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Abstract: A state feedback law is proposed for on-line optimization of microalgal growth in a
photobioreactor in the presence of non-measurable disturbances. The objective is to maximize a
photosynthetic production rate (specific growth rate of microalgae) by manipulating the irradiance. The
model describing the growth of microalgae is based on the mechanistic description in the form of the
so-called photosynthetic factory. The reduction to a slow dynamics is used to derive analytically the
approximation of the optimal feedback control. The analysis of the obtained explicit formula shows
that the optimal feedback control actually performs optimal transfer to a constant optimal irradiance
developed earlier but does not achieve principally better performance than the optimal control within
the class of constant irradiance. Therefore, by reducing fast dynamics one can not reveal possible more
complex optimal solutions. At the same time, this contradicts to a common belief in biotechnological
community that the fast phenomena may be neglected. Illustrative simulations are included.

1. INTRODUCTION

The main goal of this study is to derive the optimal feedback
control of a bioreactor for cultivation of microalgae (i.e. pho-
tobioreactor) which operates under high-irradiance (Masojı́dek
et al., 2003). The model considered here is the lumped para-
meter model for photosynthesis and photoinhibition, the so-
called model of photosynthetic factory - PSF model (Eilers
and Peeters, 1988; Eilers and Peeters, 1993; Kmeť et al., 1993;
Papáček et al., 2007; Wu and Merchuk, 2001). This phenom-
enological (mechanistic) five-parameter (q1, .., q5) model, in-
troduced later on, is the stiff system and the separation between
the fast (light and dark reactions) and slow dynamic (photoin-
hibition) is modelled by a small parameter ǫ ≈ q5. The control
signal is the incident irradiance and the on-line measurable
quantity is the photosynthetic oxygen production rate (propor-
tional to the specific growth rate µ defined as: µ := ċx/cx,
where cx is the microalgal cell density).

The purpose of this paper is to analyze these two-scale phenom-
ena and to use this analysis to compute explicit optimal feed-
back control to maximize algal biomass production. Namely,
the reduction of the dynamical system to a slow manifold
will be developed and then the corresponding less dimensional
optimal control problem will be solved analytically. The re-
sulting optimal performance will be compared with the earlier
computed (Papáček et al., 2007) optimal performance within
the class of constant irradiance inputs. It will be shown that
constant irradiance input remain reasonable option, at least it is
difficult to achieve significant improvement using the reduction
to slow dynamics. This fact would be confirmed by numerous

simulations, changing even the parameters of the system to en-
hance velocity of the fast dynamics. Basically, this paper shows
that neglecting fast transition phenomena equals to resignation
on considering dynamical phenomena at all.

This paper is organized as follows. Section 2 presents the dy-
namical model of the microalgal growth in detail and derives
its reduction to a slow manifold. Section 3 repeats the well-
known formulation of the end point optimization problem and
applies the Pontryagin’s maximum principle to derive the feed-
back relation between a PSF state and the controlled input to
maximize the average production rate. Simulation experiments
are collected in Section 4 while the final section draws some
conclusions and outlooks for further research.

2. DYNAMICAL MODEL OF MICROALGAL GROWTH

The photosynthetic microorganisms growth modelling has long
been regarded as a well-defined discipline in algal biotechnol-
ogy, consisting of the coupling between photosynthesis and
irradiance, resulting in the steady-state light response curve (so-
called P–I curve), which represents the microbial kinetics, see
e.g. Monod or Haldane type kinetics (Schugerl and Bellgardt,
2000). Hence, an adequate model of photosynthesis, observable
on basis of photosynthetic oxygen production, is of paramount
importance. In Figure 1, the steady-state production curve of
Haldane type is drawn. For high value of S (substrate) we see
the so-called inhibition by the substrate. The governing relation
is as follows (using the most usual notation in biotechnological
literature):

µ =
µ∗ S

KS + S + S2/KI
, (1)
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Fig. 1. Steady-state production curve of Haldane type or Sub-
strate inhibition kinetics.

where µ is specific growth rate, S is a limiting substrate, and
µ∗, KS , KI are three model constants. The physiological
meaning of parameters µ∗, KS (saturation constant), KI (in-
hibition constant) is clearly shown on Figure 1. Note that for
KI → ∞ the Haldane (substrate inhibition) kinetics converges
into Monod (saturation) kinetics. Maximum of the Haldane-
type curve occurs when

Sopt =
√

KSKI , µmax =
µ∗

2
√

KS/KI + 1
. (2)

Nevertheless, in order to develop an optimal feedback control,
a dynamic model would be more useful. The main difficulty
in considering the dynamic behavior of the photosynthetic
processes consists in their different time-scales (Rosello et al.,
2003). While the characteristic time of microalgal growth, like
doubling time, etc., is in order of hours, light and dark reactions
occur in milliseconds and photoinhibition in minutes.

Due to the known experiment based knowledge of the relevant
processes, one can both formulate the qualitative model behav-
ior and determine the model structure and the number of model
parameters. These are the most important qualitative results: (i)
the steady state kinetics is of Haldane type (Nedbal et al., 1996)
and (ii) the microalgal culture in suspension has so-called light
integration property (Terry, 1986; Nedbal et al., 1996; Janssen
et al., 2001), i.e. as the light/dark cycle frequency is going
to infinity, the value of resulting production rate (e.g. oxygen
evolution rate) goes to a certain limit value, which depends on
average irradiance only (Papáček et al., 2007). These features
are best comprised by the model described further in detail.

2.1 Model of photosynthetic factory – PSF model

The following model, called as the model of photosynthetic
factory has been recently studied in the biotechnological liter-
ature (Eilers and Peeters, 1988; Eilers and Peeters, 1993; Kmeť
et al., 1993; Wu and Merchuk, 2001). Its main features are
schematically shown on Figure 2 where three states of the pho-
tosynthetic factory are: R resting state, A activated state, B in-
hibited state. Transition rates measured in s−1 are αu, βu, γ, δ
while the input variable u is the irradiance. The transition from
state A to state B models the photoinhibition process, while
the transition from state B to state R models the recovery from
the photoinhibition. The photosynthetic growth is proportional
to the so-called dark reactions modelled as the transition from
stateA to stateR, see equation (4). Light reactions are modelled
as the transition from state R to state A. This scheme can be
mathematically modelled as follows

ẋ = Ax+ u(t)Bx+ u(t)C,

αu

βu

uu

B

A

δ

γ

R

Fig. 2. Scheme of states and transition rates of the photosyn-
thetic factory – Eilers and Peeters PSF model.

where the single scalar input u(t) represents the irradiance in
the culture (units: µE m−2 s−1) and A,B, C are matrices and
column vector of the appropriate dimensions. The state x of the
PSF model is three dimensional, namely, x = (xR, xA, xB)⊤,
where xR represents the probability that PSF is in the resting
state R, xA the probability that PSF is in the activated state
A, and xB the probability that PSF is in the inhibited state B.
The PSF can only be in one of these states, so: xR + xA +
xB = 1. Taking into account this condition and preferring the
states xA, xB due to their measurability gives the following two
dimensional PSF model (for more detail on the PSF model and
its identification, see (Rehák et al., 2008)):

[

ẋA

˙xB

]

=

[

−γ 0
0 −δ

] [

xA

xB

]

+

u(t)

[

−(α+ β) −α
β 0

] [

xA

xB

]

+ u(t)

[

α
0

]

,

(3)

where α, β, γ, δ are four rate constants of PSF model and u(t)
is the known scalar function (it is assumed that u(t) is at least
piecewise continuous). In other words, PSF model is the so-

called bilinear controlled system, cf. (Čelikovský, 1988) and
references within there.

The PSF model has to be completed by an equation connecting
the hypothetical states of PSF model with some quantity related
to the cell growth. This quantity is the specific growth rate
µ. According to (Eilers and Peeters, 1988; Wu and Merchuk,
2001), the rate of photosynthetic production (specific growth
rate) is proportional to the number of transitions from the
activated to the resting state, i.e. γ xA(t). Finally, for the
average specific growth rate we have the relation:

µ = κγ
1

tf − t0

tf
∫

t0

xA(t)dt, (4)

where κ is a new dimensionless constant – the fifth PSF model
parameter. Equation (4) will be further used as the performance
index.

For the constant input signal u, the system (3) becomes linear
system of ODE with constant coefficients having two distinct
negative eigenvalues λF , λS . Let |λF | ≥ |λS |, then (for details
see Papáček et al., 2007):

λF
∼= − [(α+ β)u+ γ] , λS

∼= −

[

αβu2

(α+ β)u+ γ
+ δ

]

. (5)

As a consequence of λF < 0, λS < 0, there exists a unique as-
ymptotically stable steady state solution of (3) for the constant
input signal u ≥ 0 given by
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xAss =
δ · αu

λFλS
, xBss =

αβu2

λFλS
. (6)

Moreover, there exists a value of irradiance to maximize growth
rate at the steady-state condition (6). Denote in the sequel
the input which maximize xAss with respect to u as uoptss

,

straightforward computations give uoptss
=

√

γδ
αβ . Finally, de-

fine the new dimensionless input variable to be used throughout
the rest of this paper as u∗ := u/uoptss

.

Remark 1 Notice that both above mentioned requirements for
a process model are accomplished: (i) the PSF model steady
state behavior corresponds to Haldane type kinetics (let put
xAss from (6) into (4), then the next relation equivalent to

(1) is received: µ = κ γδ αu
αβu2+δ (α+β)u+γδ ), and (ii) the light

integration capacity is the inherent property of bilinear system
due to the so-called Lipschitz dependence of trajectories on

control (Čelikovský, 1988).

Summarizing, the PSF model given by (3,4) will be used as the
modelling framework of microalgal growth and will be further
investigated in the sequel.

2.2 PSF model re-parametrization

The aim of this short subsection is to rewrite the model (3),(4)
indroducing a more convenient parametrization. Namely, con-
sider new parameters qi, i = 1, .., 5, defined as

q1 :=

√

γδ

αβ
, q2 :=

√

αβγ

δ

1

α+ β
, q3 := κγ

√

αδ

βγ
, (7)

q4 := α q1, q5 := β/α. (8)

together with earlier introduced dimensionless irradiance u∗ :=
u/uoptss

giving the re-parameterized model

1

q4

[

ẋA

˙xB

]

=

[

−q2(1 + q5) 0

0 −
q5

q2(1 + q5)

]

[

xA

xB

]

+u∗
[

−(1 + q5) −1
q5 0

] [

xA

xB

]

+ u∗
[

1
0

]

, (9)

µ = q2q3(1 + q5)
1

tf − t0

tf
∫

t0

xA(t)dt . (10)

Notice that q1 units are those of irradiance (µE m−2 s−1),
q2, q5 are dimensionless, q3, q4 are in s−1. The reason to
introduce such a re-parameterization is that the role of each
new parameter is now much more clearly visible. Namely,
parameters q1, q2, q3 correspond to the steady state properties
of the PSF as by comparing (13) and (2) one can see see that
q22 and q3 plays a similar role as KS/KI and µ∗, respectively,
while q1 := uoptss

by definition. Furthermore, q4 influence the
overall dynamics through constant time scaling only, while q5
is a small parameter quantifying the separation between the fast
and slow dynamic; q5 ≈ 10−4, based on (Wu and Merchuk,
2001), the following values of PSF model parameters were
calculated for the microalga Porphyridium sp.: q1 := 250.106
µE m−2, q2 := 0.301591, q3 := 0.176498e − 3 s−1, q4 :=
0.483955 s−1, q5 := 0.298966e− 3.
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Fig. 3. State trajectory [xA(t), xB(t)] for the constant input
u∗ = 1 and the initial condition [xA, xB ] = [0, 0].

Finally, the expressions for the steady states depending on con-
stant inputs given by (6) has after the above re-parameterization
the following more simple form

xAss =
u∗

q2(1 + q5)(u∗
2 + u∗/q2 + 1)

, (11)

xBss =
u∗2

u∗2 + u∗/q2 + 1
. (12)

In particular, by (9-12) the constant input u∗ = 1 maximizes
value of both µ and xA among all positive constant inputs u∗:

µmax =
q3

2 + q−1
2

, xmax
Ass

∼=
1

2q2 + 1
. (13)

2.3 Order reduction of the ODE system (9)

As stated above, the system (9) is a stiff system, i.e., roughly
saying, its first equation contains coefficients that are several
order higher than those of the second one. To make advantage
of that, one can reduce the dynamics to the one dimensional
one using the singular perturbation approach with respect to
the small parameter q5 ≈ 10−4 (Tichonov et al., 1980). This
is done in the following way. First, introduce a new faster time
scale τ = q−1

5 t, so that the system (9) takes the form

q5
q4

d

dτ

[

xA

xB

]

=

[

−q2(1 + q5) 0

0 −
q5

q2(1 + q5)

]

[

xA

xB

]

+ u∗
[

−(1 + q5) −1
q5 0

] [

xA

xB

]

+ u∗
[

1
0

]

.

(14)

Now, after dividing the second equation by q5 one obtains the
singularly perturbed system with respect to the small parameter
q5. This system thanks to the properties of its right hand side
clearly satisfies the sufficient condition for the convergence
of the singular perturbation 1 (Khalil, 1987; Tichonov et al.,
1980). One can therefore take the limit q5 → 0 in (14) to obtain

xA = (1 − xB)
u∗

u∗ + q2
,

1 Recall, that this condition means geometrically that the slow manifold given

by (15) satisfies certain stability properties, namely, ẋA < 0 for xA > (1 −

xB) u∗

u∗+q2
and ẋA > 0 for xA < (1 − xB) u∗

u∗+q2
, which is indeed

obviously the case here.
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1

q4

d

dτ
xB = −

1

q2
xB + u∗(1 − xB)

u∗

u∗ + q2
.

Now, changing the time scale back to the real time variable t,
one has finally the following reduced system

xA = (1 − xB)
u∗

u∗ + q2
, (15)

d

dt
xB = −

q4q5
q2

xB + u∗(1 − xB)
u∗

u∗ + q2
q4q5. (16)

This means that any solution of the system, no matter what the
initial conditions are, quickly satisfies the above relations (15,
16) with great precision. The corresponding convergence is so
fast that it is practically unmeasurable (see Figure 3, where
the states reach the slow manifold in few seconds). Further
convergence to the steady state along the dynamics (16) without
breaking the relation (15) is then much slower. The set of
all states satisfying (15) is called as the slow manifold while
the relation (16) is called as the slow dynamics. Often, for
simplicity, these relations are called as the slow reduction.
Notice, that the reduction (15,16) guarantees that the natural
biological condition xA, xB ∈ [0, 1] is preserved.

Notice, that there are basically two options, how to proceed fur-
ther. One can consider the slow dynamics (16) and re-compute
the functional (10) via (15) to obtain functional depending on
xB and u∗. Advantage of this approach is that no further sim-
plifying requirements on the irradiance input would be needed.
Nevertheless, due to the resulting complicated functional de-
pending both on state and input, this approach leads to a still
quite complicated optimization problem, hardly solvable in a
closed analytical form.

Therefore, the following complementary approach was taken.
The functional stays in its simple form (10) but then the slow
dynamics (16) should be re-computed into xA component.
That means to differentiate the relation (15) and replace then
everywhere xB expressing it also from the relation (15). Here,
the crucial simplifying assumption is that the irradiance is
slowly changing, i.e. |u̇∗(t)| is negligible. After performing
this plan, the ODE system (9) is reduced into (15), and (17)
given bellow. As a matter of fact, it holds ẋA = λSxA −
λSxAss, and after some evaluation (based on: (1 + q5) ∼= 1,

and λS
∼= −q4q5

u∗+q2

[u∗2 + u∗/q2 + 1] ), one has

ẋA =
−q4q5
u∗ + q2

(

[u∗2 + u∗/q2 + 1] xA − u∗/q2

)

. (17)

Summarizing, in the sequel one can concentrate on maximizing
the functional (10) subject to constraint given by the one-
dimensional controlled system (17).

3. OPTIMAL CONTROL VIA MAXIMUM PRINCIPLE

In this section, the optimization problem will be formulated and
its solution in terms of the static state optimizing feedback will
be derived in the explicit form.

First, let us specify the type of optimization problem, which is
clearly the fixed initial point and free end-point optimization
problem with fixed initial and terminal times t0, tf . More
specifically, one can formulate the corresponding optimization
problem as follows (Pontryagin et al., 1962). Minimize 2 the
performance index

2 To keep notation consistent with a standard minimization formulation, later

on, minimization of the algae production with the negative sign would be

J =

tf
∫

t0

f0(x(t)) dt, u∗(t) ∈ [0, U ], U > 0, (18)

subject to the dynamics

ẋ1 = f1 (x1, u
∗(t)) , t0 ≤ t ≤ tf , x1(t0) = x0

1, (19)

where (putting xA := x1):

f0 = −x1, f1 =
q4q5

(

u∗/q2 − [u∗2 + u∗/q2 + 1] x1

)

u∗ + q2
, (20)

where t0 is the initial time, tf is a given final time, u∗(t)
is the scalar controlled input (remember that only a slowly
changing u∗ is allowed). By Pontryagin’s maximum principle
(Pontryagin et al., 1962), denoted PMP in the sequel, the
necessary condition for some u∗ to be optimal may be obtained
as follows, see Proposition 1 in the Appendix. Introduce the
Hamiltonian:

H = −f0 + ψ1f1, (21)

where ψ = [ψ1]
⊤ is the so-called adjoint variable, or co-state

which is a solution of the following adjoint equation

ψ̇1 = q4q5
u∗2 + u∗/q2 + 1

u∗ + q2
ψ1 − 1. (22)

Then, if some function u∗opt(t), t ∈ [t0, tf ] minimizes the
functional then by PMP there should exist a nontrivial solution
ψ(t), t ∈ [t0, tf ], of (22) with ψ1(tf ) = 0 such that it holds for
all t ∈ [t0, tf ]

max
u∗∈[0,U ]

H(x(t), u∗, ψ(t)) = H(x(t), u∗opt(t), ψ(t)) ≡ 0. (23)

Using particular system data, one has

max
u∗∈[0,U ]

[

− x1 +
u∗/q2 − [u∗2 + u∗/q2 + 1] x1

(q4q5)−1(u∗ + q2)
ψ1

]

=

[

− x1 +
u∗opt/q2 − [u∗opt

2 + u∗opt/q2 + 1] x1

(q4q5)−1(u∗opt + q2)
ψ1

]

.

(24)

Notice, that (22) with ψ1(tf ) = 0 obviously implies that
ψ1(t) > 0, ∀t ∈ [t0, tf ). Indeed, since the expression on
the right hand side of (22) multiplying ψ1 is always strictly
positive 3 , condition ψ1(t

′) ≤ 0 for some t′ obviously implies
ψ1(t) < 0∀t > t′ which contradicts ψ1(tf ) = 0. Therefore, the
condition (24) is equivalent to

max
u∗∈[0,U ]

[

u∗/q2 − [u∗2 + u∗/q2 + 1] x1

(q4q5)−1(u∗ + q2)

]

=

u∗opt/q2 − [u∗opt
2 + u∗opt/q2 + 1] x1

(q4q5)−1(u∗opt + q2)
.

Computing the derivative of the above expression with respect
to u∗ to be maximized and looking for its zero points gives the
following necessary condition

∂
[

u∗/q2−[u∗2+u∗/q2+1] x1

(q4q5)−1(u∗+q2)

]

∂u∗
(u∗opt) = 0, (25)

considered, which is obviously equivalent to the maximization of the algae

production.
3 Recall, that all parameters and u∗ should be positive due to their biological

interpretation.
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giving after some tedious but straightforward evaluation that the
only positive critical point is

u∗PMP = −q2 +

√

q22 +
1

x1
, (26)

moreover, one can check that the above derivative changes
sign at that critical point from the positive sign to the negative
one. Summarizing, (26) gives the unique maximum of the
Hamiltonian for u∗ > 0 and it is the only possibility how to
comply with the maximum principle. Due to obvious existence
of the optimal solution, one can conclude that (26) defines the
unique optimal control.

From the control theory point of view, the relation (26) may be
interpreted as a static state feedback control maximizing the
microalgal growth. This feedback is easily implementable as
xA is directly measured biological quantity.

Remark 2 The feedback (26) has the following property mak-
ing it coherent with earlier obtained results on constant opti-
mal control (Papáček et al., 2007). Namely, the constant input
u∗ = 1 maximizes the steady state for xA given by (11);
let be x1

∗ := 1
2q2+1 . Therefore, after neglecting the transi-

tion process, u∗ = 1 may be called as the optimal control
within the class of constant inputs. Now, notice that substituting
steady state (11) into (26) gives exactly u∗ = 1. Moreover, for
x1 ≥ x1

∗, (26) gives u∗PMP ≤ 1, while for x1 ≤ x1
∗, (26)

gives u∗PMP ≥ 1, so it actually guarantee the convergence to
“optimal” steady state x1

∗ (11).

4. SIMULATION EXPERIMENTS

Numerous computer simulations were performed and resulting
performance compared with the one of constant control input
u∗ ≡ 1. Recall, that such a constant control is optimal among
all possible constant controllers in the following sense. The
PSF model is for any constant fixed input a linear system
having constant coefficients and constant non-homogeneity.
Moreover, it can be easily shown to be asymptotically stable,
therefore, after some time the second component involved in the
performance index is equal to a certain steady state. In the re-
parametrization introduced in this paper, u∗ ≡ 1 maximizes the
value of this steady state, thereby maximizing also its integral.

Unfortunately, in all extensive simulations the control u∗ ≡ 1
has practically the same performance, or even slightly better
one, than the feedback (26). The reason is that the improve-
ment for the slow reduction is not that significant in order to
“pay expenses” caused during the transfer to slow dynamics.
Moreover, the reduction assumption that the input should vary
only slowly somehow pre-determines such an outcome.

One can observe such an outcome on the simulation in Figure 4
where the second component trajectory corresponding to the
feedback (26) lies steadily below the one corresponding to u∗ ≡
1. Simulations on Figure 4 are for the realistic biologically
justified parameters based on the known model identifications,
see e.g. (Rehák et al., 2008) or further references within there.
Further numerous simulations were performed, for various final
times and system parameters (even those biologically unrealis-
tic). All simulations confirm the above observation. In general,
for faster fast dynamics and longer time interval, the results
were slightly more in favor for (26), but still practically the
same as for u∗ ≡ 1.

0,8

t

0,6

0,4

1600

0,2

0

12008004000

x_A

1

Fig. 4. State feedback law (26) along optimal trajectory (lower
bold curve) state trajectory for u∗ ≡ 1 (upper curve).

5. CONCLUSIONS AND OUTLOOKS

The problem of the optimal control of microalgal growth was
considered here and treated by its reduction to a slow dynam-
ics. The resulting formula (26) provides the state feedback
law maximizing the growth of the microalgae. Nevertheless,
its performance does not improve the one for constant input
class which is also simple case of feedback solution. The out-
look for future research are therefore to find less simplifying
method to solve optimal control problem. Important lesson here
is that the fast dynamics phenomena are not negligible and
may play important role. This is in total contradiction with a
common intuition in the biotechnological literature, cf. (Eilers
and Peeters, 1993), and deserves to be promoted. Results of this
paper show that reducing the system to a slow dynamics in fact
equals to resignation on considering the dynamics phenomena
at all, thereby giving basically the same information as the well-
known Haldane type curve.
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APPENDIX

To keep the present paper self-contained, this appendix aims to
give handy formulation of the Pontryagin Maximum Principle
(PMP) for the case of minimizining integral performance index
on a fixed time interval, fixed initial state and free terminal
state condition and recall how it can be derived from more
general PMP formulation (Pontryagin et al., 1962). Such a
formulation is provided by the following

Proposition 1. Consider the following system and the perfor-
mance index

ẋ = f(x, u), x = [x1, . . . , xn]⊤ ∈ R
n, u(t) ∈ U ⊂ R

m, (27)

J =

tf
∫

t0

f0(x, u)dt, x(t0) = x0, x(tf ) ∈ R
n, (28)

to be minimized choosing a measurable function u(t) where
x0 ∈ R

n, 0 ≤ t0 < tf and compact U are given. Suppose uopt

is an optimal control minimizing performance index in problem
(27,28) and let xopt(t), xopt(0) = x0, be the corresponding
state trajectory. Then there exists nontrivial solution ψ(t) =
[ψ1(t), . . . , ψn(t)]⊤ of the following adjoint equation

ψ̇ =

[

∂f0
∂x

(uopt, xopt)

]⊤

−

[

∂f

∂x
(uopt, xopt)

]⊤

ψ, ψ(tf ) = 0,

such that

max
u∈U

[

− f0(x
opt, u) + ψ⊤f(xopt, u)

]

=

[

− f0(x
opt, uopt) + ψ⊤f(xopt, uopt)

]

.

Proof The optimal control uopt existing by the assumption of
the proposition obviously solves the following optimal control
problem as well:

for given t0, tf , x0, U , find T0 < Tf ∈ R and measurable
uopt(t) ∈ U, t ∈ [T0, Tf ], to minimize x0(Tf ), where:

ẋ0 = f0(x, u), ẋ = f(x, u), ẋn+1 = 1,

[x0, x, xn+1](T0) = (0, x0, t0),

[x0, x, xn+1](Tf ) ∈

{x̃ = [x̃0, x̃, x̃n+1, ] ∈ R
n+2 | x̃n+1 = tf}.

By Theorem 3 in (Pontryagin et al., 1962)), if uopt(t) ∈ U, t ∈
[T0, Tf ], is a solution of the above reformulated problem then

there should exist the nontrivial solution ψ(t) of 4

ψ̇0 = 0, ψ̇ = −

[

∂f0
∂x

]⊤

ψ0 −

[

∂f

∂x

]⊤

ψ, ψ̇n+1 = 0 (29)

ψ := [ψ0, ψ, ψn+1]
⊤, ψ(Tf ) = 0, (30)

such that the following conditions hold

H(ψ(t), uopt(t), xopt(t)) = max
u∈U

H(ψ(t), u, xopt(t)) (31)

ψ0(Tf ) ≤ 0, H(ψ(Tf ), uopt(Tf ), xopt(Tf )) = 0, (32)

where H := ψ0f0 + ψ⊤f + ψn+1 is the Hamiltonian of the
extended system. By (30) the conditions (32) equivalent to

ψn+1(Tf ) + ψ0(Tf )f0(Tf ) = 0, ψ0(Tf ) ≤ 0,

and by (29,30) the previous property is equivalent to

ψn+1(Tf ) + ψ0(Tf )f0(Tf ) = 0, ψ0(Tf ) < 0, (33)

otherwise ψ0(Tf ) = 0 and the solution of the co-state extended
system would be trivial which contradicts the requirement of
PMP. Now, notice that for any ψ0(Tf ) < 0 the first condition
in (33) can be always satisfied choosing proper ψn+1(Tf ),
which moreover, does not appear elsewhere, i.e. condition (33)
is reduced to ψ0(Tf ) < 0. Finally, due to homogeneity of both

the adjoint equation (29) and HamiltonianH := ψ0f0+ψ⊤f+
ψn+1 with respect to ψ = [ψ0, ψ, ψn+1]

⊤, it should exist the
co-state solution with ψ0(Tf ) = −1 as well. Observing that the
remaining conditions constitute those given in the formulation
of the proposition to be proved concludes the proof. 2

4 The second equality in (30) is due to the so-called transversality condition

which requires that the co-state vector at both initial and terminal times should

be perpendicular to initial and terminal sets boundaries at the appropriate

optimal trajectory points. In our case the terminal set is hyperplane given

by the condition that the last component is fixed. Notice also, that in (29)
∂f0

∂x
(x, u) and

∂f

∂x
(x, u) are evaluated along uopt(t) and the corresponding

state trajectory xopt(t), xopt(0) = x0.
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