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1. INTRODUCTION

In the last decade, a growing interest in locally recurrent
networks has been observed. This class of neural networks,
due to their interesting properties, has been successfully
applied to solve problems from different scientific and
engineering areas. Cannas and co-workers [2001] applied a
locally recurrent network to train the attractors of Chua’s
circuit, as a paradigm for studying chaos. The modelling
of continuous polymerisation and neutralisation processes
is reported in Zhang et al. [1998]. In turn, a three-layer
locally recurrent neural network was succesfully applied to
the control of non-linear systems in Gupta and Rao [1993].
In the framework of fault diagnosis, the literature reports
many applications, e.g. an observer based fault detection
and isolation system of a three-tank laboratory system
Marcu et al. [1999], or model based fault diagnosis of
sensor and actuator faults in a sugar evaporator Patan and
Parisini [2005]. Tsoi and Back [1994] compared and applied
different architectures of locally recurrent networks to
the prediction of speech utterance. Finally, Campolucci
and Piazza [2000] elaborated an intristic stability control
method for a locally recurrent network designed for signal
processing.

Stability plays an important role in both control theory
and system identification. Furthermore, the stability is-
sue is of crucial importance in relation to training algo-
rithms adjusting the parameters of neural networks. If the
predictor is unstable for certain choices of neural model
parameters, serious numerical problems can occur during
training. Stability criteria should be universal, applica-
ble to as broad a class of systems as possible and at
the same time computationally efficient. The majority of
well-known approaches are based on Lyapunov’s method
Matsuoka [1992], Gupta et al. [2003], Ensari and Arik
[2005], Cao et al. [2006], Forti et al. [2005]. Fang and
Kincaid [1996] applied the matrix measure technique to
study global exponential stability of asymmetrical Hop-
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field type networks. Jin and colleagues Jin et al. [1994]
derived sufficient conditions for absolute stability of a
general class of discrete-time recurrent networks by using
Ostrowski’s theorem. Recently, global asymptotic as well
exponential stability conditions for discrete-time recurrent
networks with globally Lipschitz continuous and monotone
nondecreasing activation functions were introduced by Hu
and Wang Hu and Wang [2002].

The stability analysis for locally recurrent networks with
only one hidden layer is given in the work of Patan [2007a].
Unfortunately, approximation abilities of such networks
are limited Patan [2007b]. Therefore, this paper presents
stability criteria for locally recurrent networks with two
hidden layers based on Lyapunov’s second method. More-
over, some aspects concerning computational burden of
stability checking are also discussed. Moreover, based on
the elaborated stability conditions, a stabilization proce-
dure is proposed, which quarantees the stability of the
trained neural model.

The paper is organized as follows: in Section 2, the
dynamic neural networks and its representation in the
state-space are described. Stability analysis of the neural
network considered as well as illustrative examples of
stability checking are given in Section 3. Section 4 includes
conlusions and final remarks.

2. DYNAMIC NEURAL NETWORKS

The topology of the neural network considered is analo-
gous to that of the multi-layer feedforward one and the
dynamics are reproduced by the so-called dynamic neuron
models Patan and Parisini [2005]. Such neural networks
are called locally recurrent globally feedforward Tsoi and
Back [1994]. Dynamic properties of the model are achieved
by introducing an Infinite Impulse Response (IIR) filter
into a neuron structure. As a consequence of incorporating
an IIR filter between input weights and an activation
function, the neuron can reproduce its own past inputs
and activations using two signals: the input u(k) and the
output y(k). In order to analyze the properties of the
neuron model considered, it is convenient to represent it in
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the state-space. The states of the neuron can be described
by the following state equation:

x(k + 1) = Ax(k) + Wu(k), (1)

where x(k) ∈ R
r is the state vector, W = 1wT is the

weight matrix (w ∈ R
n, 1 ∈ R

r is the vector with one in
the first place and zeros elsewhere), u(k) ∈ R

n is the input
vector, n is the number of inputs, and the state matrix A
has the form

A =













−a1 −a2 . . . −ar−1 −ar

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0













. (2)

Finally, the neuron output is described by

y(k) = σ
(

g2(bx(k) + du(k) − g1)
)

, (3)

where σ(·) is a non-linear activation function, b =
[b1, . . . , br] is the vector of feedforward filter parameters,
d = [b0w1, . . . , b0wn].

2.1 State-space representation of the network

A locally recurrent network with only one hidden layer
is represented by the linear state equation Patan [2007a].
Thus, its ability to approximate nonlinear mappings is
limited. Therefore, in this paper, a network with two
hidden layers has been taken into account. Let us consider
a discrete-time dynamic neural network with n inputs and
m outputs, with two hidden layers with v1 neurons in the
first layer and v2 neurons in the second layer, and each
neuron consisting of r-th order IIR filter.

Taking into account the layered topology of the network,
one can decompose the state vector as follows: x(k) =
[x1(k) x2(k)]T , where x1(k) ∈ R

N1 (N1 = v1 × r)
represents the states of the first layer, and x2(k) ∈ R

N2

(N2 = v2 × r) represents the states of the second layer.
Then the state equation can be rewritten in the following
form:

x1(k + 1) = A1x1(k) + W 1u(k) (4a)

x2(k + 1) = A2x2(k) + W 2σ
(

G1

2
(B1x1(k),

+D1u(k) − g1

1
)
)

(4b)

where u ∈ R
n, y ∈ R

m are inputs and outputs, respec-
tively, A1 ∈ R

N1×N1 and A1 ∈ R
N2×N2 are the block

diagonal state matrices of the first and second layers,
respectively, W 1 ∈ R

N1×n is the input weight matrix,
W 2 ∈ R

N2×v1 is the weight matrix between the first and
second layers, B1 ∈ R

v1×N1 is the block diagonal matrix of
feedforward filter parameters of the first layer, D1 ∈ R

v1×n

is the transfer matrix, g1

1
denotes the vector of biases of

the first layer, G1

2
∈ R

v1×v1 is the diagonal matrix of slope
parameters of the first layer, and σ : R

v1 → R
v1 is the

non-linear vector-valued function. A detailed form of the
network matrices can be found in Patan [2007b]. Finally,
the output of the model is represented by the equation

y(k) = C2σ
(

G2

2
(B2x2(k) + D2σ

(

G1

2
(B1x1(k)

+D1u(k) − g1

1
)
)

− g2

1
)
)

, (5)

where C2 ∈ R
m×v2 is the output matrix, B2 ∈ R

v2×N2

is the block diagonal matrix of second layer feedforward

filter parameters, D2 ∈ R
v2×v1 is the transfer matrix of

second layer, g2

1
∈ R

v2 is the vector of second layer biases,
G2

2
∈ R

v2×v2 represents the diagonal matrix of the second
layer activation function slope parameters.

3. STABILITY ANALYSIS – NETWORKS WITH
TWO HIDDEN LAYERS

Let us consider the locally recurrent neural network (4)
and (5) with two hidden layers containing v1 neurons in the
first layer and v2 neurons in the second layer, where each
neuron consists of the r-th order IIR filter, and an output
layer with linear static elements. For further analysis let
us assume that the activation function of each neuron
is chosen as the hyperbolic tangent one σ(x) = tanh(x)
satisfying the following conditions:

(i) σ(x) → ±1 as x → ±∞,

(ii) σ(x) = 0 at a unique point x = 0,

(iii) σ′(x) > 0 and σ′(x) → 0 as x → ±∞,

(iv) σ′(x) has a global maximum equal to 1.

(6)

In this case the state equation has a non-linear form. From
the decomposed state equation (4), it is clearly seen that
the states of the first layer of the network are independent
of the states of the second layer and have a linear form
(4a). The states of the second layer are described by the
non-linearity (4b). Let Ψ = G1

2
B1 and s1 = G1

2
D1u(k)−

G1

2
g1

1
, where s1 can be regarded as a threshold or a fixed

input; then (4b) takes the form

x2(k + 1) = A2x2(k) + W 2σ
(

Ψx1(k) + s1

)

. (7)

Using the linear transformation v1(k) = Ψx1(k) + s1 and
v2(k) = x2(k), one obtains an equivalent system:

{

v1(k + 1) = ΨA1Ψ−v1 − ΨA1Ψ−s1 + s2

,
v2(k + 1) = A2

i v
2(k) + W 2

i σ
(

v1(k)
) (8)

where Ψ− is a pseudoinverse of the matrix Ψ (e.g. in
a Moore-Penrose sense), and s2 = ΨW 1u(k) + s1 is
a threshold or a fixed input. Let v∗ = [v1∗ v2∗]T be
an equilibrium point of (8). Introducing an equivalent
coordinate transformation z(k) = v(k)−v∗(k), the system
(8) can be transformed to the form

{

z1(k + 1) = ΨA1Ψ−z1(k)

z2(k + 1) = A2z2(k) + W 2f(z1(k))
, (9)

where f(z1(k)) = σ(z1(k) + v1∗(k)) − σ(v1∗(k)). Substi-
tuting z(k) = [z1(k) z2(k)]T , one finally obtains

z(k + 1) = Az(k) + Wf(z(k)), (10)

where

A =

[

ΨA1Ψ− 0

0 A2

]

, W =

[

0 0

W 2 0

]

. (11)

In order to obtain stability conditions for the system (10),
the second Lyapunov’s method will be applied.

Lemma 1. (Global stability theorem of Lyapunov, Gupta
et al. [2003]) Let x = 0 be an equilibrium point of the
system

x(k + 1) = f(x(k)), (12)

and V : R
n → R a continuously differentiable function

such that
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(1) V (x(k) = 0) = 0,
(2) V (x(k)) > 0, for x 6= 0,
(3) V (x) → ∞ for ‖x‖ → ∞,
(4) ∆V (x(k)) = V (x(k + 1)) − V (x(k)) < 0 for x 6= 0.

Then, the equilibrium point x = 0 is globally asymptoti-
cally stable and V (x) is a global Lyapunov function.

Theorem 2. The neural system represented by (10) is
globally asymptotically stable if the following condition
is satisfied:

‖A‖ + ‖W‖ < 1. (13)

Proof. Let V (z) = ‖z‖ be a Lyapunov function for the
system (10). This function is positive definite with the
minimum at x(k) = 0. The difference along the trajectory
of the system is given as follows:

∆V (z(k)) = ‖z(k + 1)‖ − ‖z(k)‖

= ‖Az(k) + Wf(z(k))‖ − ‖z(k)‖

6 ‖Az(k)‖ + ‖Wf(z(k))‖ − ‖z(k)‖.

(14)

The activation function σ is a short map with the Lipschitz
constant L = 1. Then f is also a short map, with the
property ‖f(z(k))‖ 6 ‖z(k)‖, and (14) can be expressed
in the form

∆V (z(k)) 6 ‖A‖‖z(k)‖ + ‖W‖‖z(k)‖ − ‖z(k)‖

6 (‖A‖ + ‖W‖ − 1) ‖z(k)‖.
(15)

From (15) one can see that if

‖A‖ + ‖W‖ < 1, (16)

then ∆V (z(k)) is negative definite and the system (10) is
globally asymptotically stable, which completes the proof.

Remark 3. The theorem formulates the sufficient condi-
tion only, not a necessary one. Therefore, if the condition
(13) is not satisfied, one cannot judge the stability of the
system.

Remark 4. The condition (13) is very restrictive. The
matrix A is a block diagonal one with the entries ΨA1Ψ−

and A2

i , for i = 1, . . . , v2. For block diagonal matrices, the
following relation holds:

‖A‖ = max
i=1,...,n

{‖Ai‖} . (17)

The entries of A for i = 2, . . . , v2 have the form (2). For
such matrices, the norm is greater than or equal to one.
Thus, Theorem 2 is useless, because there is no network
(10) able to satisfy (13). One way to make (13) applicable
to the system (10) is to use the modified neuron state
matrix of the form (18) with the parameter ν < 1

Ai =













−a1i
−a2i

. . . −ar−1i
−ari

ν 0 . . . 0 0
0 ν . . . 0 0
...

...
. . .

...
...

0 0 . . . ν 0













. (18)

The parameter ν can be selected experimentally by the
user or can be adapted by a training procedure.

Remark 5. In spite of its shortcomings, the condition (13)
is very attractive because of its simplicity and ease of use.

Remark 6. The theorem is also valid for other activation
functions with the Lipschitz constant L 6 1, satisfying the
conditions (6).

Example 7. Consider the neural network described by (4)
and (5) with 7 neurons in the first hidden layer and 4

neurons in the second hidden layer. Each neuron consists
of the second order IIR filter and a hyperbolic tangent
activation function. The network is applied to model the
process described in Experiment 4 in the outstanding
paper of Narendra and Parthasarathy [1990]. Training
was carried out for 5000 steps using the SPSA algorithm
with the settings a = 0.002, c = 0.01, α = 0.302, γ =
0.101, A = 100. The training set consists of 100 samples
generated randomly using the uniform distribution. The
sum of squared errors for the training set is 0.6943, and for
the testing set containing another 100 samples it is 1.2484.
The stability of the trained network was tested using the
norm stability condition (13) as follows:

‖A‖2 + ‖W‖2 = 4.0399 > 1 (19)

‖A‖1 + ‖W‖1 = 4.7221 > 1 , (20)

‖A‖∞ + ‖W‖∞ = 6.4021 > 1 (21)

where

‖X‖2 =

√

λmaxXT X

‖X‖1 = max
16i6n

n
∑

j=1

|xij | .

‖X‖∞ = max
16j6n

n
∑

i=1

|xij |

Unfortunately, based on (19)–(21), the norm stability
condition cannot judge the stability of the system. On
the other hand, observing the convergence of the network
states one can see that the system is stable. Figures 1(a)
and (b) present convergence of the states of the first and
second layers of the system (4). All states converge to set-
up values what means that the network is stable.

This experiment clearly shows that the norm stability con-
dition is very restrictive. Moreover, to satisfy the condition
(13) the entries of both matrices A and W should have rel-
atively small values. The following procedure proposes the
training of the network assuring the stability of the model.
Assuming that each neuron in the network is represented
by the modified state transition matrix (18), the norm of
the matrix W is checked after each training step. If the
norm stability condition is not satisfied, the entries of W
are decreased iteratively.

Table 1. Outline of norm stability checking

Step 0: Initiation
Choose the network parameters is such a way that ‖A‖ < 1,
set ν < 1.

Step 1: Update the network parameters using
a training algorithm.

Step 2: Assure the stability of the network:

set x := 1;
while (‖A‖ + ‖W‖ > 1) do

x := x + 1;
W := W/(x · ‖W‖);

end

Step 3: Termination criteria
if (termination criterion satisfied) then STOP
else go to Step 1.
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Fig. 1. Convergence of network states (a) and (b), learning
track (c)

Example 8. Le us revisit the problem considered in the
example 7, but this time with each neuron in the network
represented by the modified state transition matrix (18)
with the parameter ν = 0.5. The training is carried out
using the procedure shown in Table 1. In this case, the
sum of squared errors for the training set is 0.7008, and
for the testing set containing another 100 samples it is
1.2924. The stability of the already trained network was
tested using the norm stability condition (13) as follows:

‖A‖2 + ‖W‖2 = 0.9822 < 1. (22)

In this case, the criterion is satisfied and the neural
network is globally asymptotically stable. Similarly as
in the previous example, Figs 2(a) and (b) present the
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Fig. 2. Convergence of network states (a) and (b), learning
track (c)

convergence of the states of the first and second layers
of the system (4). In turn, in Figs 2(c) and (d) the
convergence of the transformed autonomous system (10)
is shown. All states converge to zero, which means that
the network is stable. The procedure presented in Table 1
guarantees the stability of the model. Recalculating the
weights W can introduce perturbations to the training
in the form of spikes, as illustrated in Fig. 2(e), but the
training is, in general, convergent.

The discussed examples show that the norm stability
condition is a restrictive one. In order to successfully apply
this criterion to network training, several modifications are
required. Firstly, the form of the state transition matrix
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A is modified and, secondly, the update of the network
weight matrix W should be performed during training.
In the further part of the section less restrictive stability
conditions are investigated.

Theorem 9. The neural system (10) is globally asymptot-
ically stable if there exists a matrix P ≻ 0 such that the
following condition is satisfied:

(A + W)T P (A + W) − P ≺ 0. (23)

Proof. Let us consider a positive definite candidate Lya-
punov function:

V (z) = zT Pz. (24)

The difference along the trajectory of the system (10) is
given as follows:

∆V (z(k)) =V (z(k + 1)) − V (z(k))

= (Az(k)+Wf(z(k)))
T

P (Az(k)+Wf(z(k)))

− zT (k)Pz(k)

=zT (k)AT PAz(k) + fT (z(k))WT PAz(k)

+ zT (k)AT PWf(z(k)) − zT (k)Pz(k)

+ fT (z(k))WT PWf(z(k)).
(25)

For activation functions satisfying the conditions (6) it
holds that |f(z)| 6 |z| and

f =

{

f z > 0

−f z < 0
; (26)

then

fT (z(k))WT PAz(k) 6 zT (k)WT PAz(k) (27)

zT (k)AT PWf(z(k)) 6 zT (k)AT PWz(k) (28)

and

fT (z(k))WT PWf(z(k)) 6 zT (k)WT PWz(k). (29)

Substituting the inequalities (27), (28) and (29) into (25),
one obtains

∆V (z(k)) 6zT (k)AT PAz(k) + zT (k)WT PAz(k)

+ zT (k)AT PWz(k) + zT (k)WT PWz(k)

− zT (k)Pz(k)

6zT (k)(AT PA + WT PA + AT PW

+ WT PW − P )z(k)

6zT (k)
(

(A + W)T P (A + W) − P
)

z(k).
(30)

From (30) one can see that if

(A + W)T P (A + W) − P ≺ 0, (31)

then ∆V (z(k)) is negative definite and the system (10) is
globally asymptotically stable.

Remark 10. From the practical point of view, the selection
of a proper matrix P , in order to satisfy the condition (23),
can be troublesome. Therefore, the corollary presented
below allows us to verify the stability of the system in
an easier manner. The corollary is formulated in the form
of the Linear Matrix Inequality (LMI). Recently, LMI
methods have become quite popular among researchers
from the control community due to their simplicity and
effectiveness taking into account numerical complexity.

Lemma 11. (Schur complement Boyd et al. [1994]). Let
A ∈ R

n×n and C ∈ R
m×m be symmetric matrices, and

A ≻ 0; then

C + BT A−1B ≺ 0, (32)

iff

U =

[

−A B

BT C

]

≺ 0 or U =

[

C BT

B −A

]

≺ 0. (33)

Corollary 12. The neural system (10) is globally asymp-
totically stable if there exists a matrix Q ≻ 0 such that
the following LMI holds:

[

−Q (A + W) Q

Q (A + W)
T

−Q

]

≺ 0. (34)

Proof. From Theorem 9 one knows that the system (10)
is globally asymptotically stable if the following condition
is satisfied:

(A + W)T P (A + W) − P ≺ 0. (35)

Applying the Schur complement formula to (35) yields
[

−P−1 A + W

(A + W)
T

−P

]

≺ 0. (36)

In order to transform (36) into the LMI, let us introduce
the substitution Q = P−1 and then multiply the result
from the left and the right by diag(I,Q) to obtain

[

−Q (A + W) Q

Q (A + W)
T

−Q

]

≺ 0.

Remark 13. The LMI (34) defines the so-called feasibility
problem Boyd et al. [1994]. This convex optimisation
problem can be solved effectively using poly-nomial-time
algorithms, e.g. interior point methods. Interior point
algorithms are computationally efficient and nowadays
widely used for solving LMIs.

Example 14. Consider again the problem presented in
Example 7. As is shown in that example, the norm stability
condition cannot ensure the stability of the neural model
(4). In this example, the condition given in Corollary
12 is used to check the stability of the neural network.
The problem was solved with the LMI solver implemented
in the LMI Control Toolbox under Matlab 7.0. After 4
iterations the solver found the feasible solution represented
by a positive definite matrix Q what means that the neural
network is globally asymptotically stable. This example
shows that the condition presented in Theorem 9 is less
restrictive than the norm stability condition. Moreover,
representing a stability condition in the form of LMIs
renders it possible to easily check the stability of the neural
system.

Lemma 15. (Gahinet and Apkarian [1994]). Let A ∈ R
q×q

be a symmetric matrix, and P ∈ R
r×q and Q ∈ R

s×q real
matrices; then there exists a matrix B ∈ R

r×s such that

A + P T BT Q + QT BP ≺ 0 (37)

iff the inequalities W T
P AW P ≺ 0 and W T

QAW Q ≺ 0
both hold, where W P , and W Q are full rank matrices
satisfying Im(W P ) = ker(P ) and Im(W Q) = ker(Q).

Example 16. The term (34) can be rewritten as

[

−Q (A + W) Q

Q (A + W)
T

−Q

]

=

[

−Q AQ

QAT −Q

]

+

[

W
0

]

Q [ 0 I ] +

[

0
I

]

QT
[

W T 0
]

.(38)

Using Lemma 15 one obtains
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Table 2. Comparison of methods.

Network LMI (34) LMIs (40)

structure time [sec] iterations time [sec] iterations

7-4 0.0845 4 0.0172 1
15-7 0.545 3 0.189 1
25-10 6.5 4 1.7 1

W T
P

[

−Q AQ

QAT −Q

]

W P ≺ 0, W T
Q

[

−Q AQ

QAT −Q

]

W Q ≺ 0,

(39)
where W P = diag(ker(W ), I) and W Q = diag(I,0).
Multiplying the second inequality in (39) gives Q ≻ 0.
Then (39) can be rewritten as

W T
P RW P ≺ 0, Q ≻ 0, (40)

where

R =

[

−Q AQ

QAT −Q

]

. (41)

These LMI conditions can be solved with a less compu-
tational burden than the LMI condition 34. The results
of computations, for different network structures, are pre-
sented in Table 2. The experiments were performed using
the LMI Control Toolbox under Matlab 7.0 on a PC with
Intel Centrino 1.4 GHz and a 512MB RAM.

4. CONCLUSIONS

The paper proposes stability criteria for locally recur-
rent networks with two hidden layers. The norm stability
condition is a restrictive one, but introducing a modified
neuron structure makes this condition applicable to real-
life problems. Moreover, the norm stability criterion can
be adopted to design stable training of the dynamic neural
network, which guarantees the stability of the model. On
the other hand, the condition presented in Theorem 9
is less restrictive than the norm stability condition, but
there are problems with finding a proper matrix P able to
satisfy the condition. Therefore, it is proposed to formulate
this condition in the form of LMIs, and then the stabil-
ity can be easily checked using suitable numerical pack-
ages. Theorems based on the Lyapunov’s second method
give sufficient conditions for global asymptotic stability.
If these conditions are not satisfied, one cannot judge
the stability of the system. Moreover, stability criteria
developed using the Lyapunov’s second method cannot
be used as a starting point to determime constraints on
the network parameters. Thus, the optimisation problem
with constraints cannot be determined and application of
the elaborated stability conditions to real-time training is
limited. A solution of the problem can be achieved based
on the Lyapunov’s first method.
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