize  ν                                 (9) 

over 1 ( 1)mN × +∈ℜ , , ( 1) ( 1)T m mM M + × += ∈ℜ Q ∈ℜ , ν ∈ℜ , 
satisfying: (7), (8), 

2 1

1

( )
0

( )

0

T

T

He AM B N B
B I

Trace Q

M N
N Q

ν

⎧ +⎛ ⎞
<⎪⎜ ⎟−⎝ ⎠⎪

⎪ <⎨
⎪⎛ ⎞⎪ >⎜ ⎟⎪⎝ ⎠⎩

    ,  

Tx Sγ=  where 

1[ m 1]γ γ γ += " . It follows that ( )T T
s cF F x Sβ γ= + = + . 

Furthermore,  with 1Tx Mx < TM S S> Λ  implies that 
, which in turn implies that 2 2

1 1 2 2 1ε γ ε γ+ < 1i iγ ε< ,  
. Finally, 1, 2i =

( )
2 2

2 2

sin( ) ( ) cos( ) ( )
0

cos( ) ( ) sin( ) ( )T

He AM B N Sh AM B N

Sh AM B N He AM B N

θ θ

θ θ

⋅ + ⋅ +⎛ ⎞
<⎜ ⎟⎜ ⎟⋅ + ⋅ +⎝ ⎠

, 

1 22 ( )h M He AM B N 0− + < . 

where the notation ( ) , ( )T THe A A A Sh A A A= + = −

optN opt

 are 
used. Denote the optimal solution by ( , M , , optQ optν ). 
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Theorem 1: Given the loop gain , the positive values K gω , 
the parameters θ , , 1h 1 2,  ε ε ,  with , a 
positive integer m . If the optimization problem (9) is 
solvable, there exists a loop filter of the form 

1 2,  c c 1 2c c+ 1>

0
( )

m
i
i

i

f
F s

s=

= ∑  

with [ ] 1
0 , , ( )s m opt optF f f N M −= =" K , such that 

(i) the resulting PLL is stable,  

(ii) the noise bandwidth
2

2
opt

nB
ν

<   , 

(iii) the closed-loop poles lie within the intersection of  
and the conic sector with parameter 1( , )h−∞ − θ  (ref. Fig. 3), 

(iv) ( )g gK F jω ω> . 

Suppose further that there exists no solution to (1) for the 
frequency range (0, )gω ,  then the lock-in range Lω of the 
resulting PLL is greater than gω . 

Proof: The results follow from standard multi-objective state 
feedback synthesis technique in (Boyd et al., 1994). ▉ 

For simplicity of the loop filter design, let ic iσ=  for all i . 
Then (6) becomes  

                                  1
i

i
gβ ω

ε
= +                                   (10) 

A conceptual algorithm based on iteratively carrying out the 
optimization problem (9) is presented as follows. 

Algorithm 1: Given the loop gain K , the desired guaranteed 
lock-in range gω , and the desired order  of the loop filer. m

Step 1: Select initial value for cF  and compute iβ  
by T

cF Sβ=  (adjust  in (5) if necessary), such that  S

i gβ ω>  is satisfied for . 1,2i =

Step 2: Calculate iε  by (10) and determine matrix Λ . 
Perform (9) without the regional pole placement constraints 
to obtain closed-loop poles (1)iλ and gain (1)sF . 

Step 3: Update cF  by (1)sF . Select θ  as small as possible 
and  as large as possible with reference to 1h (1)iλ . Perform 
(9) to get (2)sF . (note: If (9) has no solution, then relax the 
values  and 1h θ ). 

Step 4: Update cF  by the current sF . Select θ  as small as 
possible and h  as large as possible with reference to the 
closed-loop poles in the previous iteration. Perform (9) to get 

new 

1

sF . Repeat this step until the objectives are satisfied or 
there is no significant progress on the performances. 

Note that Step 1 of Algorithm 1, iβ must be positive (see 
(10)). This can be achieved by adjusting the columns of  in 
(5) (by adding a minus sign to the corresponding column). To 
ensure

S

i gβ ω>  for 1,2i = , this can be done by increasing the 

magnitude of cF  since  iβ  is proportional to cF . 

4. SIMULATION RESULTS  

The parameters chosen for the PLL are showed in TABLE 1. 
The lock-in range is about ±30% of the FRF (Gardner, 2005; 
Carlosena and Manuel-Lazaro, 2007), i.e., 315 10⋅ rad/sec. 
The abbreviation FRF means the Free Running Frequency of 
the oscillator. Furthermore, we assume that the standard 
deviation of the input Gaussian noise  is 0.015.   ( )n t

TABLE 1. THE PARAMETERS OF THE PLL  

VCO Divider 
ratio N PD gain dK  Lock-in 

Range 
410vK =  

FRF= 350 10⋅
1 7 ~30%FRF 

(Frequencies in rad/sec) 

TABLE 2 (A) and (B) show the transfer functions of PI loop 
filters and the design parameters during the iterations. In 
TABLE 1 (A), the value inside each bracket denotes the 
number of iteration. For example, the symbol  denotes 
the value initially chosen for

c

(0)cF

F .  

TABLE 2 (A). THE  PARAMETERS OF THE ITERATIONS 
Loop 
order Design parameters 

2 
(0) [1.8 32]cF = ,

(2) [1.505cF =

(1) [1.504 26.746]cF =

37.723] , ( ) [1.5 37.609]sF ∞ = , 1(1 ) 25h ∞ =∼

3 

(0) [1.6 40 200]cF = ,  (1) [1.58 39.58 197.88]cF =

(2) [1.58 46.29 319.68]cF =

(4) [1.58 63.29 645.18]cF =

,

,

(3) [1.58 54.21 463.74]cF =

( ) [1.5 60.57 617.46]sF ∞ =  

1(1) 11h = , 1(2) 11h = , , ,  1(3) 16h = 1(4) 20h = 1(5 ) 20h ∞ =∼

(The scale for
cF is . 410 6θ π=  for all iterations) 

 
TABLE 2 (B). THE RESULTING FILTERS 

Loop order Loop Filter 

2 0.21 5.37( ) sF s
s
+

=  

3 
2

2
0.21 8.65 88.21( ) s sF s

s
+ +

=

 
TABLE 3.  THE PERFORMANCE INDICES  

Loop 
order 

Settling 
time  

Noise 
Bandwidth  nB

Lock-in 
Range 

2 30.256 10−⋅ 33.76 10⋅   315 10⋅  

3 30.253 10−⋅ 33.77 10⋅  315 10⋅  
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Settling time (sec),  (Hz), and Lock-in Range (rad/sec) nB

Several performance indices are evaluated for the resulting 
PLLs as shown in TABLE 3. For the lock-in range, our 
design is to meet 30%FRF exactly in order to obtain smaller 
noise bandwidth. 

Next we use the software MATLAB’s SIMULINK Version 
7.3 to simulate the resulting PLLs. A more realistic system 
model (Gardner, 2005) as shown in Fig. 7, which can be 
approximated by that in Fig. 2, is used.  

 

( )n t′

 +sin() dK

ˆ ( )w tθ

( )w tθ

( )F s

vK
s

 

Fig.7 The simulation model of PLL 

Fig. 8 show the VCO input responses of the second-order and 
third-order PLLs when the instantaneous 315 10⋅  rad/s 
frequency step (FRF+30%, which is in the margin of 
acquisition range exactly) is applied. Both show that the 
resulting PLLs work well in the lock-in range and track the 
reference input signal within 0.5 ms. The transients of the 
resulting PLLs are similar. 

0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (ms)

M
ag

ni
tu

de first-order and second-order PI filter

 

Fig.8 The signal of VCO input when reference input has 
frequency offset rad/sec. 315 10⋅

Fig. 9 show the VCO input responses of the resulting PLLs 
when the instantaneous  rad/s frequency step (out of 
the lock-in range) is encountered. Pull-out phenomenon 
occurs for both PLLs. As expected, the loop can get locked 
again as long as it is within the lock-in range. It is observed 
that the PLLs with the first-order PI loop filters exhibit 
shorter pull-in time than that with the second-order PI filter, 
but they almost get locked simultaneously (about 4 ms).  

315.9 10⋅

5. CONCLUSIONS 

We have presented a new loop filter design for PLLs with 
particular emphasis on guaranteed lock-in range. Despite that 
there is no analytic formula for computing the lock-in range 
of high-order PLLs, a sufficient condition for finding a filter 

to meet this requirement is derived in terms of LMI constraint. 
In addition to satisfying the desired constraint, the proposed 
method considered to trade-off the other objectives such as 
small noise bandwidth and good transient response via multi-
objective control techniques. In comparison with the existing 
results, the proposed method is simple and applicable to PLL 
of any order. Simulation results show that the resulting PLLs 
work very well without cycle slips when the frequency offset 
of the reference signal is within the lock-in range.  

0  1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (ms)
M

ag
ni

tu
de

 

 

first-order
PI filter

second-order PI filter

 

Fig.9 The signal of VCO input when reference input has 
frequency offset 315.9 10⋅ rad/sec. 
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