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Abstract: One of the key-components for success of a decision support system is in its flexibility and 
applicability to different clinical locations. The present study is devoted to a system which is capable of 
successful transfer to a distant environment. We have developed a decision support system for antibiotic 
treatment (TREAT), which was adapted to four different hospitals in Europe. The system is based on a 
causal probabilistic network (CPN). The purpose of this paper is to present the models for transferability 
used in TREAT. The problem of transferability is addressed in the context of CPNs, emphasising the 
advantages of use of CPNs for solving the problem. The process of adapting TREAT is relatively easy; 
that is due to the modularity of the system. The system has been built using a modular architecture that 
allows rapid transfer of the system to different clinical environments. Such modularity can be archived by 
simple means which include the universal and modular structure of the CPN, the establishment of a large 
group of conditional probabilities in the CPN that are assumed to be independent of time and place, and 
the use of hierarchical Dirichlet methods for learning of data. Due to the universal structure of the CPN, 
the problem of transferability in TREAT concerns only the medical domain factors, not the topology of the 
system. 

 

1. INTRODUCTION 

A medical decision support system (MDSS) is constructed to  
assist clinicians in making decisions relating to diagnosis, 
treatment or prognosis. To achieve clinical and commercial 
success, such a system must possess transferability, i.e. it 
must be applicable to environments, different from the 
environment, where it has been developed. Most systems 
have to be adapted to a new location, because the factors their 
advice relies on can be widely different from one location to 
another (Spiegelhalter and Knill-Jones, 1984).  

Transferability is a key issue in the development and 
implementation of MDSSs. The term ‘transferability’ has 
been defined as ‘the degree to which the system retains its 
credibility and therefore reliability and usefulness, when 
applied in another organisational environment’ (Nolan et al., 
1991). In general, transferability is a complex property 
encompassing many basic properties related to the structure 
and function of MDSSs. The transfer of the system may 
affect the quantitative attributes of the system, as well as the 
topology of the models used in the system. The factors 
relevant for adaptation (or transferability) can be organized 
under two main headings: factors concerning the medical 
domain and factors concerning the information technology 
domain.  Domain factors, such as epidemiology, 
methodology, terminology and resources belong to the 
medical domain addressed by the MDSS. Information 
technology factors, such as knowledge acquisition, 
knowledge representation, system functionality and design, 
are independent of clinical medicine and belong instead to the 

discipline of knowledge engineering (Nolan et al., 1991; 
Schioler et al., 1994). Transferability is not only relevant for 
transfer in space (different geographical locations), but also 
for transfer in time. For example, in the case of application to 
the domain of infections diseases, it should be remembered 
that some epidemiological factors, the output of a MDSS 
relies on (e.g., the susceptibility of pathogens to antibiotics), 
may change over time, requiring periodical adaptation of the 
system even at the same hospital. 

The process of adaptation to new conditions depends on the 
techniques used to construct a system. The examples of 
experiments with transferability of MDDSs in the literature 
include studies about the systems based on Bayesian 
classification (Zagoria and Reggia, 1983), CPN (Jensen and 
Andreassen, 2007), neural networks (Ellenius and Groth, 
2000), rules (Boon-Falleur et al., 1995), diagnostic scores 
(Lindberg et al., 1987), case-base reasoning (Gierl et al., 
2003).  

The actuality of the transferability problem is supported by 
many examples of MDDSs, which did not perform well after 
being transferred to a distant environment (Zagoria and 
Reggia, 1983; Lindberg et al., 1987; Leibovici et al., 1997).   
One such system is a MDDS for empirical antibiotic 
treatment of severe infections built at Rabin Medical Center 
(Beilinson Campus, Petah-Tiqva, Israel) (Leibovici et al., 
1997). This logistic regression based-system was tested in a 
prospective, non-interventional, comparative cohort study at 
the original site and at another hospital. It outperformed 
physician at the original site, but its performance deteriorated 
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when transferred to another site. The authors of the system 
believe that the reason for this failure was due to 
underestimating the necessity of adapting the system to the 
settings of another hospital. First of all, it concerns the 
epidemiological factors related to infectious diseases. For 
example, the prevalence of different pathogens and their 
associated susceptibility to antibiotics may differ from region 
to region and from hospital to hospital and even different 
departments at the same hospital may have distinct patterns 
of susceptibility (Leibovici et al., 2000). 

A system called TREAT for treatment of severe infections 
has been applied in four hospitals in Denmark, Germany, 
Italy, and Israel. In these countries many epidemiological 
factors are different, the most important being that pathogens 
have substantially different susceptibility to antibiotics. 
Therefore, an antibiotic treatment which is appropriate in one 
country may be considered inappropriate or overkill in the 
other countries.  TREAT is based on a CPN (Andreassen et 
al., 2005) and the aims of the system are to improve the rate 
of appropriate antibiotic treatment, thereby reducing 
mortality, and to shift antibiotic use towards economical 
antibiotics, both in terms of direct cost, side effects and 
ecological cost, ascribed to the reduction of susceptibility due 
to use of antibiotics. Retrospective and prospective controlled 
clinical trials in four countries showed that despite 
differences between these countries, TREAT improved the 
rate of appropriate antibiotic treatment while reducing 
hospital stay and antibiotic costs, mainly the ecological costs 
(Kristensen et al., 2001; Paul et al., 2006).  TREAT thus 
presents an example of a system that can be successfully 
transferred to a distant environment.  

We believe the ease with which the transfer has been 
accomplished is due to the strategy chosen. In essence, the 
adaptation has been achieved by calibration, where we use 
the word calibration to indicate that it has only been 
necessary to make quantitative changes, without making 
qualitative changes, i.e. the parameters of the CPN have been 
modified, while it has been possible to leave the structure of 
the CPN unchanged. In this paper it is outlined, what data are 
needed for modelling and how the transferability is 
technically achieved. The problem of transferability will be 
addressed in the context of CPNs, emphasising the 
advantages of use of CPNs for solving the problem. We will 
show that the process of calibrating TREAT is relatively 
simple, affecting only the medical domain factors, not 
information technology factors. The system has been built 
using a modular architecture that allows rapid transfer of the 
system to other clinical environments. The paper describes 
the means used to achieve such modularity. 

2. STRUCTURE OF TREAT 

The main components of the TREAT system are the 
following (see also Fig. 1):   

User interface. The user interface is designed for entering the 
patient data and displaying the results of TREAT’s advice. It 
is implemented as a web page, thus enabling easy access to 
the system from different computers on the wards. 

Patient database. All patient data are stored in a SQL 
database. The data ranges from general patient and admission 
information to signs and symptoms observed by the clinician 
as well as microbiological results from blood and other types 
of cultures. 

 

Fig. 1. Structure of the TREAT system 

                                                                       

Calibration database. This SQL database contains 
information, which is specific for each hospital   
(distributions of pathogens, pathogens susceptibilities to 
antibiotics, therapy costs, etc.). 

MDSS module. This module plays the main role in the 
system. It can predict the diagnosis and recommend an 
appropriate antibiotic therapy based on data entered by the 
clinician. The module has two components: a CPN 
representing different infectious diseases, pathogens, 
treatments and treatments coverage; and an algorithm for 
finding the optimal antibiotic therapy.  The CPN has been 
built using the Hugin tool (Hugin, 2004). The algorithm has 
been written in C++ using Hugin’s API for handling the 
CPNs. 

The TREAT’s advice is based on the probabilities read from 
the CPN on diagnosis, infections severity, and the coverage 
of different single and combination antibiotic treatments. The 
algorithm chooses the most appropriate treatment using a 
cost-benefit analysis, where the main benefit components are 
the increase in the survival rate of the patient and reduction in 
bed days; the main cost components are the cost of 
administering the antibiotic therapy, the potential cost of 
adverse effects associated with antibiotics, and the cost of 
ecological impact on susceptibility associated with each 
antibiotic.  

2.1. TREAT CPN 

CPNs make it possible to build highly structured stochastic 
models. They can be used to express prior knowledge both of 
a qualitative and quantitative nature about the behaviour of 
biological systems. In general, a CPN (or a Bayesian 
network, or a belief network) is a probabilistic graphical 
model that represents a set of variables and conditional 
probabilities linking them. For example, a CPN can be used 
to calculate the probability of a patient having a specific 
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disease, given the absence or presence of certain symptoms, 
if the conditional probabilities between symptoms and 
disease are assumed to be known. Formally, CPNs are 
directed acyclic graphs whose nodes represent variables, and 
whose arcs encode conditional dependencies between the 
variables. A node that receives a link from another is called a 
child, and a node from which the link originates is called a 
parent. Each node has an associated table of conditional 
probabilities: the probability of the states in the node. A 
generalization of CPNs that can represent and solve decision 
problems under uncertainty are called Influence diagram. 
More about the theories behind a CPN (Pearl, 1988) and their 
introduction into the medical domain by (Heckerman, 1989; 
Andreassen et al., 1987) can be found elsewhere. 

The CPN in TREAT was built from distinct modules, each 
module representing one site of infection (e.g., urinary tract 
infections site (UTI)). Each site includes a set of specific 
pathogens that may cause an infection in the site (e.g., there 
are 13 different pathogens in UTI) and the state of infection 
by each pathogen before and after the treatment. The sites are 
connected to a stochastic variable sepsis. (The word “sepsis” 
refers to the fact that, in this condition, sites in the body that 
are normally sterile may contain pathogens.) Sepsis is 
assumed to have several states, among them “moderate 
sepsis”, “severe sepsis”, etc. Sepsis may cause several signs 
and symptoms, e.g. fever, which is represented by 5 states: 
<36, 36-36.5, 36.6-37.9, 38-38.6, >38.6. Each pathogen at 
each site of infection is also connected to the variables 
representing microbiological findings in blood culture.  

One of the virtues of the CPNs, is that decision theory can 
easily be applied (by means of the influence diagrams 
formalism). In TREAT, the advice on the most appropriate 
treatment is based a cost-benefit analysis. But it should be 
noted, that the decision theory module in TREAT is placed 
outside the CPN, in the algorithm. The CPN does not include 
any influence diagrams due to a computational limit caused 
by the complexity of the CPN. 

The topology of the TREAT CPN was chosen to reflect the 
most universal scenario for an infection episode. By other 
words, the CPN is larger than otherwise needed to be built for 
use at a single location. For example, the set of pathogens 
belonging to a site of infection is chosen to be larger than 
could be observed at a specific hospital. Pathogens in 
TREAT represent a more or less full collection of pathogens 
observed all over the world. Another example concerns the 
routine of blood sampling for culture. The current CPN for 
blood-culture bottles has space for 2 samples, each including 
3 sets. One set consists of maximum 3 bottles: 2 aerobic and 
1 anaerobic.  This is presumably sufficient to cover all 
possible combinations of samples/sets/bottles taken in the 
hospitals worldwide.  In more details the structure of the 
CPN is described elsewhere (Andreassen et al., 2000; 
Leibovici et al., 2000). 

3. MODELLING FOR TRANSFERABILITY IN TREAT 

Establishment of the universal attributes and the factors for 
calibration formed the main decision concerning modelling 
for transferability in TREAT.  

3.1.   The universal attributes in TREAT 

Due to the universal nature of the CPN (for example 
concerning pathogens and blood samples) we allowed 
ourselves to fix the CPNs structure. Only the quantitative 
parameters of the TREAT model were adapted to changes in 
locations and in time. Thus the problems of transferability in 
TREAT do not concern the factors belonging to the 
information technology domain. 

The next point of dealing with transferability was the 
discussion about the conditional probability tables belonging 
to the stochastic variables used in the CPN. The discussion 
has revealed that they can be divided into two groups.  The 
first group, which is far the largest, consists of conditional 
probabilities that we assume to be independent of time and 
place. Typically, these conditional probabilities are hard-
wired into the CPN, among them the probabilities required 
for the assessment of the state of sepsis. For example, the 
conditional probabilities of the states of fever given various 
states of sepsis are assumed to be the same for all hospitals. 
Other examples of universal factors include signs and 
symptoms of sites of infection. For instance, the conditional 
probability for flank pain (a sign of UTI) given various 
diagnosis in UTI is independent on location.   

Conditional probabilities in the other group are assumed to be 
specific for each participating hospital and they may change 
over time. The factors they correspond to are discussed in the 
next section.  

3.2.   The factors for calibration in TREAT 

The factors for calibration in TREAT belong only to the 
medical domain. They can roughly be divided into the two 
groups: epidemiological and administrative. For practical 
convenience, both epidemiological and administrative factors 
are kept in the calibration database.

The epidemiological factors for calibration in TREAT are 
included in Table 1. The data can be collected based on the 
local databases and the literature, or other sources of 
knowledge. These calibrations are the most important, as they 
are involved into the basic reasoning of the system. 
Conditional probabilities corresponding to these factors have 
to be compiled into the CPN.  

Due to the explicit nature of the CPN, where the data can be 
found for both the parent and child nodes, the learning of data 
related to the epidemiological factors can be archived by 
simple counting. 

Table 1.  Epidemiological factors for calibration 
in TREAT 

  1. Prevalence of risk factors 
  2. Prevalence of pathogens 
  3. Distribution of contaminants in  
       blood- culture  bottles 
  4. Pathogens  susceptibility to antibiotics 
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The problem of transferability of administrative factors was 
encountered mostly at the level of workflow of the system 
and user interaction. These factors are included in Table 2. 
The factors marked as “Other information” include the names 
of the hospital departments, the names of the local-culture 
samples, the units for laboratory values, and other text strings 
and information that at least partially allow the text available 
in the system to be more specific for the hospital or adapted 
to the local language, and that allow measurements to be 
converted between different unit systems. These 
administrative factors are compiled into the CPN and the user 
interface. 

Table 2.  Administrative factors for calibration 
in TREAT 

  1. Treatments available at the hospital and 
      corresponding costs  
  2. Basic hospital costs (e.g., the cost of a  
      bed-day) 
  3. Antibiotics available at the hospital pharmacy
  4. Antibiotics used for testing of susceptibilities 
  5. Routine of blood sampling for culture 
  6. Other information 

 

In the following we give some examples of calibration of the 
factors given in Tables 1 and 2.  

 3.2.1.   Prevalence of pathogens 

Based on the distribution of pathogens, the CPN calculates 
probability for diagnosis.  The prevalence of a pathogen may 
vary from place to place, either due to genuine geographical 
variation or to different reasons for referral to the clinical 
centre. In TREAT we specify the prevalence of the sites of 
infection in the population at large and in the hospital; and 
the prevalence of pathogens by site of infection, place of 
acquisition (community/hospital) and various risk factors.  

The prevalences of pathogens in the CPN are represented by 
the conditional probabilities for pathogens given specific risk 
factors. For calibrating pathogens at a hospital, we ask a local 
clinician to fill a table with prevalences of pathogens within 
site of infection with specific risk factors, given place of 
acquisition.   

3.2.2. Pathogens susceptibility to antibiotics 

The knowledge about pathogens susceptibility to an 
antibiotic forms the basis for the decision-theoretical 
calculation of advice by TREAT. The knowledge required 
takes the form of a matrix that contains the susceptibilities of 
each of the 156 pathogens considered in TREAT. The 
susceptibility of a pathogen to an antibiotic is the probability 
that the activity of a pathogen can be eliminated by the given 
antibiotic. The susceptibility also depends on the place of 
acquisition of the infection. Hospital-acquired infections tend 

to be less susceptible to antibiotics than infections acquired in 
the community; therefore the place of acquisition is also an 
entry in the matrix of susceptibilities.  

The susceptibilities differ from region to region and from 
hospital to hospital. At a given hospital, at a given point in 
time, we need to provide estimates of susceptibilities to allow 
the CPN to calculate the probability that a given treatment 
will cover.  

In the process of calibration the hospital is asked to compile a 
database of in vitro susceptibilities of most of the relevant 
pathogens for a number of antibiotics. The size of local 
databases is limited as susceptibilities change over time. Even 
though the databases may contain several thousand cases, 
complications may arise. Some of the pathogens are not 
frequently occurring, and some pathogens may only be tested 
for their susceptibility to a small number of antibiotics. As a 
consequence, a matrix of susceptibilities can contain a 
minority of entries with high counts; for example, several 
hundred cases where the pathogen Escherichia coli had its 
susceptibility tested for antibiotic ampicillin. Most of the 
entries have very few observations, and the susceptibility 
must be decided on the bases of a few, or even zero, observed 
cases.  

To generate susceptibilities even when the counts that can be 
acquired from the local databases are very low, we have 
chosen a Bayesian approach, where a prior distribution is 
specified for the susceptibility. It is practical to use beta 
distributions as the priors and to update the posterior using 
hierarchical Dirichlet learning (Andreassen et al., 2003). 
These prior distributions may be based on observations from 
the literature; on databases from other clinical sites; or from 
the same database, but without distinguishing between 
different places of acquisition of infection; on databases from 
another period of time; on the knowledge, that some 
antibiotics will always be ineffective against pathogens; on 
the knowledge about similar properties of some pathogens 
(Andreassen et al., 2007).     

3.2.3. Treatments available at the hospital and corresponding 
costs  

Different hospitals have different politics regarding antibiotic 
therapy. For instance, the hospitals in the Northern Europe 
are known as being conservative in the choice of antibiotic 
treatment and penicillins are still widely used in these 
countries, while clinicians in the Southern Europe are prone 
to prescribe drugs of newer generations, e.g., cephalosporins 
and carbapenems.   

Each location can define which antibiotic drugs or 
combinations will be allowed to be tested and thus 
recommended by TREAT. Treatments in TREAT are 
calibrated, as well as their costs of administration, which 
include the cost of purchasing a drug, with addition of the 
cost of disposables and the labour costs. The cost of 
ecological impact on resistance associated with each 
antibiotic depends on pathogens susceptibility to this 
antibiotic at a hospital and has also to be calibrated.  We note, 
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that the side-effects cost (the potential cost of adverse effects 
associated with the drug) is assumed to be the same for all the 
sites given similar modes and doses of administration. 

3.4 Practical applications 

TREAT has been calibrated to four different sites: 1) Aalborg 
Hospital in Denmark; 2) Rabin Medical Centre, Beilinson 
Campus, in Petah-Tiqva, Israel; 3) The University Hospital in 
Freiburg, Germany; 4) Gemelli Hospital, Universitá Cattolica 
del Sacro Cuore School of Medicine, in Rome, Italy.  

Aalborg Hospital participated in a retrospective, non-
interventional trial (Kristensen et al., 2001). Data collection 
here was based on the local databases and the literature. The 
results of the trial shows, that TREAT suggested antibiotics 
which would provide coverage in 89% compared to 61% for 
which empirical therapy actually provided coverage. Other 
three hospitals participated in a prospective randomised 
controlled trial of the system (Paul et al., 2006), designed as a 
cluster-randomised trial. The first round of calibration 
connected to the cluster randomised trial was performed for 
Rabin Medical Centre in Israel. The data for calibration were 
found in the local databases and the literature. The next two 
participants of the trial, University Hospital in Freiburg and 
Gemelli Hospital in Rome, used not only their local databases 
and literature, but they also had access to the data collected at 
the Rabin Centre. The calibration tables for Freiburg and 
Rome were pre-filled by the default data based on the Rabin 
collection. That simplified the task of calibration, as in some 
cases the clinicians in Freiburg and Rome observed the 
similarity between their and the Rabin’s data.  The aim of the 
cluster randomised trial was to compare performance of 
wards which used TREAT (intervention) to those without 
TREAT (control).  The rate of appropriate empirical 
antibiotic treatment was higher in intervention wards using 
the TREAT system versus control wards that had no access to 
the MDDS, but were openly monitored (73% versus 64%). 
Length of hospital stay, costs related to the ecological impact 
on resistance and total antibiotic costs were lower in 
intervention versus control wards. 

4. DISCUSSION 

Based on the promising results of the clinical trials of a 
MDSS based on a CPN (TREAT), it was concluded that 
modelling for transferability in the system gave good results, 
and that successful transfer to a different environment can be 
achieved. The aim of the paper was to present modelling for 
transferability of TREAT and to analyse the means which 
lead to success in transferability. 

The system has been built using a modular architecture that 
allows rapid transfer of the system to different clinical 
environments. Such modularity can be archived by several 
relatively simple means. First of all, the core of the TREAT 
system is a CPN having a modular structure. For purpose of 
transferability a CPN offers a collection of advantages, that is 
unique to this platform for decision support systems: a clear 
differentiation between qualitative and quantitative 
knowledge; a way to draw strong knowledge into the system, 
without the need to repeat the statistical analysis and 

collection of large databases at each site; an explicit 
differentiation between local and universal factors; a way to 
combine data derived from the literature with data derived 
from local databases. 

A clear differentiation between qualitative and quantitative 
knowledge is an important feature of CPNs. The universal 
and fixed structure of the CPN in TREAT lead to a relatively 
simple process of calibration affecting only the medical 
domain factors, not information technology factors. In the 
case of other platforms it would require revising the 
knowledge base with complete development from scratch (for 
example, a rule-based approach would require revision of the 
set of rules). 

Based on the explicit differentiation between local and 
universal factors in CPNs, we established a large group of 
conditional probabilities in the TREAT CPN that are 
assumed to be independent of time and place, thus reducing 
the group of factors needed to be calibrated.  

We have shown, that due to the universal topology of the 
CPN, the calibration of TREAT is only of quantitative nature, 
without changes in the CPN’s structure. We do not foresee a 
situation in which there will be need to modify the structure 
of the CPN. The design reflects the pathogenesis of infections 
as it is currently understood. However, if new biological 
markers of infections emerge, that change our understanding 
of the relations between pathogens, sepsis and the 
manifestations of sepsis, these will probably have to be 
incorporated into the model. 

Future efforts should be invested in optimising the process 
for calibrating distribution of pathogens. The collection of 
data for calibrating pathogens is a complex and time 
consuming process. The full data for prevalences of 
pathogens given risk factors are available only in an 
environment in which a full patient electronic file is kept, and 
the diagnoses of sites of infection must be linked to 
bacteriological results. But even in such an environment data 
might be biased by missing data (e.g., of hospital acquired 
infections), and the result of data collection may be sparse 
and poor. Application of machine learning methods is one of 
possible solutions for minimising the problem. Another 
solution may probably be found in revising the current 
structure of the CPN for pathogens and reducing the state 
space of conditional probabilities for pathogens. 

To conclude, we have built a CPN-based MDSS, which is 
capable of successful transfer to a different environment. The 
modularity of the system makes it easier to add or revise the 
knowledge base without necessitating complete development 
from scratch. Modularity was archived by simple means, 
including the universal and modular nature of the CPN, the 
establishment of a large group of conditional probabilities in 
the CPN that are assumed to be independent of time and 
place, and the use of hierarchical Dirichlet methods for 
learning of conditional probabilities. 
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