
CHEMOTHERAPY 
 USING LINEAR ANALYSIS AND SWARM INTELLIGENCE 

 
E. Bavafa *, M. J. Yazdanpanah **, B. Kalaghchi *** 

 
*, ** Control & Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, 

 University of Tehran, Tehran, Iran (email: e.bavafa@ece.ut.ac.ir, yazdan@ut.ac.ir ) 

*** Cancer Reasearch Center, Cancer Institute, 
University of Tehran, Tehran, Iran (email: kalaghchi@tums.ac.ir)  

Abstract: In this paper, a linear analysis of Gompertz equation will be introduced. By applying the 
analysis and the Least Square Error (LSE) method, the estimation of nonlinear relation between the drug 
dosage and the initial and final number of cancer cells, after a specified treatment gap, is possible. The 
new method is applied in combination with swarm intelligence, to find an estimation of optimal treatment 
program for chemotherapy with various cost functions. The main advantage of the analysis is that it 
reduces the corresponding search space of the swarm.    Copyright © 2008 IFAC 
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1. INTRODUCTION 

The treatment of the tumoural diseases has a long history; 
usually a combination of various treatments is used. 
Chemotherapy is one of the important and effective medical 
treatments for patients (DeVita, et al., 2005). The 
successfulness of a chemotherapy treatment depends on how 
the grade and the stage of the tumour is, type and the dosage 
of the drug and the duration of treatment gaps (DeVita, et al., 
2005, Ribba, et al., 2005, Martin, 1992, Floares, et al., 2003, 
Tarnawski, et al., 2002). To improve the effect of the 
chemotherapy, simulating the growth and the response of a 
solid tumour to a specific treatment by mathematical models 
(Preziosi, 2003, Byrne, et al., 2006a, b, Martin, 1992) and 
finding the best treatment program using optimal control 
methods, may have an important role (Martin, 1992, Floares, 
et al., 2003,  Swierniak, et al., 2003). 
 
The practicability of a suggested treatment, total drug dosage 
and total number of cancer cells during and at the end of the 
treatment, are important factors to evaluate a suggestion. It 
has been investigated that low intensity and distributed 
chemotherapy drug causes resistance of cells to the drug in 
compare with high intensity dosage in the same time (DeVita, 
et al., 2005, Martin, 1992, Floares, et al., 2003). In addition, 
it has been showed that long lasted treatment gaps, affected 
on the repopulation of cancer cells (Ribba, et al., 2005, 
Tarnawski, et al., 2002). Another important factor is side 
effect of the drugs. Because of toxic side effect of the dugs, 
the usual treatments are arranged corresponding to the 
necessary time for recovery of bone marrow (DeVita, et al., 
2005). 
  
Although toxic constraints are considered by Martin (1992) 
and Floares, et al. (2003), the drug dosage regimens do not 
seem applicable. The constraints are considered only in the 

84 days of treatment. However, the cytotoxic agents will be 
still active after the 84 days. Therefore, the corresponding 
constraint may not be satisfied after 84 days. As a result high-
continues drug dosage at the end of 84 days, is not 
practicable. In order to ensure the recovery of the bone 
marrow, it might be better to schedule the treatment program 
with floating treatment gaps in which the minimum duration 
of the gap, depends on the type of the drug and lasts one 
week or more. 
 
Because of discrete nature (Martin, 1992) and exponential 
explosion of dynamic programming approach, applying this 
method to find the best treatment program with floating 
treatment gaps, is impossible. To solve such problems, 
swarm intelligence might be a reliable choice (Zomaya, 
2006).  
 
For each particle of the swarm a reference trajectory of 
cancer cells, in 84 days of the treatment program, will be 
created randomly. In each trajectory, the duration of 
treatment gaps, the initial and final number of cancer cells of 
that duration are predetermined. To improve the performance 
of the swarm intelligence and make some reduction in its 
iterations, the final number of cancer cells at the end of the 
gap will be chosen less than the initial ones. A drug dosage 
which is needed to reach the final number of cancer cells in 
the specified time, should be calculated. This goal could be 
achieved using some linear analysis and algebraic methods. 
By using a linear analysis, the nonlinear relation between the 
drug dosage, and the initial size and final size of the tumour 
after a specified treatment gap is expressed. The Least Square 
Error (LSE) method optimizes the result of the analysis. 
Therefore, the search space of the particles of the swarm will 
be reduced considerably. 

In Section 2, the Gompertz model and a brief history of some 
optimal methods will be reviewed. The analysis by which the 
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drug dosage will be calculable, is presented in Section 3. 
Optimal control, via swarm intelligence, will be explained in 
section 4. The accuracy of the presented analysis, the results 
of the swarm optimization and the effect of the cost function 
on optimal treatment program will be discussed in Section 5. 
Finally in Section 6 the conclusion will be presented. 

2. GOMPERTZ  EQUATION AND OPTIMAL CONTROL 

 
The Gompertz equation (1) is one of the mathematical 
models which is used to simulate the tumour growth 
(Preziosi, 2003, Martin, 1992, Floares, et al., 2003). 
Although the effect of angiogenesis is not addressed directly 
by avasculr models, the corresponding affect is shown by 
Gompertz equation indirectly (Preziosi, 2003).  
 
              NvvHvvkNNN thth )()()/ln( −−−= θλ&

0)0(, NN =  
      vuv γ−=&                                                          (1)      0)0(, =v
 
In the Gompertz equation (1), N(t) is the number of cancer 
cells at the time t, v(t) is the drug concentration, u(t) is the 
drug which is delivered to the system, λ and k are positive 
constants corresponding to the cell growth rate and cell death 
rate, θ is the maximum cancer cells number that tumour can 
reach, γ is a positive constant which is related to the half life 
of the drug (i.e. HLD/)2ln(=γ , HLD is the drug half life), 
H is the heaviside function and vth is the minimum drug 
concentration which should be exist to affect the drug. vmax is 
the maximum allowable drug dosage (2). The values of all 
constants are given in table 1. 
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The constraint on toxic side effect of the drug is presented in 
(4) in which vcum is maximum cumulative toxicicity (Martin, 
1992). 
 
                  (4) cum

T
vdssv ≤∫0

)(
 
Based on (1)-(4), Martin (1992) introduced an optimal 
treatment program, which is based on “control 
parameterization” and “is a method for solving general 

optimal control problems numerically”. In this way, the 
solution of an optimal control problem will be approximated 
via non liner programming techniques (for more details, one 
may see (Martin, 1992)). 
 
In practice the drug injection for chemotherapy has a discrete 
nature (DeVita, et al., 2005). Because of problematic state 
space of discrete treatment gaps to apply methods such as 
dynamic programming, the continuous injections are 
suggested by (Martin, 1992). However, a high-continuous 
drug dosage especially at the end of the 84 days of treatment 
program is harmful for patients. 
 
In (Floares, et al., 2003) the treatment program and the 
recommended drug dosages are not given directly in the 
paper. However, for a treatment gap which lasts one week 
and the maximum drug dosage per each week, total number 
of cancer cells will decrease into 2.6*106. As a result, the 

ould not reduce enough to reach the reported 
goals in that paper, unless by using a high-continues drug 
dosage similar to Martin (1992) which has not a guaranty to 
recovery bone marrow after 84 days. 

cancer cells c

 
Therefore, the treatment gap in a practicable treatment 
program, seems better to have a floating nature which lasts 
minimally 1-2 weeks, depends on the type of the drug. 
 

Table 1. The value of parameters of Gompertz equation, 
which are taken from (Martin, 1992) 

Parameter Value Description 
λ 9.9*10-4 (day-1) 
k 8.4*10-3 (day-1) 
γ 0.27 (day-1) 
HLD 2.5 (day) 

In this paper,  
the converted values 
to (hour-1) and (hour) 
are used. 

θ 1012  
N0 1010  
T 84 (day)  
vth 10 (D) 
vmax 50 (D) 
vcum 2.1*103 (D) 

(D) is the unit of 
 drug concentration  
(Martin, 1992)  

 

3. ANALYSIS OF DRUG DOSAGE 

 
3.1.State of the Problem 
In this section, a linear analysis in order to find a relation 
between drug dosage and initial and final number of cancer 
cells after a specified treatment gap, will be presented. In 
order to ensure the recovery of the bone marrow, it’s assumed 
that for a given drug with a half life of 2.5(day), the treatment 
gap lasts at least 1 week. Therefore, the time interval for drug 
delivery is rewritten as (5). This means that the treatment gap 
should last minimally 7 days and maximally 21 days, like 
ordinary treatments. 
 
         TMM =≤<<<= +1210 ττττ L  
         )](21,7[1 dayii ∈−+ ττ      1         (5) Mi ≤≤
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Forward this point, to make appearance of equations simple, 
it will be assumed that ith treatment gap has the following 
time interval; [0, tf] ( ).  217 ≤≤ ft
 
3.2. Linear Analysis  
As simulation results shows, the drug will be ineffective 
before 168 hours (7 days). The repopulation phase begins 
when the drug concentration becomes less effective in 
compare with natural cancer cells increment (in Fig. 1 is 
showed by tregrowth). When the drug concentration equals to 
the concentration vth, the drug will be totally ineffective (in 
Fig. 1, The Ineffective Drug time is showed by tID). At this 
time, only the growth term of Gompertz equation will be 
remain, without affecting dynamics of the drug (6). 
 
                          (6) )/ln(.. NNN θλ=& for fID ttt <<<0
 

 
Fig. 1. The repopulation phase begins at time tregrowth when the drug 

concentration becomes less effective in compare with natural 
cancer cells increment. When the drug concentration equals to 
the concentration vth, at time tID, the drug will be totally 
ineffective. 

 
By replacing (7) instead of N in Gomperz equation (Martin, 
1992, Floares, et al., 2003), it may be rewritten as (8) : 
 
  )exp( yN −= θ                   (7) 
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      vuv γ−=&                                                    (8) 0)0(, vv =
 
tID separates (8) into two linear systems as follows:  
 
            )( thvvkyy −+−= λ&        for IDtt ≤≤0
            vv γ−=&                                      (9) 
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In (9) the initial value of v(t) at the beginning time of ith gap 
is same as value of u(t) in the same time (3).  According to 
the fact that dynamic of the drug can not be affected by 
cancer cells, in ith gap dynamic of the drug concentration will 
be solvable (11). 
 
   ).exp()( 0 tvtv γ−=     with            (11) iivv στ += − )(0
 

By replacing tID in (11) and recalling that the concentration of 
the drug will become vth at tID, v0 will be related to vth as 
follows: 
   ).exp(0 IDth tvv γ−=         (12) 
 
The initial value of y(t) in (9) will be calculated from last 
treatment gap (i.e. ) . With initial values of y0 
and v0 and according to (11), (9) has the following solution: 

)(0
−= iNN τ
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By replacing v0 (v0 is calculable from (12)) in (13) and some 
algebraic calculations, y(tID) will be: 
   

+−= )]./(..[)( 2 γλλγ thID vkty  
( ) ( )].)().exp(..).[.exp( 0 λγλγλ thIDthID vktvkyt +−−−  

(14)  
  
y(tID) is the initial value of  (10). As a result, the response of 
(10) at tf will be calculated as: 
 
            )).(exp().()( IDfIDf tttyty −−= λ        (15) 

                 )).(exp().()( IDffID tttyty −=⇒ λ             (16) 
 
y(tID) in (14) and (16) is the same. The result of equality of  
(14) and (16) is: 
 

).exp()/).exp(.( IDID ttM γλλγ −=      with  
]/.).exp().()].[./()[( 0 λλγλ thffth vkyttyvkM −−−= (17) 

 
With determined value of y0 and desired values of tf and y(tf), 
in order to solve (17), exp  function should be estimated as 
follows: 
                       (18) 2/..1).exp( 22 xxx ααα ++=
 
By replacing the estimation of exp(.) in (17) and some 
simplifications, IDt~  which is the estimation of tID, will be: 
 

      
( )
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ff
ID vk
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=           (19) 

 
3.3. Least Square Error Estimation 
The estimation (19) can be optimized by using LSE method.  
Suppose that: 
           01

2
2

3
3

~.~.~. atatatat IDIDIDID +++=         (20) 
 
Simulating the response of (8) on a random set, consisting of 
y0, tf and v0, will result in y(tf) and tID (say tID-i for ith sample). 
The values of iIDt −

~  on the given sample set, consists of  y0, tf 
and y(tf), are calculable via (19). By applying LSE method 
and (21) and (22), the best value to estimate coefficient 
vector Taaaaa  can be calculated via (23). ][ 0123=
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In (23), the superscript .T stands for transpose operator. The 
coefficient vector a can be calculated just once in an offline 
manner. In this paper in order to gain better results, the 
sample sets has been created for 8 intervals of N0 (i.e. 

   for i = 3, 4,…, 10) and the calculated 
coefficient vectors (

1)(log 010 +<≤ iNi
a) are stored in a 8*4 table (Table 2). 

Although the memory needed to store the table is not worthy, 
it will increase the accuracy of the results.  
 

Table 2. The value of coefficient vector a 
 for 8 different intervals of N0 

⎣ ⎦)(log 010 N * a0 a1 a2 a3 
  3 2.0936 0.9861 -0.0016 0.1676*10-5 
  4 2.1356 0.9851 -0.0016 0.1659*10-5 
  5 2.1721 0.9843 -0.0016 0.1643*10-5 
  6 2.2031 0.9836 -0.0016 0.1630*10-5 
  7 2.2286 0.9830 -0.0016 0.1619*10-5 
  8 2.2486 0.9825 -0.0016 0.1611*10-5 
  9 2.2630 0.9821 -0.0016 0.1604*10-5 
  10 2.2719 0.9819 -0.0016 0.1601*10-5 

* the notation  stands for floor operation ⎣ ⎦.
 
In (20), a1 (the coefficient of IDt~ ) equals, approximately, to 
one. Additionally, the values of a2 and a3 are around zero. 
The value of a0 shows that the estimation of tID is usually 
about 2(hour) less than the actual value. The coefficient 
vector a varies finely in 8 intervals. Considering these facts, 
(19) is a powerful estimation of tID which can be optimized in 
combination with (20).  
 
3.4. Drug Estimation 
After estimation of  tID by applying (12), the initial value of 
v(t) in the ith treatment gap (v0) will be determined. As 

 in which  is the remainder of the 
drug from the last drug delivery, for  ith treatment gap the 
drug dosage 

)(0
−+= ii vv τσ )( −

iv τ

)( iσ can be calculated by (24). 
 

               (24) )().exp(. −−= iIDthi vtv τγσ
 
  

4. OPTIMAL CONTROL 
 
As mentioned in Section 2, the treatment gap in a practicable 
treatment program, seems better to have a floating nature 
which lasts minimally one week in this paper. However, 
because of discrete nature (Martin, 1992) and exponential 
explosion of dynamic programming approach, applying this 
method to find the best treatment program with floating 
treatment gaps, is impossible. To solve such problems, 
swarm intelligence might be a reliable choice (Zomaya, 
2006).  
 
For each particle of the swarm, a reference trajectory of 
cancer cells, in 84 days of the treatment program, will be 
created randomly. In each iteration based on the cost of  
trajectories,  the best particles will be selected. The next 
generation of the swarm will be created by the selected 
population. 
 
4.1. Acceptable Trajectories 
A trajectory begins with an initial number of cancer cells (N0) 
and follows with random drug dosages ( ) and 
random duration of treatment gaps ( ). The 
goal of chemotherapy is reduction of cancer cells. As a result, 
a trajectory will be called unacceptable, if it has a treatment 
gap which has less initial number of cancer cells in compare 
with the final one at the end of that gap (Fig. 2.a). If there is 
not any acceptable trajectory, chemotherapy will not be a 
desirable candidate to choose, while tumour size has not a 
decreasing behavior during the treatment. In order to filter 
unacceptable trajectories by considering a random set of drug 
dosages and treatment gaps, the numerical algorithm 
corresponding to (1) should run. 

)](,[ max0 Dvvv th∈

)](21,7[ dayt f ∈

 
Another way to create trajectories is, to suggest the drug 
dosage randomly such that it could be guidance to an 
acceptable trajectory. An acceptable trajectory (Fig. 2.a) 
begins from an initial number of cancer cells (N0) and follows 
with random treatment durations ( ) and 
random values for final number of cancer cell at tf such that 

)](21,7[ dayt f ∈

),.[)( 00 NNtN f α∈  ( 10 <<≠ α ). The appropriate drug dosages 
which leads to desired N(tf), could be suggested by (19) and 
(20).   
 
 

 
(a)   (b) 

Fig. 2. (a) In some treatment gaps of unacceptable trajectories, the 
initial number of cancer cells is less than the final one, at the end 
of that gap.  

     (b) Using the presented analysis, only acceptable trajectories will 
be created. 

 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5236



 
 

 

4.2. Finding the Optimal Trajectory 
4.2.1. Cost Function 
In order to find the optimal trajectory, a cost function should 
be determined to evaluate each particle. The final number of 
cancer cells at the end of 84 days is one of the choices 
(Martin, 1992, Floares, et al., 2003); however, in some 
special cases such as old patients or for whom normal 
dosages may be harmful, total drug dosage might be 
considered, in addition to final cells (Swierniak, et al., 2003).  
 
For swarm optimization, two different cost functions will be 
tested.  One of the cost functions is the final number of 
cancer cells at the end of 84 days (25). The other one is based 
on final number of cancer cells and total drug dosage (26). 
 

           (25) ))((log101 TNJ =

                   (26) ∑
=

+=
M

i
iDN CTNCJ

1
102 .))((log. σ

 
In (26), CN and CD are positive constants, related to the 
special conditions of the patient.  
 
4.2.2. Swarm Algorithm 
At first step of the swarm algorithm, the initial population of 
the particles will be generated. Each particle presents a 
random-acceptable trajectory. In each iteration, the best 
particles will be selected. Based on the selected population, 
the next generation of the population will be created. 
 
To generate a new particle, a cut point will be chosen 
randomly from the parent. The cut point determines that the 
new treatment program would be a combination of which 
first-steps of the parent's trajectory and a new-acceptable 
trajectory. As the cut point is chosen randomly, both chances 
for creating new trajectories or maintaining the parent's path 
with some verifications will be exists (Fig. 3).  
 

 
Fig. 3. The Parent Trajectory (black path with square) and two cut 

points are shown. As the cut point is chosen randomly, both 
chances of creating new trajectories (red path with triangle) or 
maintain the parent's path with some modifications (blue one 
with circle) will be exists. 

 
In the first iterations, the best-selection sets (parent's sets) are 
greater than the sets in the next iterations. It increases the 
chance that the search space will be discovered by a coarse 

view. After determining the scope of the solution, by 
reduction in the size of parent's sets, new trajectories will be 
generating in the corresponding scope. More details of the 
algorithm are given in Fig. 4. 
  

 
Fig. 4. The Flowchart of the swarm optimization algorithm. After 

some tests, the value of the swarm parameters are adjusted as 
follows: P= 600 and I= 60. In this way, the best results of the 
swarm will be changed rarely at the last iterations of the 
algorithm.  

 
5. RESULTS 

 
In Section 3.3 an estimation of tID (20) to optimize (19), is 
presented. Equation (20) has been introduces with a 
polynomial with degree 3. Additionally, the verification has 
been done with other polynomials with degree 1, 2, 4. Each 
polynomial has been tested for 8 intervals of N0 (i.e. 

1)(log 010 +<≤ iNi    for i = 3, 4,…, 10). In each interval 
14,560 samples has been tested. In compare with other 
degrees, (20) has the minimum mean square error for drug 
stimation (Fig. 5). e 

 
Fig. 5. The bar chart of the least square error of estimated drug for 

various number of initial cancer cells and polynomials with 
various degrees. The error of the polynomial with degree 1 is 
more than 1.2. The polynomial with degree 3 has the minimum 
error. 
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In order to find optimal treatment program, the cost functions 
(25) and (26) has been presented. According to the fact, that 
the minimum time interval of a treatment gap and the 
maximum drug dosage (vmax) are determined; the best 
treatment to reach minimum final number of cells (i.e. the 
result of (25)), is maximum drug dosage for each week. This 
could be a good reference to evaluate the accuracy of the 
swarm method. 
  
Because of using the acceptable trajectories and the best-
selection sets with variable size, the algorithm finds an 
estimation of the optimal trajectory with 60 iterations on a 
600 member population. After 60th iteration, there would be 
rarely changes in the best trajectories. In Fig. 6 the best 
trajectory to reach minimum final number of cancer cells and 
two estimations of optimal trajectory which swarm 
determines, are shown. The estimation of the optimal 
trajectory is usually between specified trajectories in Fig. 6. 
Although the number of iterations is low, the result is an 
acceptable estimation of the best.  
  

 
Fig. 6. (1) The best trajectory to reach minimum number of cancer 

cells. 
 (2), (3) Two estimations of optimal trajectory which swarm 

determines. The estimations of the swarm are usually between 
these trajectories. 

 

 
Fig. 7. Three optimal treatment programs with different values of CN 

and CD: 
 (1) CN=1, CD=0; the goal of treatment is the minimum number 

of cancer cells. 
 (2) CN=100, CD=1; the treatment gaps last more than case (1). 
 (3) CN=0, CD=1; the treatment gaps last more than cases (1),(2) 

and the drug dosages reduce in compare with them. 
 
By applying cost function (26) with three different values for 
CN and CD, some treatment programs are achieved (Fig. 7). 
Increasing in value CN/CD causes that the optimal trajectory 

of (26) approximates the best treatment of (25). Although, 
these suggestions reduces the number of cancer cells; they 
may not be applicable. These treatment programs could not 
guaranty recovery of the bone marrow (DeVita, et al., 2005). 
Lower values of CN/CD cause that the treatment gaps last 
more than the other case. Additionally, more reduction in the 
value of CN/CD  causes more reduction in drug dosage. 
Considering the conditions of the patient, parameters CN and 
CD should be determined. 
 

6. CONCLUSION 
 
By using a combination of linear analysis and LSE method, it 
is possible to estimate the drug dosage in a specified 
treatment gap with initial and final number of cancer cells. 
The main advantage of the presented analysis is that it is to 
avoid unacceptable trajectories without applying numerical 
algorithms or artificial methods such as neural networks. By 
decreasing the search space of the swarm, the required 
number of iterations to approximate the optimal treatment 
program will be reduced. 
 
The suggested treatment programs may be used in 
combination with complex simulation methods such as 

ultiscale cancer modelling (Byrne, et al., 2006a, b).    m
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