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Abstract: This paper deals with a fault detection for a magnetic suspension system by using
Generalized Internal Model Control (GIMC) structure. To design robust fault detection filters,
two fault detection design problems are formulated as multiple objective optimization problems
by minimizing the effects of disturbances and maximizing the fault sensitivity involving an
LTI system with disturbance and fault signals. The fault detection filters designed by solving
each optimization problems are implemented with the magnetic suspension system to verify its
validity. A filter designed via the problem 1 has good transient performance, but the output
signal of the filter is affected by the disturbance signals. Another filter which is designed via the
problem 2, however, has good robustness for disturbance signals. Moreover, experimental results
show that both filters have enough fault detection properties compared with a conventional
detection filter.

1. INTRODUCTION

Recently, system management and supervision are needed
with very higher quality because the system is to be more
complicated and large scale. Therefore, to improve the
safety and reliability is necessary for the system which
has changed properties and/or had fault. There is one
approach for this demand, that is the control system
based on GIMC structure. It is high performance for
the nominal plant, and reconfigurable to high robustness
controller in GIMC structure, Zhou [2001, 2004]. In the
literature Namerikawa [2006], GIMC structure is applied
to the magnetic suspension system, and experiments are
carried out with artificial model perturbation. The validity
of the reconfigurability of the GIMC structure is verified
because the controller is reconfigured for the corresponding
situation of the plant experimentally.

On the other hand, causes of the system perturbation
are not only unmodelled dynamics and parameter error,
but also failures of the motor or amplifier and positioning
error of measuring device. In the worst case, it is posible
situation that some actuators and/or some sensors are
completely breaking down. When actuator and/or sensor
faults are occurred, the performance is degradated or the
system is destabilized. Consequently, the fault tolerant
control system is required and is very important, which
has high performance for the nominal plant, detectability
when the plant has some faults, and reconfigurability of
the controller to maintain the stability of the system.
There are many researches about the fault tolerant control
system, Patton [1997], Zhang [2003], Campos-Delgado
[2003], Niemann [2005], Liu [2007].

In the fault tolerant control, the fault detection is the
first step in the control process, and reconfiguring of the
controller is the next step. Therefore the fault detection is

very important action in the fault tolerant control. In the
literature Liu [2007], the fault detection signal is obtained
by a filter for the estimation error signal derived from the
GIMC structure for an LTI system including disturbance
and fault signals. Since the estimation error signal depends
on both signals, disturbance and fault signals, the effect of
disturbance should be zero and the effect of fault signals
should be dominant. This description is formulated in Liu
[2007] as the maximization problem of the fault effection
level and optimal fault detection filters are introduced.

In this paper, minimization problems of the disturbance
effection level are formulated for the fault detection filter,
the optimal solutions are introduced. Calculated filters
are implemented with an unstable system, the magnetic
suspension system. Furthermore, controllers are designed
for the nominal plant and the faulty plant to construct
the GIMC structure. It is verified that designed fault
detection filters are valid for the fault tolerant control
system experimentally. Finally, designed fault detection
filters are compared and it is shown that one filter has
better performance for disturbance attenuation.

2. NOTATIONS

In this section, we will show definitions of the norm. σ̄ and
σ represent the maximum singular value and the minimum
singular value, respectively. Let G∗(s) := GT (−s) be the
para-Hermitian complex conjugate transpose of G(s).

For G ∈ RH2 we define the H2 norm of G as follows.

‖G‖2 =

√√√√√
1

2π

∞∫

−∞

Trace
{
G∗(jω)G(jω)

}
dω (1)

For G ∈ RH∞ we define the H∞ norm of G as

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7363 10.3182/20080706-5-KR-1001.2208



‖G‖∞ = sup
ω∈R

σ̄(G(jω)), (2)

and the H norm over all frequency is defined as

‖G‖ = inf
ω∈R

σ(G(jω)) (3)

where σ(·) is smallest nonzero singular value.

The H norm of G over frequency range [f1, f2] is defined
as follows.

‖G‖[f1,f2] = inf
ω∈[ω1,ω2]

σ(G(jω)) (4)

where ωi = 2πfi.

3. PROBLEM FORMULATION

Consider an LTI system as follows.

{
ẋ = Ax + Buu + Bdd + Bff
y = Cx + Duu + Ddd + Dff

(5)

where the state vector x ∈ R
n, the control input vector

u ∈ R
nu , the disturbance vector d ∈ R

nd , the fault vector
f ∈ R

nf and the output vector y ∈ R
ny . Then the system

equation with Laplace transform of these equations is
given by

y(s) = Gu(s)u(s) + Gd(s)d(s) + Gf (s)f(s) (6)

[ Gu Gd Gf ] =

[
A Bu Bd Bf

C Du Dd Df

]
. (7)

The following assumptions will be made throughout the
paper.

Assumption 1. (A, C) is detectable.

Assumption 2. Df has full row rank.

Assumption 3. The transfer matrix Gf has no transmis-
sion zero on the j-axis.

Assumption 1 ensures that the model can be represented in
left coprime factorization. Assumption 2 and 3 are required
for technical reasons in spectral factorization.

Since Gu, Gd and Gf have common matrices A and C, the
left coprime factorization of each transfer matrix are given
by

[ Gu Gd Gf ] = M−1 [ Nu Nd Nf ] (8)

M =

[
A + LpC Lp

C I

]
(9)

[ Nu Nd Nf ] =
[

A + LpC Bu + LpDu Bd + LpDd Bf + LpDf

C Du Dd Df

]
. (10)

where A + LpC is stable. Let consider a fault detection
filter H ∈ R

ny×ny for estimation error signal fe as shown
in Fig. 1. From equation (8), The estimation error signal
fe is given by

fe = My − Nuu = Ndd + Nff. (11)

Therefore, the estimation error signal fe depends on dis-
turbance d and fault signal f . The following lemma is
satisfied for the transfer matrix Nf .

Nu

Guu + +

d

Gd

+ +

f

Gf

H
+_

f̂

y

fe
M

Fig. 1. Block Diagram of the Fault Detection Filter

Lemma 1. (Zhou [1996]) Let the LTI system (5) be
satisfied assumptions 1–3. Then the square and invertible
transfer matrix Wf ∈ RHny×ny

∞ exists such that

WfW ∗
f = NfN∗

f (12)

and Wf is given by

Wf =

[
A + LpC (Lp − L0)R

1

2

f

C R
1

2

f

]
(13)

where Rf = DfDT
f . and L0 := −(BfDT

f + Y CT )R−1
f

is obtained by the solution Y ≥ 0 of following Ricatti
equation.

(A − BfDT
f R−1

f C)Y + Y (A − BfDT
f R−1

f C)T

−Y CT R−1
f CY + Bf (I − DT

f R−1
f Df )BT

f = 0. (14)

where A − BfDT
f R−1

f C − Y CT R−1
f C is stable.

Since the property of the singular value, σ(Wf ) = σ(Nf )

and σ(W−1
f Nf ) = 1.

4. OPTIMIZATION PROBLEMS FOR FAULT
DETECTION FILTER

From Fig. 1, the input/output relation of the filter H is
given by

f̂ = Hfe = HNdd + HNff = G
f̂d

d + G
f̂f

f. (15)

where G
f̂d

:= HNd is a transfer matrix from disturbance

d to filter output f̂ , and G
f̂f

:= HNf is a transfer matrix

from fault signal f to filter output f̂ . As mentioned above,
the estimation signal fe depends on not only fault signal,
but also disturbance. So that the fault detection filter is
required to have the performance for disturbance attenua-
tion while the sensitivity for fault signal is maintained. In
this paper, two optimization problems are formulated and
the solution for each problem is obtained which method is
based on the literature Liu [2007].

4.1 Filter A

We will show a problem for the fault detection filter.

Problem 1. Let an LTI system (5) be satisfied assump-
tions 1–3 and β > 0 be a given fault sensitivity level. Then
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find optimal fault detection filter H ∈ RHny×ny

∞ such that
‖G

f̂d
‖∞ is minimizing and ‖G

f̂f
‖ ≥ β, i.e.

min
H∈RH

ny×ny
∞

{
‖HNd‖∞ : ‖HNf‖ ≥ β

}
. (16)

The optimal solution for Problem 1 is given by the follow-
ing theorem.

Theorem 1. (Filter A) Let an LTI system (5) be satisfied
assumptions 1–3. Then the optimal solution for Problem
1 is given as follows.

H = βW−1
f (17)

Proof 1. Let a fault detection filter H is represented as
follows.

H = ΦW−1
f , Φ ∈ RHny×ny

∞ (18)

Then, we have

‖HNf‖ = inf σ(HNfN∗
f H∗)

= inf σ(HWfW ∗
f H∗)

= ‖HWf‖

= ‖ΦW−1
f Wf‖

= ‖Φ‖ ≥ β (19)

by the definition of the norm. On the other hand, following
inequality is given.

σ̄(HNd) = σ̄(ΦW−1
f Nd) ≤ σ̄(Φ)σ̄(W−1

f Nd) (20)

Therefore, ‖HNd‖∞ is minimizing with

Φ = β (21)

for minimizing σ̄(Φ) which is represented in (19). Then,
the optimal fault detection filter for Problem 1 is given by

H = βW−1
f . (22)

4.2 Filter B

We will show another problem for the fault detection filter.

Problem 2. Let an LTI system (5) be satisfied assump-
tions 1–3 and β > 0 be a given fault sensitivity level. Then
find optimal fault detection filter H ∈ RHny×ny

∞ such that
‖G

f̂d
‖2 is minimizing and ‖G

f̂f
‖[f1,f2] ≥ β, i.e.

min
H∈RH

ny×ny

2

{
‖HNd‖2 : ‖HNf‖

[f1,f2] ≥ β

}
. (23)

Problem 2 is transformed as shown in the following theo-
rem.

Theorem 2. (Filter B) Let an LTI system (5) be satisfied
assumptions 1–3. Now the fault detection filter H is formed

H = ΨW−1
f , Ψ ∈ RH

ny×ny

2 (24)

then Problem 2 is transformed as follows.

Fig. 2. Magnetic Suspension System

�
�

�
�

Sensor �

Electromagnet

�

�

Iron Ball

Sensor �

Fig. 3. Description of Magnetic Suspension System

Table 1. System Parameters
Value

Mass M [kg] 0.357
Steady Gap y∞ [m] 2.0 × 10−3

Steady Current I [A] 0.397
Coefficient k [Nm2/A2] 9.370 × 10−5

Position Offset Term y0 [m] 4.490 × 10−3

Ky = 2kI2

(y∞+y0)3
1.079 × 102

Ki = 2kI
(y∞+y0)2

1.765

min
Ψ∈RH

ny×ny

2

{
‖ΨW−1

f Nd‖2 : ‖Ψ‖[f1,f2] ≥ β

}
(25)

Proof 2. Similarly in the proof of Theorem 1, following
equation is satisfied from the definition of norm.

‖HNf‖
[f1,f2] = ‖Ψ‖[f1,f2] ≥ β (26)

Filter B is calculated with a solution of the problem in
Theorem 2 by using a optimization problem solver like
simplex method.

5. FAULT DETECTION FILTER DESIGN

5.1 Model of the Plant

In this section, an 1-DOF magnetic suspension system as
shown in Fig. 2 is modelled to design the fault detection
filter and to structure a fault tolerant control system.
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Fig. 4. Block Diagram of the Model

Description of the magnetic suspension system is shown
in Fig. 3. where average value of two sensor information is
utilized for feedback information.

5.2 State-Space Representation

We derive the equation of linearized motion of the iron
ball as follows.

Mÿp = Kyyp − Kii + d − Kifa (27)

where d is the disturbance mainly perturbation of the
mass, and fa is the actuator fault signal. The output y
is represented with the sensor fault signal fs as follows.

y = yp + fs (28)

Therefore, the state-space representation of whole system
with pre weight function for the disturbance d is given by

{
ẋ = Ax + Buu + Bdd + Bff
y = Cx + Duu + Ddd + Dff

(29)

A =




0 1 0
Ky

M
0

1

M
Cd0

0 0 Ad0


 , Bu =




0

−
Ki

M
0


 (30)

Bd =




0
1

M
Dd0

Bd0


 , Bf =




0 0

−
Ki

M
0

0 0


 (31)

C = [ 1 0 0 ] , Du = 0, Dd = 0, Df = [ 0 1 ] (32)

Wd0 :=

{
ẋd0 = Ad0xd0 + Bd0d
d0 = Cd0xd0 + Dd0d

. (33)

where x = [yp ẏp xd0]
T and f = [fa fs]

T , and d0 represents
the disturbance. The pre weight function Wd0 is chosen

Wd0(s) = 6.3096× 10−3 ·
1

2π·0.1s + 1
1

2π·6s + 1
. (34)

The block diagram of the whole system is illustrated in
Fig. 4.

5.3 Factorizations of the Model

To obtain the left coprime factorization of the model (29),
the matrix Lp is decided with pole placement method. Let
λp = {−100, −110, −260} be the pole replaced, then the
matrix Lp = [−0.0043×105 −0.4960×105 1.0189×105]T .
The frequency characteristics of the maximum singular
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Fig. 5. The Singular Value of Nd and Nf

value of Nd and the minimum singular value of Nf are
shown in Fig. 5. Furthermore, the spectral factorized
matrix Wf is obtained as follows.

Wf =




−432.3 1 0 −397.5
−4.93 × 104 0 −9.828 −4.9 × 104

1.019 × 105 0 −37.7 1.019× 105

1 0 0 1


 (35)

5.4 Filter A for the Magnetic Suspension System

From Theorem 1, the optimal fault detection filter for
Problem 1 is given by H = βW−1

f . Let β = 10, the bode

diagram of the filter is shown in Fig. 6 (a) by solid line.
Moreover, characteristics of the singular value of G

f̂d
and

G
f̂f

are shown in Fig. 5 (b). Because of the property, the

singular value of Nf is uniformed by W−1
f . In this case,

‖HNf‖ = 1.0, ‖HNd‖∞ = 7.4424× 10−4.

5.5 Filter B for the Magnetic Suspension System

Let [f1, f2] = [0.001, 8], β = 100 and dimension of Ψ be
second. Then the optimal solution Ψ on Theorem 2 is given
by

Ψ =



−3327 218.5 −283
−2578 −418.3 1619
81.57 28.92 0


 . (36)

In the process of above calculation, Genetic Algorithm
and Melder-Mead Simplex Method are used to solve the
problem shown in Theorem 2. As a result, Filter B which
is an optimal solution for Problem 2 is consisted as H =
ΨW−1

f . The bode diagram of Filter B is illustrated in Fig.

6 (a) by dotted line, and the characteristic of Ψ is shown
in Fig. 6 (b). Furthermore, the frequency characteristics
of the maximum singular value of G

f̂d
and the minimum

singular value of G
f̂f

are affected as Fig. 6 (c). Then

‖HNf‖
[0.001,8] = 100 and ‖HNd‖2 = 0.231469.

6. CONTROL SYSTEM DESIGN

In this section, controllers are designed to construct a fault
tolerant control system based on GIMC structure.
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Fig. 6. Characteristics of the Fault Detection Filter

6.1 Controller Design

The fault tolerant control system used in this paper is

illustrated in Fig. 7. Where P̃ represents the plant, U and
V −1 the representation of left coprime factorization of K,
Q the internal controller. The controller K is designed
for the nominal plant. Furthermore, K is factorized to
K = V −1U by the matrix Lk which is stabilizable Ak +
LkCk. Similarly in the model, Lk is calculated by pole
placement method.

Nu

r

+
_

y

M

V -1U

Q

P~+

+

+
_

u

fe

q

-H
f̂

fd

Fig. 7. Fault Tolerant Control System based on GIMC
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Fig. 8. Generalized Plant

6.2 Internal Controller Q

Internal Controller Q is given by Q = V (KQ−K)(NuKQ+
M)−1, where the controller KQ is designed to maintain
stability for the plant occurred some faults. Since the
degree of Q is high to implementation, however, 8 degrees
system matrix Qbal is obtained by balanced model reduc-
tion with evaluation of Hankel singular value.

7. EXPERIMENTAL RESULTS

In this section, experimental results are shown to evaluate
designed fault detection filters. The scenario of the exper-
iment is that the iron ball is suspended at the steady gap
as the initial state, and the Sensor 1 is breaking down and
the output keeps -2 [mm] after 1 [s]. It is a same case that
the Sensor 2 is shut out completely.

Experimental results with Filter A and Filter B are shown
in Fig. 9. Where the threshold Jth = 0.011 for Filter A, and
Jth = 0.12 for Filter B. Sensors information time responses
are shown in Fig. 9 (a). Since the average of values, Sensor
1 and Sensor 2 is feedbacked, it is controlled to be zero.
After 1 [s], Sensor 2 is breaking down and output keeps -2
[mm]. Therefore, the equilibrium point is changed 2 [mm]

to positive direction. From the results, filter output f̂ is
changed by occurring the sensor fault in both case, with
filter A or filter B. The controller is reconfigured by the

internal signal q when the filter output f̂ over the threshold
Jth i.e. the sensor fault is detected. Moreover, the stability
is maintained by the reconfigured controller and the iron
ball is suspended after the sensor fault occurred.

It is disturbance as the parameter perturbation that the
mass of the iron ball is changed. The fault detection
filter is expected to have properties, therefore, it has
almost no effect from the disturbance, and it is separable
between the disturbance and the fault signal. Similarly,
the experimental results are shown in Fig. 10. The solid
line represents the nominal case, the dotted line the result
the case with −20% mass, and dashed line the result
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Table 2. Convergence Value of f̂

Nominal case 0.80 ∗ M 1.21 ∗ M

Filter A 9.25 × 10−3 -17.8 % +62.7 %

FIlter B 7.26 × 10−2 -0.08 % +56.4 %

the case with +21% mass, respectively. It is ideal result

that the filter output f̂ does not depend on changing the
mass of the iron ball, but both results are changed. Each
convergence value and the fluctuation of the filter output

f̂ are summarized in Table 2. It is yielded about ±25%
fluctuation when the sensor fault occurred with Filter A.
In the case with Filter B, on the other hand, it can be
attenuated less than ±10% effect from the disturbance. It
can be improved to consider the specific frequency range
for the norm for Filter B compared with Filter A.

8. CONCLUSIONS

In this paper, two optimization problems were formulated
for the fault detection filter, and the optimal solutions were
introduced respectively. The magnetic suspension system
was modelled as an LTI system including disturbance
and fault signals and fault detection filters were designed
for this system. Furthermore, controllers were designed
for the nominal plant and the faulty plant respectively
to construct the GIMC structure. It was verified that
designed fault detection filters were valid for the fault
tolerant control system experimentally. Finally, designed
fault detection filters were compared and it was shown
that Filter B has better performance for disturbance
attenuation.
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