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Abstract: Multiple Myeloma is a plasma cell cancer that produces excess Free Light Chains
(FLC). Patients with this condition are treated with dialysis and chemotherapy. A previous
compartmental model developed by Evans et al. [2006] described the removal of FLC through
a hemodialysis membrane. In this model all rate constants were considered linear and the
production of FLC a constant input function. It is known that the system rate constants and
inputs are non-linear in nature due to the membrane dynamics and the use of chemotherapy to
retard the production FLC producing cells. This study describes the use of maximum entropy
deconvolution, in conjunction with a non-linear compartmental model, to recreate the FLC
production rate in a non-parametric form, without the need for assumptions that are not
supported by available data. Input functions are reconstructed from four different patients with
a range of dialysis durations and FLC plasma concentrations to investigate the possible effects
of chemotherapy on the underlying FLC production.

Keywords: deconvolution; maximum entropy; compartmental model; Multiple Myeloma;
chemotherapy; dialysis.

1. INTRODUCTION

Multiple Myeloma (MM or Myeloma) is a cancer of the
plasma cells which accounts for around 1% of all cancer
cases in the UK. Approximately 3,750 people are affected
by the condition annually (Cancer-Research [UK]). In
the majority of patients the cancer results in an over-
production of monoclonal light chains. The light chains
are small proteins that join with heavy-chains to form
immunoglobulins. Each immunoglobulin contains light and
heavy chains; in Myeloma patients there is an abundance
of light chains that are not bound to immunoglobulin,
and these are termed Free Light Chains (FLC). 50% of
Myeloma patients have renal failure that is not necessarily
related to light chains. However, 10% of all Myeloma
patients develop dialysis dependency and in this setting
FLC are the major cause of renal failure. As the majority
of FLC are removed via the urine, the extraction of
FLC occurs predominantly through the reticuloendothelial
system. Failure of the renal clearance results in light chains
only being removed by the reticuloendothelial system and
means their serum half-life changes from a few hours to ≈

3 days [Pozzi, 1987, Bradwell et al., 2005].

The traditional treatment for MM is the use of chemother-
apy to reduce the FLC producing cancer cells, and in
patients with acute renal failure, plasma exchange is used
to remove FLC directly from the bloodstream. Recently

dialysis filters with large pore size have become available
and these have been used to successfully treat patients
with MM, by removing dramatically higher levels of FLC
during dialysis than was previously the case [Hutchison
et al., 2006].

Evans et al. [2006] developed a compartmental model
that describes the kinetics of FLC and the effect of us-
ing large-pore dialysis filters on patients with MM. The
model contained two compartments, representing plasma
and ECF (Extracellular Fluid), with linear flows between
compartments and removal from the system. The FLC
production rate in this linear model was considered to be
constant, but non-zero, during dialysis. This model was
then used in conjunction with plasma FLC concentration
measurements during dialysis to estimate suitable model
parameters. However, the model exhibited discrepancies
between simulation results and new data when extended to
multiple dialysis sessions for a single patient. From simula-
tions it became evident that the assumption of a constant
production was not appropriate. Additionally, data were
made available through the simultaneous measurement of
venous and arterial lines, and through the quantification
of the concentration of FLCs in the dialysate fluid. The
additional dialysate data made it clear that removal of
FLC due to dialysis was neither constant nor linear for
the dialysis session implying that a modification to the
linear model was required.
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The objectives of this study are to elicit the FLC produc-
tion and identify an improved description of FLC removal
via dialysis. It will be shown that the FLC clearance can be
estimated from plasma and dialysate FLC concentration.
In order to estimate production there are several methods
that may be employed. According to Charter and Gull
[1987] these techniques can be classified as:

• Parametric 1

• Mass-balance
• Deconvolution.

The parametric approaches rely upon a functional form
to describe the input and therefore an appropriate form
for the production to be known a priori. Mass-balance
techniques require markers and cumulative measurements,
in conjunction with numerical differentiation, to be used
to infer the functional form of the input. Thus, in addition
to performing extremely poorly with noise, due to the
numerical differentiation, this method is infeasible for the
dialysis treatment. Various forms of numerical deconvo-
lution are available but are known to lack robustness in
the presence of noise and with the often sparse and infre-
quent samples that are available in biomedical systems.
Direct deconvolution was tried using the dialysis data,
by interpolating additional data points. The results were
unsurprisingly poor, resulting in inconsistent simulation
results and unrealistic FLC production rates.

A deconvolution technique that has been successfully em-
ployed on biomedical data is maximum entropy [Char-
ter and Gull, 1991, Madden et al., 1995]. This approach
shall be described below but maximum entropy can be
constructed as a regularization technique that can func-
tion under the criteria of high noise, sparse and irregular
sampled data that is commonplace in biomedical signals,
without the need to assume a functional form for the input
signal. In addition, it shall be shown how a non-linear
compartmental model can be integrated into the maximum
entropy framework to produce simulation results that show
excellent visual comparison with patient data. To the
knowledge of the authors this is the first time this has
been conducted.

This paper is broken into three broad sections: the first de-
scribing the pharmacokinetics model; the second outlines
how the maximum entropy method is implemented for the
dialysis data and in the final section results are given for
application of the techniques to four MM patients.

2. THE MODEL

In order to estimate FLC production it is necessary to
model the FLC kinetics in vivo. For this purpose the Evans
et al. [2006] model has been extended to form a three
compartment non-linear model. This model is depicted in
Figure 1.

Rate constant k12 describes the flow of FLC across the
capillary walls from plasma to ECF; k21 is the flow in the
reverse direction. k21 is derived from k12 and compartmen-
tal volume ratios (k21 = (V2/V1)k12) [Jacquez, 1996]. The

1 Charter and Gull [1987] refer to this as Compartmental, it has
been changed here to avoid confusion with the term Compartmental
Model

f(t)
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Fig. 1. Schematic of FLC dialysis Compartmental Model.
Compartment 1 represents FLC in plasmas, 2 FLC in
ECF and 3 the FLC in the dialyser.

rate constant kre corresponds to the rate of the removal
of FLC from plasma and ECF via the reticuloendothe-
lial system. It is calculated from the half-life values of
FLC when a patient’s renal function has ceased [Bradwell
et al., 2005]. k1e estimates the rate of FLC removal via
the urinary tract. It is provided here for completeness as
in all patients considered renal function is negligible and
therefore k1e = 0. k03 is the rate of removal of FLC from
dialyser via the counter current dialysate, assuming that
the inflowing dialysate contains no FLC. This is feasible
if dialysate is not recirculated; the value used for k03 is
derived from the fixed flow rate of dialysate (0.5 L/min).

dq1(t)

dt
= −(k12 + kre + k01 + kd(t))q1(t)

+ k21q2(t) + f(t)

dq2(t)

dt
= k12q1(t) − (kre + k21)q2(t)

dq3(t)

dt
= kd(q1(t), q3(t))q1(t) − k03q3(t)

(1)

q1(0) = q10, q2(0) = q20, q3(0) = 0

c1(t) = q1(t)
V1

, c3(t) = q3(t)
V3

All rate constants have units of mins−1 and are considered
constant, with the exception of coefficient kd, which is
dependent on the concentration gradient across the filter
membrane (see Section 2.2). A mathematical description of
the system is given in (1). c1 and c3 represent the observed
outputs of the system, i.e. the concentration measurements
taken by clinicians (examples of which can be seen in
figures 3 to 6). V1 and V3 are plasma and dialysate volumes
respectively (see Section 2.1). A list of parameter for the
patients considered can be found in Table A.

2.1 Patient Volume Estimates

In addition to removing toxins, the urinary system is also
responsible for maintaining the body’s volume levels. In
patients with no renal function this is achieved through
pressure difference (ultra-filtration) to force fluid out of
the body during dialysis. This would have an effect on the
clearance values, hematocrit and concentration measures.
However, the dialysis session chosen had minimal, or no,
ultra-filtration applied. It has therefore been assumed that
the volumes remain constant throughout the simulations.
In previous studies it had been assumed that all patients
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had the mass of standard 75 kg male, with an estimated
volume to match. For this analysis, anisotropic informa-
tion has been gathered on the patients and a more realistic
calculation is used to obtain an estimate for the volume of
distribution [Lee et al., 2001] and the volume of distribu-
tion estimated as 14% of Total Body volume [Ward et al.,
2006]. A list of patient volume can be found in Table A.

2.2 Dialysate Clearance

In the model presented in Evans et al. [2006] the dialysis
removal rate (kd) was considered constant over the dialysis
session. However, from filter theory this is known not to
be true (Jacquez [1996]); movement of particles across a
semi-permeable membrane is driven by concentration and
pressure gradients. In order to incorporate these features
into the model in a parametric form would require values
for key characteristics (e.g. membrane permeability) which
are not available for FLC, so a more simplistic model is
adopted.

The ‘clearance’ (cl) of a membrane is defined as the
amount of liquid cleared by the filter per unit time. The
‘gold standard’ for this measurement is derived from the
blood and dialysate concentration measurements, and the
dialysate flow rate, see (2).

cl[n](L/min) =
D3[n]

Db[n]
Qd, kd[n] =

cl[n]

Vb

(2)

where Db[n] and D3[n] are the measured values of FLC
concentrations in blood and dialysate at nth sample; Qd is
the dialysate flow-rate (0.5 L/min in all dialysis sessions
considered) and kd represents the removal rate in min−1

and Vb is the blood volume.

The measurements provided by clinicians are given as con-
centrations in plasma. Plasma and blood concentrations
are related through 3, where Cp and Cb are the FLC
concentrations in plasma and blood respectively, and H
is the Hematocrit (Lee et al. [1980]).

Cb = Cp(1 − H) (3)

Equation (2) then becomes

kd[n] =
D3[n]Qd

D1[n](1 − H)V1
(4)

It should be recognised that the values for clearance
calculated from the formulae, and therefore kd, are not
piecewise constant. For the purpose of the simulation
a continuous representation was preferred for a more
realistic clearance function and spline interpolation used.

In order to validate the values for kd an analysis of
concentration decreases in plasma during dialysis was
conducted. If it is assumed that the chemotherapy a
patient receives has completely stopped FLC production
(i.e. f(t) = 0), an estimate can be made for the minimum
value of kd. If two adjacent data points are taken (e.g.
D1(t) and D1(t + τ)) and an analytical form of the
relationship between is available, a minimum value of kd

would be the value that enables the second data point to
be reached given the first value as an initial condition. If
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Fig. 2. kd estimates from clearance (solid) and zero input
(dotted).

the system described by Equation 1 is considered piecewise
linear between data points, the minimum (constant) value
for kd can be found by solving equation 5 for kd, where n
is the sample at time point t + τ .

D1[n] = c1(t + τ ; c1(t), c2(t), kd[n]) (5)

For the three compartment system c1(t) can be estimated
from the D1[n − 1] measurement and c2(t) can be cal-
culated from the previous value of estimated kd . For
sample n=1 (t=0) it is assumed that compartments 1 and
2 have had sufficient time to equilibrate, and therefore
c1(0) = c2(0) = D1[1]. An analytical solution can be
found but the resulting expression is transcendental with
respect to kd, therefore a numerical approximation was
used. Figure 2 shows kd values generated from the clear-
ance calculations and the lower bound. As can be seen
the clearance calculation is close to the minimum value
specified.

A similar process can be conducted to determine an upper
bound on kd if a upper value is known for FLC generation
rate and considered constant over the period τ . A suitable
upper bound for production has not yet been identified for
the patients studied.

3. MAXIMUM ENTROPY SIGNAL RECOVERY

The use of maximum entropy to recover signal data
originates in the domain of astrophysics (Skilling and
Bryan [1984], Cornwell and Evans [1985]), where it is used
to filter images to remove high-levels of noise. However, it
has also been used in the recovery of biomedical signals
(Charter and Gull [1987]). A comprehensive review can be
found in Madden et al. [1995].

3.1 Entropy Measure

The ‘entropy’ in the title refers to the amount of uncer-
tainty present in a signal. The concept behind maximum
entropy is to produce an input signal that maximises the
uncertainty, thus creating a signal that has the minimal
assumptions whilst maintaining an acceptable fit to an ob-
served output. Equation (6) is the standard representation
for entropy (S)

S =

N
∑

n=1

pm ln(pm). (6)
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Entropy theory is concerned with estimating probability
distributions and pm (eqn. 6) represents the probability
that a value m is attained (6). However, in signal re-
construction we are attempting to determine the value of
the input function over a certain period of time. For this
a modified version of entropy is considered. If the input
signal is discretized into piecewise monotonic function, see
(7), a similar function for the entropy can be used (8)

f(t) =

N
∑

n=1

fnIn, In(t) =

{

1 if t ∈ [tn, tn+1)
0 elsewhere

. (7)

Incorporating (7) into (6) yields an appropriate form for
the entropy (S)

xn =
fn

Σfn

, S =

N
∑

n=1

xn ln(
xn

rn

). (8)

Where xn presents the normalised value of the input at the
nth sample, and rn is a base-line value that the production
should take in the presence of no other information. In the
case of biomedical signal processing this is normally taken
to be a moving average to force the output signal to a
smooth estimate. In addition, the values of xn are assumed
to be positive, since a negative production is infeasible.
In the above equations rn is calculated using a nearest
neighbour average ((xn−1 + xn+1)/2). This encourages a
smooth function to give a greater value of S, thus removing
‘spikes’ from the recovered input signal, which would not
occur naturally. At the sample points n = 0 and n = N
the average is taken of adjacent samples, e.g. (x0 + x1)/2.

3.2 Constraints

During the maximum entropy signal reconstruction the en-
tropy of the input signal is maximised under the constraint
that the output of the system should ‘match’ the real-data
measurements. The most common form used to model this
constraint is the χ2 metric. This is given by:

χ2 =

N
∑

i=1

(D1[i] − c1(τi; f))2

σ2
i

, E(χ2) = N (9)

where E donates the expected value, N the number of
samples, and D1[n] and c1[n] are the measurements taken
and the predicted value at the nth sample, t = τi. This can
be seen as a weighted least squares estimator with weights
of 1

σi

.

During application of the maximum entropy algorithm the
input signal (f(t)) is modified to allow E(χ2) → N as
the iterations increase (see Section 3.3). At each iteration
c1(t) is calculated using a numerical solver (Facsimile,
MCPA Software Ltd) for the new values of f(t). This
is then sampled at the appropriate points for the con-
centration measurements (e.g. D1[1], . . . ,D1[N ]) and χ2

is evaluated. In (9) σi represents the standard deviation
of the noise present in the observations. For the FLC
system the major contributor to noise is the error inherent
in calculating the concentration of FLC. Herzum et al.
[2005] conducted a study on the assay used and concluded
that it exhibited a maximum coefficient of variation of

approximately 7%. However, the accuracy of the sampling
times in Herzum et al. [2005] study cannot be replicated
in a hospital environment so the measurement error has
been estimated at 10%. To compound matters, multiple
experiments cannot be conducted to refine σ further. The
patient and environment change in each experiment and
repetition is infeasible. σi is calculated by σi = ǫ D1[i],
where ǫ is the measurement error (10%) and D1[i] is the
ith measurement of FLC in plasma.

3.3 Optimisation

In order to implement the maximum entropy signal recov-
ery, the process can be viewed as an optimisation problem,
given by:

max
f

S(f) s.t. χ2(f) ≤ N

fi ≥ 0
(10)

This optimisation can be achieved in numerous ways.
The most common approach being to create the relevant
Lagrangian function and minimise the inversion (see Eqn.
(11)). The Lagrange multiplier (λ) discriminates between
how much the χ2 fit to the real data influences the change
in the input function,

L(f, λ) = χ2(f) − λS(f)

.
(11)

There are several algorithms available for solving this
problem(see for example [Skilling and Bryan, 1984, Corn-
well and Evans, 1985, Charter and Gull, 1987]). However,
excellent results have been obtained using a Sequential
Quadratic Programming (SQP) technique. The SQP algo-
rithm is implemented in the fmincon method of Matlab,
which uses a Quadratic Programming subproblem coupled
with calculation of the Hessian of the Lagrangian via the
BFGS formula [Mathworks, 2007].

Madden et al. [1995] define a series of test functions, and an
example model, that can be used to assess the performance
of different deconvolution algorithms. In order to validate
the implementation, Madden’s functions 1,2 and 4 were
executed to ensure that the maximum entropy algorithm
was functioning correctly. The results produced were com-
parable with those seen in Madden et al. [1995] without the
restrictive assumption made regarding the initial and final
values of the input signal, i.e. in the Madden and Carter
studies it was assumed that signal at t = 0 and for several
points around final sampled point were known to be zero.
This restriction was not required to produce equivalent
results. In addition, the results were not ‘smoothed’ via
post processing (e.g. averaging) as in the Madden study.

4. RESULTS

The results of the maximum entropy reconstructions can
be seen in Figures 3 to 6. Each figure consists of two
graphs. The top graph shows the results of applying the
recovered input signal to the concentration in plasma,
the dashed line the concentration in ECF, and the solid
line donates the real data measurements with the circles
indicating the sample point. In the lower of the two graphs
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Fig. 3. Recovered FLC Input Signal Patient 1. Top (solid -
measured data, dashed - FLC concentration in ECF,
dotted - FLC concentration plasma). Bottom (solid -
estimated input, dotted - initial estimate)

the predicted input signal is shown (solid-line). The dotted
line donates the FLC production calculated from the initial
plasma measurement, assuming the production is constant
and the system is in steady-state at time t = 0. This is
used as the starting value for production (f(t)) during the
maximum entropy optimisation.
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Fig. 4. Recovered FLC Input Signal Patient HD003. For
legend see Fig. 3

Of the patients chosen, 3 and 4 received chemotherapy
prior to the dialysis treatment. Patients 1 and 2 both had
chemotherapy over 24 hours before dialysis treatment. As
can been seen in Figures 3 and 5, the results suggest that
the chemotherapy treatment appears to still be affecting
the production rates in the system by reducing the FLC
generation rate. In both these cases the production is
not brought immediately down below the FLC production
expected in a healthy individual (0.22 mg/min - Evans
et al. [2006]). However, in patient 2 the production does
reach normal levels in the later stages of dialysis (t > 400
mins).

Patient 3 (Fig. 5) had an extended dialysis session (12 hrs)
allowing the chemotherapy effects to be observed over a
longer period. As for patients 1 and 2 a drop in production
is predicted by the simulation. However, a steep rise in the
production rate between 0 and 200 mins is suggested. This
is due to the rise in plasma concentration between 5 and
30 mins, as can be seen in the top graph of Figure. 5. It
is not known precisely why this increase in FLC should
occur, but it is seen in numerous patients and cannot be
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Fig. 5. Recovered FLC Input Signal Patient HD002. For
legend see Fig. 3

explained by procedural abnormalities (e.g. changing of
filter, or clearing of lines). The maximum entropy approach
could accomodate this increase by reducing the constaints
mentioned above but it is unlikely that this rise is due
to FLC production unless there is possibly some form of
delay in the effect of chemotherapy.
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Fig. 6. Recovered FLC Input Signal Patient HD001. For
legend see Fig. 3

For the final patient, (Fig. 6) plasma concentration data
are available for an extended 16 hour period, including
a 6 hour dialysis session, which started at t = 0,and
10 hours off dialysis. As with the previous patients we
see a predicted drop during the initial phase of dialysis
(t < 100 mins). However, in the later stages of dialysis
a rise in production can be seen which continues in
the off-dialysis period, suggesting a recovery of the FLC
producing tumour cells after the chemotherapy treatment.

Whilst efficiency of the deconvolution technique was not
a major consideration when conducting this analysis it
should be noted that the maximum entropy implementa-
tion converged in around 20-30 iterations, taking approx-
imately 1-2 minutes 2 when executed against the above
data sets (i.e. 11 - 16 data points).

5. CONCLUSION

It has been shown that the maximum entropy technique
provides an effective method of deconvolving an input
signal from a nonlinear compartmental model without the
2 The machine used was running Windows XP (Single 3.2 GHz
processor, 1 Gb ram)
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need for assuming a functional form for the input. The
input produced appears biologically feasible, in terms of
its magnitude and profile, and contains characteristics that
are in-line with the limited knowledge of the chemotherapy
effects on FLC producing tumours.

In Stec and Aitkinson. [1981] dialysis dynamics are de-
scribed in relation to fluid flow which account for a fast
and slow acting compartmental transfer. This could be
incorporated into the compartmental model (Fig. 1) by
splitting the ECF compartment in two with differing rate
constants between fast and slow compartments. This may
more accurately model the FLC kinetics whilst introduc-
ing a minimal number of extra parameters. The method
should be extended to identify the amount of uncertainty
and possible error in the input signal generated if the infor-
mation is to be used during diagnosis and treatment. This
will also require the sensitivity of the model to changes
in volume and Hematocrit due to dehydration and subse-
quent re-hydration that occur during dialysis treatment. A
follow-up study will be conducted to investigate the input
predicted over multiple dialysis sessions. This may allow
for the input signal to be parameterised with respect to
the chemotherapy treatment (dose and frequency), which
will enable a greater range of predictive simulations to be
conducted in order to assist treatment.

Finally, whilst a performance time of 1-2 mins (see Sec-
tion 4) is suitable for a small scale trial, if the concept
is to be automated and extended to multiple sessions
and patients an alternative implementation environment
should be found. For example, a non-interpreted language,
preferably an OS native optimisation routine should be
found to conduct the maximum entropy fit.
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Appendix A. PATIENT PARAMETERS

Table A shows the values used for rate constants and
volumes during the simulations. The parameters were
obtained from selecting a dialysis session that maintained
a consistent FLC concentration indicating a constant input
signal. Parameter estimation, using Facsimile (Facsimile,
MCPA Software Ltd), was then performed assuming all
rates constants and production are constant. The volume
ratio of plasma and ECF is 1:3 (Ward et al. [2006]). For
all patients kre = 0.00016(min−1) and no renal (k1e = 0).

Patient Parameters
Patient k12(min−1) V1(L) V2(L)

1 0.07 2.1 7.1
2 0.02 2.2 6.9
3 0.01 1.9 6.5
4 0.05 2.545 12.0
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