

Embedded Implementation of Mobile Robots Control

A. Valera, M. Vallés, P. Albertos, R. Simarro, I. Benítez, C. Llácer

Instituto Automática e Informática Industrial
Universidad Politécnica de Valencia, Valencia, Spain.

P.O.Box 22012 E-46071
e-mail: {giuprog, mvalles, pedro, rausifer, igbesan}@isa.upv.es,

Abstract: In some embedded applications, the global control objective can be split in different control
objectives from simpler to more complex ones. In this sense, simple controllers can achieve the basic
control problems and controllers with more computational resources can be in charge of more complicated
decisions. In these situations, a control architecture for coordinating all the components is needed.

This work will present a distributed network-based control of mobile robots, each of them having
embedded control system based on a microcontroller. In the control architecture proposed, in addition to
the mobile robots, there is a PC working as a server and a set of PCs to control the mobile robots.

A wide range of different control tasks can be done because all the computers are networked connected.
The paper will also show some control examples like mobile robot control, automatic path generation free
of collisions, control algorithms based on agents, etc.

1. INTRODUCTION

The strong increasing presence of Embedded Systems (ES) in
products and services creates huge opportunities for the
future in different areas such as industrial control systems,
avionics, health care, environment, security, mechanics, etc.
(Chinook, 2007).

ES normally impose a strong constraint in size and weight,
assuming a high level of autonomy and distribution. For
different reasons (distance, location, etc.), ES must be
adapted to changing conditions or update, and because it can
operate on critical systems that may cause damages to people
or to itself, ES require very extensive testing to satisfy a set
of strict rules. In addition, a process is needed, in order to
detect and perform actions to reduce the effect of failures to
continue to work in degraded or faulty mode (ARTIST,
2007).

Nowadays, there is a growing scientific interest on
conceptual and practical tools for ES development. In
particular, their use in control applications (and especially,
robot control applications) is becoming very popular (Baliga,
Kumar, 2005)

From the robot control algorithm point of view in ES,
specific design methodologies should be use like fault-
tolerant control, multimode control, decision and supervisory
control, reduced order models, event-triggered control,
sampling rate changes and non-conventional sampling and
updating patterns, battery monitoring and control, degraded
and back-up control strategies, etc. (Albertos et al., 2005).

This paper presents an embedded implementation of mobile
robots control. The robots are based on LEGO Mindstorms
and K-Team Khepera II, and a robot control architecture is
proposed.

In order to demonstrate the possibilities of the robot control
system provided, different embedded robot control examples
are presented at the last part of the paper.

2. MOBILE ROBOTS WITH LIMITED PROCESSING
CAPACITY

2.1 Introduction

Nowadays it is possible to acquire several very interesting
platforms based on robotics (ActivMedia’s Pionner robot
(ActivMedia Robotics Web site), MIT’s HandyBoard and
Cricket controller cards (The Handy Board home page), The
LEGO Group’s LEGO Mindstorms (LEGO Mindstorms
home page), Khepera robot (K-Team corporation home
page), etc.). These platforms usually consist of controllers,
electronic sensors, mechanical parts and/or small robots.
Some of them perhaps do not provide the same precision than
industrial robots, but they are sufficient for research and
educational purposes.

In order to program and to control these mobile robots, they
are equipped with microcontrollers or processors. Despite
depending on the processor the mobile robots can do complex
tasks, although in general all these kind of robots have
limited capacity of processing, therefore serious difficulties
can be found with the implementation of some
functionalities.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6821 10.3182/20080706-5-KR-1001.2199

In order to analyze and compare the performances and
characteristics of the system, two different robotics platforms
have been used: the LEGO Mindstorms and the Khepera II
K-TEAM solutions.

2.2 LEGO robots solution

The 2006 LEGO Mindstorms set is an educational toy for
children aged 8 years and older. Apart from those familiar
beams, bricks and gears, the kit contains dc motor actuators, a
range of sensors, and, the most interesting, the NXT
Intelligent Brick component. The NXT is the LEGO’s
programmable brick that allow models not just to move, but
to sense and respond to their environment. It is based on an
ARM7 microcontroller. This 32 bits CPU provides most of
the control logic for the NXT, including serial I/O, Analog to
Digital Converter and built–in timers. It even contains
256Kbytes of FLASH memory and 64Kbytes of static RAM.
In addition, there is an interface to three output ports and four
input ports (one includes an IEC 61158 Type 4/EN 50 170
compliant expansion port for future use), one Bluetooth
wireless communication (Bluetooth Class II V2.0 compliant)
and one USB full speed port (12 Mbit/s) to communicate
with a desktop computer or another RXC) as well as a 100 x
64 pixel LCD graphical display. The NXT also has a
loudspeaker - 8 kHz sound quality with a sound channel with
8-bit resolution and 2-16 KHz sample rate.

The LEGO Mindstorms system was initially developed as an
educational tool through the collaboration of LEGO and MIT
(Resnick et al., 1996), (Papert, 2000). The initial intended use
of the LEGO system was for research and educational
activities. The combination of the versatile construction
blocks with the easy-to-use programming and I/O interfacing
of the NXT provided a fast prototyping system to support
these activities. Although the commercialization of this
product has focused on the recreational and K-12 educational
markets, the flexible and expanding world of LEGO
Mindstorms is widely accepted as a tool for research and
higher education.

Enthusiasts have extended the hardware and software in
various ways (Gasperi et al., 2007), (Hansen, 2007), (Valera
et al., 2005). Recent issues of IEEE Robotics and Automation
Magazine (Geenwald, Kopena, 2003), (Weinberg, Yu, 2003),
(Klassner, Anderson, 2003) or IEEE Control Systems
Magazine (Gawthrop, McGookin, 2004) argue that these
extensions show that the LEGO Mindstorms kit can be used
to good effect in an education context. In particular, the kit is
relatively cheap, robust, reconfigurable, reprogrammable, and
induces enthusiasm and innovation in students.

In addition to the construction blocks, the components of the
LEGO Mindstorms can be categorized under the headings of
sensors and actuators. The NXT has four sensor ports, each
of which can accommodate one of the different LEGO
sensors: touch, light, sound, and ultrasonic visual sensors. In
addition, there are rotation sensors (rotational encoder) built
into the motors that provide the position of the shaft with 1º
resolution. Information about these and new sensors can be
found in (Gasperi’s LEGO Minsdstorms web page) or
(Tehno-stuff web page).

The standard LEGO actuator component is a good quality
permanent-magnet dc motor with high inertia and low
friction. NXT actuators deliver a high torque thanks to their
internal speed reduction gear train. Powered by a 9V, they
can provide torques about 16.7N.cm working at 117rpm with
0.55A current consumption.

A more detailed description of the LEGO Mindstorms
actuator can be found in (Lego Technic Motors web page).

Figure 1. LEGO NXT sensors and actuator

2.3 Khepera robots solution

Khepera II is a miniature mobile robot with functionality
similar to that of larger robots used in research and education.
Khepera was originally designed as a research and teaching
tool for a Swiss Research Priority Program at EPFL in
Lausanne. It allows real world testing of algorithms
developed in simulation for trajectory planning, obstacle
avoidance, pre-processing of sensory information, and
hypotheses on behaviour processing, among others.

Very modular at both the software and hardware level,
Khepera has a very efficient library of on-board applications
for controlling the robot, monitoring experiments, and
downloading new software. A large number of extension
modules make it adaptable to a wide range of
experimentation.

The Khepera robot is a miniature, circular, compact and
robust robot. It has a diameter of 70 mm, it is 30 mm high
and its weight is 80g. The robot is supported by two wheels
and two small Teflon balls placed under its platform. The
wheels are controlled by two DC brushed servo motors with
incremental encoders (12 pulses per mm of robot
advancement) and they can rotate in both directions. This
geometrical shape and the motor layout of Khepera provide
an easy negotiation of corners and obstacles.

Figure 2. Khepera mobile robot

In its basic version it is provided with eight infrared
proximity and ambient light sensors with up to 100mm range.
These sensors are placed around its body (six on one side and
two on the opposite one), and they are based on emission and
reception of infrared light.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6822

The robot is equipped with a Motorola 68331, 25MHz
processor, with 512Kbytes of RAM memory and 512Kbytes
of Flash memory programmable via serial port.

3. MOBILE ROBOT CONTROL ARCHITECTURE

3.1 Control architecture

In order to establish the mobile robot control implementation,
this work proposes the control architecture shown in figure 3.
There is a PC working as server that it is equipped with a
webcam. This server processes the vision images and
provides (via Ethernet) the interest information to the control
architecture computers.

Because the robots used in this platform are small robots with
a limited capacity of processing, it has been chosen to use
remote computers to execute the control tasks that require a
great processing To do this, they obtain the server
information, calculate the control actions and/or the required
instructions and send them to the mobile robots using
wireless communications.

Figure 3. Mobile robot control architecture

The information that the control PCs send to the mobile
robots depends on the kind of control application. For
example, by means of the wheels encoders information and
the kinematic model of the robot, the position of the robot
within the environment is considered. From the desired
trajectory and with the kinematic controller, the remote
computer calculates the reference velocities for the two
wheels of each mobile robot. In this kind of control
applications, normally a simple dynamic velocity controller
(like a PID controller) is found in these mobile robots. This
controller must verify that the robot wheels follow the
velocity references as close as possible.

Because the PCs have more calculus performance, they can
compute any vectorial or trigonometrical calculations without
any problem, solving the typical limitations that usually
appear when trying to implement them in the embedded
systems, so more complex controllers or/and applications can

be developed. Figure 4 depicts the control scheme
implemented in this architecture.

Figure 4. Mobile robot control scheme proposed

On the other hand, this control architecture also allows the
PC to start and stop different control programs previously
stored in the robot microcontroller. The robot local control
programs can use the mobile robot sensors (distance,
orientation, inclination, etc. sensors), so a very wide range of
activities can be done, e.g. automatic collision avoidance,
pre-programmed movements, etc. The process of stopping
one program and starting a new one is very fast, so these
changes cannot involve a great deal of drawbacks for the
robot control.

In addition, the PC can also compile, send and store a new
control program to the robot. However all these actions
require a little more of time, so it is recommended to do this
only when the mobile robot is in several (secure) conditions.

3.2 Programming environments

For the control architecture implementation, different
programming environments can be used for each kind of
mobile robots. For the LEGO robots, the NXC and the C# of
Visual Studio 2005 languages have been utilized.

The first one LEGO programming environment is NXC (Not
eXactly C). It is a high level language to program the LEGO
microcontroller that provides arrays, functions, tasks, control
flow sentences, sensors and actuators access, communication
system, etc. (Next Byte Codes web page).

For the NXC routines programming there are different
solutions, but the more used is Bricx Command Center (Bricx
web page). This is a free software environment that allows
not only the edition of the programs, but also different tools,
for instance, to compile and transfer the programs from the
remote PC to the LEGO microcontroller.

The second language used for the LEGO programming is C#
language of Visual Studio 2005 environment. This language
is an object oriented language developed and standardized by

Ethernet

Wireless
communications

server

control PCs

Kinematic
model

Robot BIOS

Kinematic
control

(Trajectory follow)

Reactive
control

(Obstacle avoid)

Emerge
Behavior Σ

Wireless
communications

Wireless
communications

Computer Computer

Vision
Server

Vision
Sensor

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6823

Microsoft as a part of its .NET platform. .NET is intended as
a new software development platform with emphasis in
network transparence, platform independence and that allows
developing applications quickly.

Using the C# language, a supervisor has been implemented to
analyze the information of the robots positions through the
webcam images. It sends the corresponding trajectories to the
control PCs using a connection based on TCP/IP sockets.
With the server and the local sensors information, the PCs
control the movement of the corresponding LEGO NXT. To
do that, they send the adequate information (velocities
references, commands to change the NXT control algorithm,
etc.) through the Bluetooth communication channel.

For the Khepera robot, different remote control software,
cross-compilers and simulators can be used. The remote
control software allows the remote control, interaction and
visualisation of the robot behaviour from the remote
computer. These programs are generally standard software
tools which communicate with the robot to send commands
to the Khepera and control motors, sensors and all other
capabilities of the robot. Of this type of programs the
Khepera support, for example SysQuake, LabVIEW® and
MATLAB®.

The Cross-compilers allow to generate code that is executed
on the robot itself. Khepera currently provides libraries and
documentation for the GNU C public domain cross-compiler.

In order to implement the Khepera control algorithms, in this
work the complete development environment called
KTProject has been used. It is a graphical C development
environment for Windows that includes the GNU C compiler,
the Cygwin Environment (copyright RedHat Inc.), Source
Navigator (copyright RedHat Inc.) and KTDebug, a serial
port terminal written in Java (copyright J-M Koller).

Low level functions are provided for interactions with motors
and sensors, for communications with extensions or a host
computer, and for basic multitasking management. (Bureau
2002).

Figure 5 shows the basic subdivision of the BIOS. Different
managers were designed to control only a specific part of the
system (K-Team, 1999).

Figure 5. General topology of the BIOS

The code is completely relocatable and is designed to allow
an easy interface with a high level language such as C.

As already mentioned, each physical part of the system is
under the control of a specific manager. Here is the list:

BIOS: Global core of the BIOS
COM: I/Os communication manager
MOT: Khepera movement manager
SENS: infra-red sensor manager
MSG: multi-microcontroller communication manager
VAR: misc device manager (jumpers, LEDs, etc.)
TIM: multitasking manager
SER: serial link manager
STR: string manager

4. EMBEDDED ROBOT CONTROL EXAMPLES

4.1 Path generation and trajectory robot control

In order to test the control architecture proposed, some path
generation and trajectory robot control problems have been
developed (Valera et al., 2007). The first one is shown in
Figure 6, where two different trajectories have been used for
the LEGO. In this case the robot references are periodic and
non-periodic curves, and the figures contain the references,
the real robot system response, and the simulated result of a
robot model. The real robot system obtains better response
than the simulated system.

Figure 6. Reference and LEGO mobile robot response

Using artificial vision, the webcam not only is used to obtain
the robot position, but also to detect the obstacles, so it is
possible to obtain a path by cell decomposition methods
(Nourbakhsh, Siegwart, 2004).

Figure 7 shows the image obtained by the webcam, the path
generated and the error between the reference and the LEGO
robot movement.

Path search experiment: Planned Trajectory

-80 -60 -40 -20 0 20 40

-20

0

20

40

60

80

Path search experiment: Drive results

x [cm]

y
[c

m
]

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
Position error

t [s]

e y [c
m

]

reference
measured position

Figure 7. Reference and mobile LEGO robot response

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6824

4.2 Distributed structure behaviors based

In the next example, a distributed structure behaviour based
is used. The mobile robot (a Khepera) must follow a
trajectory and avoid the moving obstacles of the environment.

In order to avoid the obstacles not contemplated in the
trajectory planning, a reactive control of obstacles avoidance
is used. It is based in the reactive control model of the
Braitenberg vehicles (Braitenberg 1984), and that is
implemented within the robot BIOS. This task is high-
priority with respect to the trajectory pursuit, and therefore,
when approaching an obstacle the robot reacts avoiding it and
trying to follow, as far as possible, the trajectory planned
initially.

Another test that can be made within the same scheme is
switching two different controls, one implemented in the
remote computer and other simpler within the robot BIOS.
According to the available processing time at every moment
and the tasks that are being executed, a decision can be made
on the execution of one control or the other. The objective
always will be to send a control action to the motors of the
wheels to follow the pre-selected target or in last instance to
take the robot to a safe situation. An example of this
implementation is displayed in Figure 8 (a) and (b).

Figure 8. (a) Trajectory pursuit with two not planned circular
obstacles (b) To reach an objective in a nonstructured
environment.

4.3 Multiagent systems

The last example applies the principles of multiagent systems
(Ferber, 1999) to build a distributed control architecture
based on multiple supervisor agents. The control and
supervision of a group of mobile robots is carried on by the
supervisor agents according to the position of each robot.
Each agent takes the control of a mobile robot whenever the
robot moves in a region of its influence. The available
environment is distributed into areas of influence by the use
of fuzzy membership functions (see Fig. 9(a)). This method
allows an intermediate transition state between two regions of
influence, therefore allowing a soft change from the influence
and control of one agent to the other.

Fig. 9. Experiment with two supervisor agents. Fuzzy
membership functions (a), and results of experiment (b)

Figure 9 depicts an example of this implementation, designed
with the KIKS (Nilsson, 2001) tool. Two supervisor agents
are implemented, each one with its own area of influence,
delimited by a fuzzy membership function (Fig.9(a)). The
trajectories defined in both agents are different, being one
circular and the other a square trajectory. Figure 9(b) displays
the result of the control experiment on a Khepera robot, with
the two agents interchanging the control duties, and a
transitional state between the two trajectories.

Fig. 10. Results with four supervisor agents: robot trajectory
(a), and computation time of each agent (b)

Figure 10 is another example of this implementation, in this
case with four supervisor agents and their corresponding
areas of influence, placed at each of the four corners of the
simulation environment. The agents interchange the control
on the mobile robot as it moves through their influence
regions. Figure 10(b) displays the distribution of computation
time or cost dedicated by each agent on the control of the
robot. The multiagent design allows a parallel allocation task
of secondary computations (such as future control actions) on
idle agents or processors.

(a) (b)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6825

5. CONCLUSIONS

A new architecture for mobile robots applications has been
presented. This architecture allows implementing control
activities from simple to more complex ones.

As example of the capabilities of this architecture several
mobile robots control applications have been developed.
These deal with aspects such as distribution of control tasks,
switching between controllers and an application with
multiple supervisor agents.

For these examples two kinds of mobile robots have been
used: a LEGO based one and a Khepera one; the
development environments used for their programming have
also been described.

ACKNOWLEDGEMENTS

This work has been partially funded by FEDER-CICYT
projects with references DPI2005-08732-C02-02 and
DPI2005-09327-C02-01 financed by Ministerio de
Educación y Ciencia (Spain).

REFERENCES

ActivMedia Robotic Web site: http://www.activrobots.com/
Albertos, P., A. Crespo, M. Vallés and I. Ripoll (2005).

“Embedded control systems: some issues and solutions”.
16th IFAC World Congress, Praga (República Checa)

ARTIST. Advanced Real-Time Systems. Selected topics in
Enbedded Systems Design. European Project IST-2001-
34820 (http://www.artist-embedded.org/), 2007

Baliga, G., P.R. Kumar (2005). “A Middelware for Control
over Networks”, 44th IEEE Conference on Decision and
Control and European Control Conference ECC

Braitenberg, V. (1984). “Vehicles”. MIT Press.
Bricx Command Center, http://bricxcc.sourceforge.net/
Bureau, P. (2002). “Khepera 2 programming manual”. K-

Team S.A.
Chinook Project webpage: Embedded System Links,

http://www.cs.washington.edu/research/chinook, 2007
Ferber, J. (1999). “Multi-Agent Systems – An Introduction to

Distributed Artificial Intelligence”. Addison Wesley.
Gasperi's LEGO Mindstorms NXT/RCX Sensor Input Page:

http://www.extremenxt.com/lego.htm, 2007
Gasperi, M., I.L. Hurbain, P.E. Hurbain (2007). “Extreme

NXT: Extending the LEGO Mindstorms NXT to the next
level”. Technology in action press.

Gawthrop, P., E. McGookin (2004). “A LEGO-Based
Control Experiment”, IEEE Contr. Syst. Mag., vol. 24,
no. 5, pp. 43-56.

Greenwald, L., J. Kopena (2003). “Mobile robot labs”, IEEE
Robot. Automat. Mag., vol. 10, no. 2, pp. 25-32, 2003.

Hansen. J.C. (2007). “LEGO Mindstorms NXT power
programming”. Varian Press.

Klassner, F., S.D. Anderson (2003). “LEGO mindstorms; Not
just K-12 anymore”, IEEE Robot. Automat. Mag., vol.
10, no. 2, pp. 12-18.

K-Team corporation home page, http://www.k-team.com
K-Team (1999). “Khepera BIOS manual”. K-Team S.A.
LEGO Mindstorms home page, http://mindstorms.lego.com

Lego Technic Motors compared characteristics, http://www.
philohome.com/motors/motorcomp.htm

Next Byte Codes & Not eXactly C.
http://bricxcc.sourceforge.net/nbc/

Nilsson, T. (2001). “KiKS is a Khepera Simulator”. PhD
Thesis, Umea University.

Nourbakhsh, I. R., R. Siegwart (2004). “Introduction to
Autonomous Mobile Robots”. Campridge MIT Press,
MA.

Resnick, M., F. Martin, R. Sargent, and B. Silverman (1996).
“Programmable bricks: Toys to think with”, IBM Syst. J.,
vol. 35, no, 3&4, pp. 443-452.

Papert S. (200). “What’s the big idea? Towards a pedagogy
of idea power”, IBM Syst. J., vol. 39, no, 3&4, pp. 720-
729.

Valera, A., M. Vallés, J.L. Díez, C. García (2005).
“Development of Bluetooth Communications for LEGO-
Based Mobile Robot Laboratories”, 44th IEEE
Conference on Decision and Control and European
Control Conference ECC

Valera, A., M. Weiss, M. Vallés, J.L. Díez (2007). “Control
of Mobile Robots using Mobile Technologies”, Int. J.
Engng. Ed.,vol. 23, no. 3, pp. 491-498.

The Handy Board home page: http://www.handyboard.com/
Tehno-stuff Robotics, http://www.techno-stuff.com, 2007
J.B. Weinberg and X. Yu (2003). “Robotics in education:

Low-cost platforms for teaching integrated systems”,
IEEE Robot. Automat. Mag., vol. 10, no. 2, pp. 4-6.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6826

