
Towards a Mission Control Language for
AUVs ?

Narćıs Palomeras ∗ Pere Ridao ∗ Marc Carreras ∗
Carlos Silvestre ∗∗

∗ University of Girona. Edifici Politecnica IV, Campus Montilivi
Girona, Spain

npalomer@eia.udg.es
∗∗ Institute for Systems and Robotics. Instituto Superior Tecnico

Lisbon, Portugal

Abstract: This paper presents the design and implementation of a Mission Control System
(MCS) for an AUV. The mission is easily described using an imperative-like pseudo-code called
Mission Control Language (MCL) that allows sequential/parallel, conditional and iterative task
execution. MCL can be automatically translated into a Petri net, to formally describe the
mission thread of execution. Then the MCS executes the Petri net in real-time over a generic
layer that communicates with a particular control architecture using predefined actions and
events. Concepts are illustrated with a simple mission.

1. INTRODUCTION

A mission controller is the part of a control architecture
that is in charge of defining high-level phases to be
carried out in order to fulfil a predefined mission. Each
high-level phase is a task that can execute a vehicle
primitive (basic robot commands or behaviours). The
mission controller must define how the mission is divided
into a set of tasks and how primitives are called to
fulfil each task. As described in Marco et al. [1996],
the development of a Mission Control System (MCS) for
an Autonomous Underwater Vehicle (AUV) lies at the
intersection of a Discrete Event System (DES) in charge
of enabling/disabling basic primitives when some events
are produced and the Continuous State Dynamic Control
System (DCS) used for every primitive to achieve a specific
goal.

Several mission control systems for AUVs have been de-
signed over the past decade. In 1994 the Institute for
Systems and Robotics (ISR), from Portugal, started the
development of a mission management system called Coral
for the AUV MARIUS, Oliveira et al. [1998]. The system
was based on Petri nets in charge of activating the vehicle
primitives needed to carry out the mission. Simultane-
ously, the Naval Postgraduate School (NPS) from Mon-
terey was developing a hybrid control system composed
of three layers using the Prolog language as a rule-based
mission specification in the higher layer, Marco et al.
[1996]. Another control architecture, which has a mission
control system called Helm, is the Mission Oriented Oper-
ating Suite (MOOS) designed between the Massachusetts
Institute of Technology and the Oxford University by Paul
? This research was sponsored by the Spanish government
(DPI2005-09001-C03-01), FREEsubNET (MRTN-CT-2006-036186)
and Fundação para a Ciência e a Tecnologia (ISR/IST plurianual
funding) through the POS Conhecimento Program that includes
FEDER funds. Thanks to J. Suy to help us to formally define the
MCL.

Michael Newman see Newman [2005]. Helm decides the
most suitable action commands from a set of prioritised
mission goals. The Sauvim Task Description Language
(STDL) developed by the University of Hawaii, see Kim
and Yuh [2003], instead of using a graph uses a descriptive
imperative language. Other MCS proposed in the litera-
ture are the AUV Scripting Language (ASL) used by the
commercial AUV Gavia and the also scripting languages 1

used by the Autosub AUV, developed by the National
Oceanography Center of Southampton, Perrett and Pe-
body [1997], and the Remus AUV, originally designed by
the Woods Hole Oceanographic Institution (WHOI) and
now manufactured and sold by Hydroid, Allen et al. [1997].

Each MCS approach is very particular and dependent
on the particular application it was designed for. Every
institution, research group or company, has developed
its particular MCS based on the missions they want to
achieve, the kind of AUVs they have and the control
architecture used in these AUVs. However, several sim-
ilarities can be found. For example, all studied AUVs
have a set of basic primitives that can be called from
the MCS. These primitives are often named differently
in each system: commands, vehicle primitives, behaviours,
etc. They are generally DCS in charge of achieving a
simple goal (keep a specific orientation or depth, achieve a
way-point, etc.) or used to enable/disable sensors, loggers,
to take an image, etc. There are also similarities in the
execution formalism in charge of describing the DES used
to activate/desactivate the vehicle primitives depending
on the produced events. Even though most of them use
different formalisms, they can be easily related. For exam-
ple, MOOS uses a state machine which is a particular class
of a Petri net, the basic formalism used by Coral. Sauvim
and Gavia use an imperative language (STDL and ASL
respectively) and, as will be explain in Section 2, one of

1 Scripting languages are often distinguished from typical program-
ming languages because are typically interpreted.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15028 10.3182/20080706-5-KR-1001.2209

the goals of this paper is show how is possible translate
an imperative languages into a Petri net. NPS uses prolog
rules (logic programming) to describe their mission. This
particular use of the language can also be translated to
the Petri net formalism as described in Marco et al. [1996].
Therefore, Petri nets are presented as a versatile choice for
the execution formalism.

Section 2 describes the MCS detailing how primitives
are called using tasks and how these tasks are defined
and joined, through control structures, to setup missions.
Section 3 test this MCS using the ICTINEUAUV within
the context of a simple mission defined using the proposed
Mission Control Language (MCL). Finally, Section 4 and
Section 5 present the results obtained in the mission as
well as the conclusions and future work.

2. MISSION CONTROL SYSTEM

In this paper a new proposal for a MCS based on the
Petri net formalism (see Murata [1989]) is presented.
Instead of using graphic tools to describe the mission
Petri net, our approach is based on the definition of an
MCL which automatically compiles into a Petri net. The
adoption of this formalism will allow us to construct a
reliable mission control net joining small nets, previously
evaluated, ensuring that the whole control net accomplish
a set of required properties.

2.1 Architecture Abstraction Layer

Our intention has been to design a MCS as generic as
possible and to allow for an easily tailoring to different
control architectures. To achieve this goal an Architecture
Abstraction Layer (AAL) is used. This layer is in charge
of the communications between the MCS and the vehicle
architecture making it architecture-independent. The AAL
offers an interface based on two types of signals: Actions
and Events. Actions enable or disable basic primitives
within the vehicle architecture. Events are basically used
to notify changes in the state of a primitive. The commu-
nication between the MCS and the vehicle architecture is
done using a message exchange system through the AAL.
This layer receives actions (A) from the MCS. Actions
contain a primitive identifier (aj) and a set of parameters
(πk). At the same time, the AAL receive events from the
vehicle architecture notifying state changes in the vehicle
primitives. These state changes are translated by the AAL
as marked or unmarked places inside the MCS. The AAL
depends on the control architecture being used allowing
the MCS to remain architecture-independent. With the
AAL, it is possible use this MCS approach in different
vehicles with different architectures, it is only necessary to
define the basic actions that can be executed by the vehicle
architecture and the events that it can be transmitted
to the MCS and reprogram the AAL with the mapping
between the MCS messages and the vehicle primitives.

2.2 Primitives

Primitives are basic robot functionalists offered by the ve-
hicle control architecture. A discussion of the functionalists
for the MARIUS vehicle can be found in Oliveira et al.
[1998]. For an AUV a basic primitive can be keep a certain

depth (KeepDepth), or a certain heading (KeepHeading)
or navigate towards a 3D waypoint (GoToWayPoint) for
instance. All primitives have a goal to achieve or to keep.
For instance, the goal of the KeepDepth primitive is to
keep the robot at a constant depth within an uncertainty
interval. The goal of the GoToWayPoint primitive is to
drive the robot inside a particular uncertainty sphere of
acceptance centered in the desired waypoint. In general, a
primitive can be enabled (ON) or disabled (OFF). While
it is enabled, a primitive has three main states: 1) seeking
the goal, 2) goal has been achieved, or 3) goal has been
lost. First, the primitive will start seeking the goal (1).
Once the goal is achieved (2), eventually, the primitive
can lose it reaching state (3). Its worth noting that the
primitive can switch between states (2) and (3) depending
on the system disturbances. Finally, a primitive can also
be disabled.

Attending to these common features, a generic primitive
can be modeled using a Petri net as shown in Fig. 1. This
model can be used as a guided line to generate the prim-
itive code, that runs on the vehicle architecture, ensuring
that the primitive input-output behaviour satisfies the pre-
specified requirements and it can be safely executed by
the supervisor. This is, once a primitive is enable it must
evolve free of deadlocks until it is disabled. In terms of
Petri net theory this means that it is necessary ensure that
all the siphons 2 in the Petri net are controlled and, if we
want made the net reusable, it has to exist a unique final
state which coincides with the initial marking of the net.
Places E (enable) and D (disable) receive a token when
the MCS sends an enable/disable action while places S1
(state 1: goal not achieved), S2 (state 2: goal achieved) and
the OFF (primitive off) correspond to the internal states
of the primitive. These five places are the fusion places
used to merge and control the vehicle primitive from a
higher level control structure called task (see Section 2.3).
Whenever one of these states change, an event is sent
from the vehicle control architecture to the MCS in order
to update the tokens in the corresponding places. It is
worth noting the role of the C place which is initially
marked. This place was added to ensure that the places S1
(goal achieved) and S2 (goal lost/unachieved) can not be
simultaneously marked. Hence, C marked indicates that
the primitive is enabled and seeking its goal but neither
S1 nor S2 have been yet achieved. When the primitive is
disabled we must ensure that S1 and S2 become unmarked
and C recovers its initial marking state.

The desirable properties of the net, can be checked study-
ing its invariants 3 and siphons. Hence, analysing the prim-
itive model three place invariants are found:

ON + OFF = 1 (1)

C + S1 + S2 = 1 (2)

−OFF − D + E = −1 (3)

There are also two siphons (4 and 5) which are controlled
by the invariants 1 and 2 respectively.

Siphon1 = {ON, OFF} (4)

2 Siphons are defined in Iordache and Antsaklis [2006] as a non
empty set of places that accomplish •S ⊆ S• where •S and S• are
the pre-set and post-set of all input/output transitions in the set of
places S.
3 Place invariants are sets of places whose weighted token count
remains constant for all possible markings.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15029

OFF (1)

t1

ON

t2

t4 t5

t8

t9

C (1)

D

E

S1

t6

S2

t7

Fig. 1. Vehicle primitive Petri net model.

Siphon2 = {C, S1, S2} (5)

According to Iordache and Antsaklis [2006] if all the
siphons in a Petri net are controlled by an invariant and
they are correctly marked in M0 (6) it is possible to ensure
that they will not lose all their tokens preventing dead-
locks.

M0 = {OFF, C} (6)

Considering an alternative intial state M0={OFF, C, E,
D} it is possible to check which is the cover-ability graph of
this Petri net when it is enabled and disabled by a superior
control structure. This study reveals a single final state
Sf1(7):

Sf1 = {OFF, C} (7)

Since this final state has the same marking than M0 we
can conclude that the primitive model is reusable, which
means, that primitive implementation inside the vehicle
can be reusable (e.g. the KeepDepth primitive can be run
more than one time without re-initialisation).

2.3 Tasks

Tasks are the basic building block of the MCL. In MCL
two main constructions are provided to deal with tasks: 1)
tasks patterns and 2) the tasks. Task patterns are models
from which particular tasks can be derived through an
instantiation process. A task pattern can be defined to use
a primitive to achieve a certain goal (f.i. AchieveGoal).
Another task pattern can be defined to use a primitive
to keep a certain goal (e.g. KeepGoal). It is also possible
to use a task pattern involving the parallel execution
of several primitives (KeepTwoGoals). Task patterns are
defined in terms of generic primitives, which can then
be instantiated to a particular primitive to generate a
task (f.i. AchieveGoal → AchieveWaypoint, KeepGoal →
KeepDepth). For the sake of simplicity let us assume the
task AchieveWayPoint derived from the AchieveGoal task
pattern through the instantiation of its generic primitive
to the GoToWayPoint primitive. The task (AchieveWay-
Point) begins enabling the primitive (GoToWayPoint)
which will run until one of the following conditions holds:
1) the primitive achieves its goal (way-point reached), 2)
the primitive realises it will not be able to achieve its goal
(f.i. motion failure), 3) the task time-out expires before

ABORTED

OK

OFF

t01

t10 t11

t12

MTX (1)

D

E

S1

t05

S2

t04

FAIL

B

A

t06

EXE

t03(t=TimeOut)

E_OK

t07

E_FAIL

t08

W_OK

W_A

W_FAIL

Fig. 2. Basic control task Petri net.

concluding the primitive and 4) the task is aborted. Con-
ditions (1) and (2) are raised by the primitive, condition
(3) is raised by the task itself and condition (4) is raised
by a hierarchically superior control structure. The above-
mentioned task can be modelled with the Petri net shown
in Fig. 2. When a superior control structure marks the
place B (begin) the vehicle primitive is enabled (place E
marked) if it was previously disabled (place OFF marked).
Once the primitive is enabled the task can be finalised if:
1) the time-out of the transition t03 expires, 2) if a higher
level control structure marks the place A aborting the task
or 3) the primitive marks the place S1 (unable to achieve
goal) or S2 (goal achieved). If the place S1 is marked or
the taks timeout expires the primitive is disabled (place
D marked) and the place FAIL (task not achieved) is
marked when the primitive is completely disabled (place
OFF marked). When the place S2 is the one marked, after
disabling the primitive the marked place will be the place
OK (task achieved). Finally, if the task is aborted (place
A marked) it finalises with place ABORTED marked once
the primitive is disabled. Places E and D are used to send
actions from the MCS to the control architecture while
places OFF, S1 and S2 are used to evaluate the state of the
primitive. The tokens in these places, only change when an
appropriate event is sent by the control architecture to the
MCS. A mutex place called MTX and initially marked is
also included in the net to ensure mutual execution of the
task.
When the Petri nets of the task and the vehicle primitive
model are composed using the fusion places {E, D, OFF,
S1, S2} (see Iordache and Antsaklis [2006] for Petri net
composition operations) the resulting Petri has six place
invariants:

ON + OFF = 1 (8)

C + S1 + S2 = 1 (9)

OFF + D − E + EXE + E OK + E FAIL = 1 (10)

ABORTED + OK − MTX + FAIL + B = 0 (11)

ABORTED + A − WA = 1 (12)

−ABORTED−OFF + MTX −D + E −A + W OK + W FAIL = −1 (13)

One more siphon is added to the ones presented in equa-
tion 4 and 5 and they still being controlled by invariants
8, 9 and 10+12+13.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15030

A

t0

ABORTED

B

t1t2

FAIL

MTX (1)

OK

Fig. 3. Reduced Petri net model for a task.

Siphon1 = {ON, OFF} (14)

Siphon2 = {C, S1, S2} (15)

Siphon3 = {MTX, EXE, E OK, E FAIL, W OK, W FAIL, W A} (16)

Generating the coverability tree from the initial state
M0 = {B, A, MTX, OFF, C} all places are 1-bounded
and three final states, 17, 18 and 19, are obtained. All of
them include the places C, OFF and MTX marked as well
as one of the three final places: OK, FAIL or ABORTED.

Sf1 = {A, FAIL, MTX, OFF, C} (17)

Sf2 = {A, OK, MTX, OFF, C} (18)

Sf3 = {ABORTED, MTX, OFF, C} (19)

This results show that it is possible for an aborted task
to end in a goal achieved (OK) or a goal not achieved
(FAIL) state instead of the intuitive ABORTED state.
This happens when the primitive ends before the requested
abort command has been executed. If the initial state
is M0 = {B, MTX, OFF, C} the final states reached
are the two expected states (20, 21) indicating that the
mutex is free (MTX), the primitive is disabled (OFF),
C has its initial marking and FAIL or OK are marked
exclusively depending on the success of the primitive. Like
in the previous case, it is possible to reuse the task Petri
net. However, attention must be paid to the abort place A
since it can remain marked after the task execution (this
problem will be further referred as the abort problem).

Sf1 = {FAIL, MTX, OFF, C} (20)

Sf2 = {OK, MTX, OFF, C} (21)

Another interesting analysis involves studying what hap-
pens if two or more task structures try to enable the same
primitive simultaneously. In this situation the place OFF
in the primitive net acts as a mutex avoiding the second
task to fire transition t01 until the primitive is disabled
again.

Fig. 2 has shown a Petri net able to model the internal
states of a task. Nevertheless, from the external point
of view, it is interesting to find a reduced model which
starting in the same initial state reaches exactly the same
final states (see Oliveira [2003]). Fig. 3 shows this reduced
model for a control task. Reachable states from M0 =
{B, A, MTX} are presented in equations 22, 23 and
24 and final states obtained from M0 = {B, MTX} are
shown in equations 25 and 26. With this simplified Petri
net model it is possible to reach the same final states from
a supervisor point of view than the ones presented in 17 to
21. This reduced model will be of interest in Section 2.5.

Sf1 = {A, FAIL, MTX} (22)

Sf2 = {A, OK, MTX} (23)

Sf3 = {ABORTED, MTX} (24)

Sf4 = {FAIL, MTX} (25)

Sf5 = {OK, MTX} (26)

2.4 Task Patterns and task instantiation

In our proposal, a task is defined as τ = (N,R, Π), being
N an ordinary Petri net that defines the internal thread of
execution, R = (A,Ev, γ, α) a set of actions (A) and events
(Ev) as well as the functions linking actions and events
to fusion places of N (γ, α) and Π the collection of all
the parameters needed by the actions A. To define a task
pattern is necessary define a Petri net N that will include
several fusion places (Fpcontrol={B, A, MTX, OK, FAIL,
ABORTED} and Fpprimitive={E, D, OFF, S1, S2}). All
Fpprimitive must be related to primitive actions or events
using R. Several tasks can use the same task pattern
to describe its internal execution flow enabling/disabling
different primitives. As exposed in Section 2.3 several task
patterns can be defined, even that their internal structure
can be different, all of them have to be reducible to
the same structure presented in Fig. 3. To instantiate a
task τi = (N,R, Πi), a task pattern τp = (N,Rp) and
a mapping function M(Rp) are necessary to relate every
generic action or event in Rp to a set of particular actions
or events in R . A task can be seen as a function in an
imperative language with a set of parameters Πi that must
be defined before call the task. The instantiation of these
parameters Πi will be done in the MCL main code. It is
possible use the same task several times changing only this
set of parameters due to that the tasks are reusables. It
is worth noting that the MCS is not deciding the control
actions needed to guide the robot, it only predefines the
set of active primitives and their configuration (Πi). Hence,
the realtime guidance of the robot is the responsibility of
the set of these enabled primitives at a certain time. Petri
nets are only used as a structure able to represent the
execution flow of these primitives.

2.5 Control Structures

A mission is defined as M = (Γ, N), where Γ is a set of
tasks τk and N is a Petri net which defines the tasks control
flow. In a task, a Petri net defines the internal execution
flow control that is the interplay of vehicle actions/events
executed within a mission, while in control structures, the
Petri net is used to model the execution flow control of
the different tasks involved. A task is called like a function
in an imperative language. It has two entry point places
begin (B) and abort (A) and three possible returning
points the places task achieved (OK), task not achieved
(FAIL) and task aborted (ABORTED). Additionally, the
MTX place is used as a mutex to avoid parallel execution
of multiple instances of the same task. Different control
structures can be used to join tasks. Again, these control
structures must be reduced, from a supervisor point of
view, to a structure like the one presented in Fig. 3.
Thanks to this constraint it is possible join not only tasks
but control structures too. Here, fusion places between
tasks an control structures or between control structures
and control structures are Fp = {B, A, MTX, OK,
FAIL, ABORTED}. The B place is responsible for the
initialisation of all the parameters needed in the primitive
task. Since the tasks are treated as functions, whenever a
control structure wants to execute the same task, the same
Petri net is used avoiding duplicates. This allows us to keep
the mission Petri net smaller. Only the parameter Πi sent
to this task changes from one instantiation to another.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15031

A

t10

t14

t4

ABORTED

B

t1

FAIL

MTX (1)

OK

T1_A

t6t7

T1_ABORTED

t5

T1_BT1_FAIL

t3

T1_MTXT1_OK

t2

T2_A

t12t13

T2_ABORTED

t11

T2_B

T2_FAIL

t9

T2_MTX

T2_OK

t8

W_T1

W_T1_AW_T2

W_T2_A

Fig. 4. Sequence control structure Petri net.

MCL provides different control structures: sequential and
parallel task execution, conditional and iterative control
flow and even a monitoring task. If tasks can be seen
in MCL as function calls, these control structure can be
seen as control flow structures in a high-level programming
language.

The basic control structure in MCL is the one used to
sequence two structures 4 . Fig. 4 shows the Petri net used
for this purpose. In the sequence Petri net of Fig. 4 there
are three groups of fusion places:

FP1 = {T1 B, T1 A, T1 MTX, T1 OK, T1 FAIL, T1 ABORTED} (27)

FP2 = {T2 B, T2 A, T2 MTX, T2 OK, T2 FAIL, T2 ABORTED} (28)

FP3 = {B, A, MTX, OK, FAIL, ABORTED} (29)

Fusion places 27 and 28 are used to connect the struc-
tures that have to be sequenced. Fusion place 29 is used
to connect this control structure with another superior
control structure to hierarchically build a mission. If fusion
places FP1 and FP2 are connected to two Petri net models
corresponding to two other structures represented by the
net shown in Fig. 3, the reachable states from M0 ={B,
A, MTX, T1 MTX, T2 MTX} or from M0 ={B, MTX,
T1 MTX, T2 MTX} are exactly the same final states
obtained in 22 to 26. It is worth noting that, as stated
in the previous section, when an abort request is sent to
a task (or in general to a subordinated structure), the
task can finalise in three possible states: FAIL, OK, or
ABORTED. For this reason, the Petri net of the control
structure shown in Fig. 4 has been carefully designed to
drain the remaining token located in the A place of the
subordinated structure when it finalises in the FAIL or the
OK state after an abort request. In this design, an abort
request sent to the control structure is propagated through
t4 or t10 to the subordinated tasks. It is guaranteed that
if the abort request arrives to a subordinated structure,
independently of its final state (FAIL, OK or ABORT)
the final marking of the structure will remain the same of
its initial marking, ensuring its reusability.

Other control structures are included in MCL like parallel
that executes two structures in parallel and finalises when
both have finalised, while that iterative executes a body
structure while the result of executing a conditional struc-
ture is OK ending the iteration otherwise. The if-then-
else control structure is connected with three structures.
4 From here in advance we will refer as structures both control
structures and tasks.

Depending on the response of the first one (condition) the
second (then) or the third (else) structure is executed.
The last proposed control structure (thought that others
can be developed) is the monitor. This control structure
executes two structures in parallel. If the first one finalises
before the second the monitor finalises in a FAIL state.
Otherwise, if the second structure finalise before the first
one, the first is aborted and monitor finalises with an OK.

3. TESTING THE MCL

To test the MCL a simple mission has been programmed
and executed using the ICTINEUAUV, Ribas et al. [2007].
To be able to use the MCL with the ICTINEUAUV its
control architecture has been tailored to the MCS through
the AAL. It is worth noting that since the tasks Petri
nets are reliable (they are free of deadlocks and they are
reusable) and it has been shown that the control structures
can be designed to obtain a reliable Petri net from the
composition of several, subordinated and reliable Petri
nets, the final mission is also structurally reliable. Hence,
no analysis is needed at the compilation time. For this
reason, the aim of this section is to show how a mission
can be encoded in MCL, and how it can be easily executed
by an AUV.

3.1 Mission Definition

The mission, inspired in the Student Autonomous Under-
water Challenge - Europe (SAUC-E) (Ribas et al. [2007]),
consists on a survey trajectory in a water tank looking for
a target (a cross). Using a primitive able to detected the
cross and a monitor structure, the survey is aborted when
the cross is found and the vehicle is submerged to drop a
marker over the cross before surfacing. Otherwise, if the
cross is not found, the vehicle surfaces at the end of the
survey trajectory. The aim of this experiment is to show
how a mission can be programmed with MCL using their
control structures.

3.2 Programming The Mission

Algorithm 1 presents the proposed mission. The survey
function is a sequence of tasks that drives the vehicle
through a set of predefined way points. The mission starts
executing the FindCross task, which programs the camera
to detect the cross, together with the survey function. If
the survey finalises before the FindCross task is able to
detect the cross the vehicle surfaces and the mission ends
but, if the FindCross task detects the cross, the monitor
control structure aborts the survey and returns an OK
that allows the if-then-else control structure to execute the
sequence of tasks AchieveDepth and DropMarker before
surface.

To automatically translate the MCL code into a Petri
net, an MCL compiler is under development. It uses a
two steps compilation; in the first step the imperative
code composed by primitive tasks an control structures
is translated into functional code (Algorithm 2) in which
every control structure is a function whose parameters
are other functions (control structures or tasks). The
second step is used to translate the functional program
into the whole control Petri net joining the small Petri

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15032

Algorithm 1 Mission code
function Survey() {

AchieveWayPoint(WayPoint 1);

AchieveWayPoint(WayPoint 2);

...

}
mission {

if(monitor(Survey(), FindCross())) then {
AchieveDepth(CrossDepth);

DropMarker();

}
AchieveDepth(SurfaceDepth);

}

nets described above using fusion places as exposed in
Section 2.

Algorithm 2 Functional mission code
sequence(if-then-else(monitor(Survey(), FindCross()),
sequence(AchieveDepth(CrossDepth), DropMarker()), NULL),
AchieveDepth(SurfaceDepth))

4. RESULTS

The mission has been tested in a 16x8x5 meters water tank
with the ICTINEUAUV using a compass, a Doppler Veloc-
ity Logger (DVL) and a pressure sensor for the navigation
and a B&W video camera to detect the cross on the floor.
Due to the small available space and the perturbations
on the compass when the vehicle is near the walls the
survey trajectory is far from be optimal, however, our
aim is not the navigation but to present a simple and
powerful method to define a reactive mission for an AUV
combining simple actions. Fig. 5 shows the resulting tra-
jectory estimated using a DVL sensor compared with the
desired trajectory. The vehicle starts doing a typical survey
trajectory until the cross is detected. In this moment the
survey is aborted to submerge the vehicle, drop a marker
and finally surface.

0

2

4

6

98765
43210

4

3.5

3

2.5

2

1.5

1

0.5

0

Z
 (m

)

X (m)

Y (m)

Fig. 5. Estimated 3D trajectory during the experiments
using DVL data compared with the desired trajectory.

5. CONCLUSIONS & FUTURE WORKS

This is an ongoing research project to design and imple-
ment a flexible MCS easy to be tailored to different AUV
control architectures. After a brief introduction about the
state of the art of MCS for AUVs a MCS based on Petri
nets have been presented. In this work, Petri nets are
used to safely model the behavior of a vehicle primitive,

a task and a control structure. All these Petri net struc-
tures have been designed free of deadlocks and reusable.
It has been shown that it is possibly to compose tasks
and control structures using control structures to gener-
ate the whole mission control Petri net. Instead of using
graphical tools to describe the mission, our approach uses
the MCL which compiles a high level mission description
into a Petri net. MCL presents agreeable properties of
simplicity and structure programming as well as facilities
for sequential/parallel, conditional and iterative task ex-
ecution. MCL can be easily tailored to different control
architectures through a clear interface based on actions
and events. The AAL is responsible for mapping the ac-
tions into executable vehicle primitives and the vehicle
primitives state changes into events. Another interesting
facility of MCL is its capability to expand the language
through the definition of new task patterns or control
structures. The results reported here where obtained by
manually translating the mission into the Petri net which
was then automatically executed in the AUV. Finalise the
MCL compiler as well as define more task patterns and
control structure to make the language reacher and more
powerful are the next step to obtain a complete MCS.

REFERENCES

B. Allen, R. Stokey, T. Austin, N. Forrester, R. Golds-
borough, M. Purcell, and C von Alt. Remus: a small,
low cost auv; system description, field trials and perfor-
mance results. In OCEANS ’97. MTS/IEEE Conference
Proceedings, volume 2, pages 994–1000, 1997.

M. V. Iordache and P. J. Antsaklis. Supervisory Control of
Concurrent Systems, A Petri Net Structural Approach.
Birkhäuser, 2006.

T. W. Kim and J. Yuh. Task description language for
underwater robots. In Intl. Conference on Intelligent
Robots and Systems, 2003.

D.B. Marco, A.J. Healey, and R.B. Mcghee. Autonomous
underwater vehicles: Hybrid control of mission and
motion. Autonomous Robots, 3:169–186, 1996.

T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4), 1989.

Paul Michael Newman. MOOS - Mission Orientated
Operating Suite. Department of Engineering Science
Oxford University, 2005.

P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre. Mission
control of the marius auv: System design, implementa-
tion, and sea trials. International Journal of Systems
Science, special issue on Underwater Robotics, 29(10),
1998.

Rodolfo Oliveira. Supervision and mission control of
autonomous vehicles. Master’s thesis, Department of
Electrical and Computer Engineering, Instituto Supe-
rior Técnico, Lisbon, Portugal, August 2003.

J.R. Perrett and M. Pebody. Autosub-1. implications of
using ditributed system architectures in auv develop-
ment. In International Conference on Electronic Engi-
neering in Oceanography, 1997.

D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and
E. Hernandez. ICTINEU AUV wins the first sauc-
e competition. In IEEE International Conference on
Robotics and Automation, 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15033

