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Abstract: A class of multivariable systems is considered where modeling and control problems related to real 
physical processes can be solved only using approximate computational approach. The simulation processes are 
defined as solving mesh (finite-difference and finite-element) approximations of initial-boundary problems 
corresponding to original equations of mathematical physics for proper physical processes. The high dimensionality 
issues arising in the frame of such approach are overcome by means of decomposition and partitioning combined 
with multigrid spatial versions of approximating operator equations in function spaces. Multilevel computational 
methods for modeling and solving optimal control problems are oriented to using multiprocessor computer systems 
with parallel computing in message passing interface environment. The proposed results are actual both in theoretical 
and applied aspects. For instance, using the proposed approach to resolving problems of natural hydrocarbon deposit 
development simulation and optimal control opens wide capabilities for choosing efficient strategic decisions. 
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1. MODELING PROBLEMS  

The basic process in a controlled plant for a multivariable 
system class under consideration is defined by a parabolic 
non-linear partial differential equation:  

φφγ=∂φ∂φχ grad)(div/)(0 t , (1) 

 where )(0 φχ  and )(φγ  are non-linear analytic functions,  

3
321 ),,( Rxxx ⊂Ω∈=x , ],0[ Tt ∈ , 

),( txφ  is a generalized solution obtained under specified 
initial and boundary conditions (e.g., of first, second and third 
kinds) on the outer and the inner boundaries  

Ω∂=Γ0  and Niii ,1, =ω∂=Γ  

 of the multiply-connected domain Ω . In a two-dimensional 
case, domain Ω  outer and inner boundary location may be 
represented as in a Fig. 1. For simplicity just that two-
dimensional controlled plant will be considered, as a 
generalization of results to 3D plants of any complexity 
creates no difficulties in principle. Traditionally, control 
actions are defined through the selection of boundary 
conditions on inner boundaries, but the cases of control 
actions on outer boundaries can exist. Let the initial and 
boundary conditions on boundaries  

0Γ  and Nii ,1, =Γ  

are defined by expressions:  
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Problem (1)-(3) seems to be unsolvable even with functions 
)(φχ  and )(φγ  invariant everywhere over the domain Ω . 

Because of this, we reduce the equation (1) to the form 

   ,divgrad/)( Φ=∂Φ∂Φχ t  (1*) 

where  

∫
φ
γ=Φ

0
)(),( dsstx  

is a Kirchhoff's transform, which linearizes both a right-hand 
side of equation (1) and non-linear members in boundary 
conditions (2), and converts linear members into non-linear. 
Let  

)()()( ΦΦδ=Φχ r  

where  

Ru ∈βΦβ−=Φ ,1)( , 

and after the proper change of variables transform (1) into the 
following form: 
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Further, putting  

α−ΦΦΦδ=Φψ /1/)()()( drdr , 

0/, >βα∈α R , 

and replacing 

drdr /)()( ΦΦΦδ  

in (4) by  

)()/1( Φεψ+α  

where 10 ≤ε≤ , construct a perturbed equation  

0)(/ =ε−∂∂ rFtr  

where  

( )( ) trrrF ∂∂−β−ξχ= /1/)1()( . 

At 1=ε  or 0=ε  the perturbed equation transforms 
respectively into the original equation or into the unperturbed 
one  

0divgrad/ 00 =ξ−∂∂ rtr . 

Subtracting perturbed and unperturbed equation gives the 
following equation with respect to corrections 0rrv −= :  

0/)(divgrad/ 00 =∂∂+εϕ+ξ−∂∂ trrvvtv , 

where  

( ) 1/)1()( −β−ξχ=ϕ rr . 

Given the sufficiently smooth source data, the initial-
boundary problem for the unperturbed equation has a unique 
solution, while a sufficient condition for a uniqueness of the 
initial-boundary problem solution with respect to a correction 
r  is defined by a relation  

max/20 χ<ξ< ,  

where 

)(max)(max 0max Φχ=φχ=χ Φφ . 

Thus, given the unperturbed task solution 0r , we have the 
following sequence of equation sets for calculating 
corrections jv , Jj ,,1 K= :  

,/)(

),(divgrad/

00

0111

trr

trfvtv

∂∂ϕ−=

==ξ−∂∂
 

,/)/(/)(

),,(divgrad/

0110

10222

trvtvr

tvrfvtv

∂∂βχ′α−∂∂ϕ−=

==ξ−∂∂
 

etc. Calculating J  corrections allows find a proper 
approximation from the formula 

∑ =

=
ε+= Ji

i i
i

J vrr
00)( , 

1)(
)( c |||| +ε≤ J

Jr-r  

with .00 =v  

Solving initial-boundary problems for a sequence of 
constructed linear equations is performed by a decomposition 
of the domain Ω  into subsets NΩΩΩ ,,, 21 K , such that  

Ω=Ω∪∪Ω∪Ω NK21 , 

and in addition, for any pair of indexes Mji ,1, =  ( ji ≠ ) either  

Ø≠Ω∩Ω ji , 

or 

( ) 0 1)(mesdim ∨=Ω∩Ω ji
1, 

that is, into subsets that can have only common boundaries or 
vertices. The said partitioning can be constructed by Voronoi-
Delaunay approach with nodes corresponding to coordinates 
of centers Nii ,1, =ω , and obtained Voronoi’s polyhedrons 
or Delaunay’s domains represent finite volumes. In 
particular, Fig. 1 illustrates such partitioning for a rectangular 
two-dimensional domain Ω , where first all hatched elements 
are numbered and then all non-hatched ones (two-color 
partitioning). 

After discretization by spatial variables and performing 
transformations needed to account boundary conditions, in 
place of a sequence of boundary problems, we obtain an 
appropriate sequence of Cauchy problems for evolutionary 
equations expressed as 

,1,0)0,(,/

);()0,(,0/ 0
00

≥=ν=+

==+

sxfAvdtdv

xrxrArdtdr

ssss

 (4) 

where A  is a linear positive definite operator. According to 
the two-color decomposition scheme, represent the original 
domain Ω  by a union of subsets  

111 MD Ω∪∪Ω= K ,  

2112 MMD Ω∪∪Ω= + K , 

 which have only common vertices, that is,  

                                                 
1 ( ))(mesdim ji Ω∩Ω  is a dimension of measure of a subset ji Ω∩Ω .  
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Ω=∪ 21 DD  

and  

( ) 0)Ømes(dim 21 =≠∩ DD . 

For instance, the two-color partitioning in Fig. 1 yields the 
following sets:  

10111 Ω∪∪Ω∪Ω= LD ,   

2012112 Ω∪∪Ω∪Ω= KD . 

 

Fig. 1. Domain decomposition 
 

These sets 1D  and 2D  each consists, in its turn, of non-
overlapping subsets defining appropriate sets of independent 
subproblems. Decomposition of problems (1.4) must provide 
breakdown of the source problem solution into solutions of 
separate subproblems defined on non-overlapping sets 1D  
and 2D . The specific choice of a decomposition scheme is 
defined by selection of a computation method in separate 
subsets Njj ,1, =Ω  under balanced boundary conditions on 

common boundaries of subdomains Njj ,1, =Ω∂ .  

Now construct a decomposition scheme based on identity 
partitioning by defining a describing function 

2,1},,0;,0{)( =∉∈>=δ sDxDxx sss , 

such that 

.,1)()( 2121 DDxxx ∪=Ω∈=δ+δ  

The most natural choice is a decomposition scheme  

AA s
s δ=)( , 2,1=s . 

In this event, 

∗≠ )( )()( ss AA ,  2,1=s  

that is, operators are not self-adjoint ones.  

Let nr  be a solution of unperturbed task (index «0» is 
omitted) in a time point τ= nt  where 0>τ  is a time step, 
while transition to a new temporal layer is performed 
sequentially in two stages according to equations: 
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 (5) 

Equations (5) can be reduced to a symmetrical form, if 
suppose  

2/2/
2/1

snsn wrA ++ =  

and multiply these equations by a matrix 2/1A . In so doing, 
we obtain 

,0)(~)(

,0~~)(

1
)2(

2/11

)2(
2/1

)1(
2/1

=−+τ−

=++τ−

+++

++

nnnn

nnnn

wwAww

wAwAww
 (6) 

where 

0)~(~,)(~ )()(2/12/1)( ≥=δ= ∗ss
s

s AAAxAA , 2,1=s . 

The scheme (6) is stabilized by initial data, as the kind of 
estimate  

 

AnAn rAErAE ||)~(||||)~(|| )2(
1

)2( τ+≤τ+ +  

 

holds for it. 

In a similar manner, partitioning schemes can be constructed 
for disturbed equations (4) stabilized by right-hand sides.  

The computation scheme in each element (finite volume) 
Njj ,1, =Ω  is implemented using multigrid options of FLM 

or FEM on quasiuniform thickening grids under a boundary 
condition on the inner boundary (2), defining both the 
required and admissible control actions. 

In the general case of deformable domain Ω  a left-hand side 
of equation (1*) contains the more sophisticated function 

)(Φχ , and in this event the proposed approach not only stays 
true, but also appears to be more efficient than other 
applicable methods.  

1.1. Peculiarities of Nonuniform System Simulation.  

The stratified (vertical) and zonal (horizontal) 
nonuniformities dominate generally in controlled plants 
under consideration. Taking into account these 
nonuniformities is put into practice by domain decomposition 

1ω 11ω 2ω 12ω 3ω

13ω 4ω 14ω 5ω 15ω

6ω 16ω 7ω 17ω 8ω

18ω 9ω 19ω 10ω 20ω

1Ω 11Ω 2Ω 12Ω 3Ω

13Ω
4Ω 14Ω 5Ω 15Ω

6Ω 16Ω 7Ω 17Ω 8Ω

18Ω 9Ω 19Ω 10Ω 20Ω
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methods as well. To this end, elements of original 
nonuniform domain Ω  partitioning into uniform subsets 

MΩΩΩ ,,, 21 K  can be united in such sets 1D  and 2D , that  

 

Ω=∪ 21 DD . 

 

If 

 

( ) 0)mes(dim =Ω∩Ω ji , 

 

 that is,  

 

Mjijiji ,1,,, =≠∀Ω∩Ω  

 

contain only common vertexes, then nonuniform plant model 
can be built using the symmetric analog (6) of two-
component partitioning of the kind (5). If, however, for some 

,Mjiji ji 1,  ,  onsintersecti   the =Ω∩Ω≠  contain common 
boundaries of dimension 

 

( ) 0)mes(dim ≠Ω∩Ω ji , 

 

then it is necessary to use a two-component partitioning. In 
simple cases (e.g. for stratified or zonal nonuniformities in 
Fig. 2 and Fig. 3) nonuniform plant models can be built in a 
manner described below. 

For a vertical nonuniformity (Fig. 2), initial top-level 
partitioning scheme is carried out by sets  

211 Ω∪Ω=D  and 32 Ω=D , 

in accordance with the equation set of kind (6), obtained by 
reducing the equation set (5) to a symmetric form. 

 

222 ,, Ωhk  

333 ,, Ωhk

111 ,, Ωhk

 

Fig. 2. Stratified reservoir nonunifofmity 

 

For a horizontal nonuniformity (Fig. 3), where  

( ) 1)mes(dim 43 =Ω∩Ω , 

 initial top-level partitioning scheme is carried out by subsets  

211 Ω∪Ω=D , 32 Ω=D  and 43 Ω=D . 

Here we introduce a describing function  

 

Fig. 3. Zonal nonuniformity of reservoir 

;3,1},)(,0;)(,0{)( =∉∈>=δ sDxDxx sss  

1)()()( 321 =δ+δ+δ xxx , Ω∈x ; 

then AA s
s δ=)( , 3,1,)( )()( =≠ ∗ sAA ss  and 

.3,1,0)()1(
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)(
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 (7) 

Equations (7) reduce to a symmetric form, if we suppose 

3/3/
2/1

snsn wrA ++ =  

and multiply them by the matrix 2/1A  that yields  

 

111 ,, Ωhk  

333 ,, Ωhk

444 ,, Ωhk  

222 ,, Ωhk  

43 Ω∩Ω
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where  

,0)~(~,)(~ )()(2/12/1)( ≥=δ= ∗ss
s

s AAAxAA  3,1=s . 

The scheme (8) is stabilized by initial data, since the estimate  

|||||||| 01 wwn ≤+  

holds for it; whence it follows that  

AAn rr |||||||| 01 ≤+ . 

It is apparent that each subproblem of this (top or zero) level 
in its turn is subjected to domain decomposition and to the 
first-level partitioning by equations of type (8) after 
transforming appropriate equations (7) to a symmetric form. 
Subsequent calculations in each element (finite volume) 

Njj ,1, =Ω are carried out as before by multigrid methods on 
thickening quasiuniform grids.  

1.2. Spatial Nonuniformity.  

In the general case, that is, at spatial nonuniformity of the 
controlled plant, 3D decomposition scheme requires four-
colored partitioning of domain Ω  (field reservoir), that is, 

4321 DDDD ∪∪∪=Ω , 

∅=∩ ji DD , ji ≠ . 

Then at each temporal layer, the scheme of multi-component 
partitioning can be implemented in four steps as follows. As 
before, define a describing function 

;4,1},,0;,0{)( =∉∈>=δ sDxDxx sss  

 Ω∈=δ+δ+δ+δ xxxxx ,1)()()()( 4321 . 

 The decomposition scheme with nonselfadjoint operators  

AA s
s δ=)( , ∗≠ )( )()( ss AA , 4,1=s  

determines a transition to the other temporal layer for four 
subsequent steps according to  

;4,1,0)()1(

)(/)(

4/)1(

4/4/)1(4/

==δθ−+

+θδ+τ−

−+

+−++

sArx

Arxur

sns

snssnsn

 (9) 

The equations (9) reduce to symmetric form by assuming  

4/4/4/)1(
2/1 )( snsnsn wrA ++−+ =σ  

with subsequent multiplying this equations by matrixes 2/1A ,  
that yields  

.4,1,0~)()1(

~)(/)(

4/)1(
)(

4/
)(

4/)1(4/

==δθ−+

+δθ+τ−

−+

+−++

swAx

wAxww

sn
s

s

sn
s

ssnsn

 (10) 

For equations (10), where matrixes  

0)~(~,)(~ )()(2/12/1)( ≥=δ= ∗ss
s

s AAAxAA , 

the estimate 

|||||||| 01 wwn ≤+  

holds, whence it follows that  

AAn rr |||||||| 01 ≤+ , 

that is, the stability by initial data is available.  

When the 3D analog of nonuniformities shown in Fig. 2 is 
the case, both domain decomposition and the corresponding 
multicomponent partitioning will contain more than four 
components. Since these type nonuniformities are rather 
infrequent for the multivariable system class under 
consideration and are irregular in their structure, the 
peculiarities of such controlled plants are not treated here.  

As in the previous case, each subproblem of obtained top or 
zero level in its turn is subjected to domain decomposition 
and to the next first level partitioning in accordance with 
equations (10) after transforming corresponding equations (9) 
to a symmetric form. Subsequent calculations in each element 

Njj ,1, =Ω  are carried out as before by multigrid methods 
on thickening quasiuniform grids. 

2. PROBLEMS OF OPTIMAL CONTROL 

We take as efficiency criterion for selection of control actions  

Uuuu N ∈= },,{ 1 K  

the following functional:  

∑ ∫
=

=
= Ni

i

T

ii dttqtcJ
1 0

)()( , (11) 

where U  is a constrained set of control action values )(tci  
and  

ii dttq
i

Γν∂φ∂= ∫Γ
)/),(()( x  

are functions defining the efficiency and value of control 
action in the inner loop with index Ni ,0= . Then, given the 
scarcity of shared resources  

)()()(
1

tbtqtaNi

i ii∑ =

=
≥  (12) 

and differential constraints, that is, equations (1) and inirtial-
boundary conditions (2), the optimal control problem lies in 
seeking the extreme  

JJ Uu∈∗ = opt  
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and corresponding values **
1

* ,, Nuuu K= .   

Difficulties brought on by the existence of constraint 
equation (12) may be obviated by using the following type of 
functional in place of optimality criterion (10):  

∑ =

=
λ+= Ni

i ii tqtdJJ
1

)()(
)

, 

in which λ  is an indefinite parameter. Next a conjugate 
problem is considered instead of original optimization, and 
special features of the function  

)(opt λ=∈ FJUu  

are defined using the method of continuation by parameter 
λ . The function )(λF  was demonstrated to be a piecewise 
continuous function. Conditions were defined wherein the 
original problem has a solution. Algorithms were designed 
for obtaining the optimal solution max

* λ=λ  and 

Uuuu N ∈= },,{* **
1 K . 

Such algorithm presents a multilevel computational process 
with parallelization of computations at every hierarchical 
layer through the use of decomposition and partitioning 
methods combined with spatial multigrid options for 
approximating operator equations in function spaces. The 
parallelization itself is oriented to using multiprocessor 
computer systems. 

3. CONCLUSIONS 

1. In the sense of theory, proposed results expand the class of 
effectively decidable problems of large-scale nonlinear 
multivariable system simulation and optimal control in 
function spaces.  

2. In the sense of applications, proposed results are extremely 
actual for modeling processes of filtering heterogeneous 
fluids in porous underground reservoirs, as well as for 
solving optimization problems in designing and managing 
gas field development and groundwater level control.  

3. The extension of proposed approach to problems of 
modeling heterogeneous fluid filtration processes in porous 
underground reservoirs (Akhmetzyanov, 2006, 2007) and to 
solving optimization problems in design and management of 
multiphase multicomponent hydrocarbon deposits 
development can lead to breakthrough achievements in this 
area. For example, the problem of optimal oil field 
development control can be treated as minimization of 
associated water production (optimality criterion) under 
planned constraints for oil production (shared resources 
restriction). Such interpretation is especially important for 
developing oil fields. 

4. For a given class of nonlinear multivariable systems, the 
effective resolving of simulation, identification, optimal 
design and optimal control problems on multiprocessor 
computer systems using multilevel (hierarchical) computation 
concurrency in message passing interface (MPI) environment 

is not only a preferable, but also the most productive 
approach.  
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