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Abstract: The general appearance of a plant is the most obvious indicator of its physiological well-being. 
This study was premised on the assumption that image roughness values can be used to quantify well-
being in plants. We hypothesize that the highest level of well-being in the plant corresponds to a given 
minimum level of its surface roughness. Beyond this point the roughness increases. A set of 511 images of 
Sunagoke moss (Rhacomitrium canescens) samples at water states of, 5.0gg-1, 4gg-1, 3gg-1, 2.0gg-1, 1.0gg-1 
and 0gg-1 were analyzed for roughness parameters. Water state here was defined as the amount of water 
available for the plant at the beginning of a given day in grams per gram of its dry weight. The results 
demonstrated that different water states have a strong effect on the surface roughness in Sunagoke moss. It 
was found that the higher the surface roughness of a plant the lower the level of its well-being and vice-
versa. The highest level of well-being was found to be at 2gg-1 water state for the Sunagoke moss used in 
this study. We concluded that roughness analysis can be used to quantify well-being in plants. Based on 
the results of this study, we propose a speaking organism system concept which allows plants to self- 
regulate their own bio-production environment based on roughness parameters fused with other image 
analysis results. 

 

1. INTRODUCTION 

The general appearance of plants is the most obvious 
indicator of their physiological well-being. For this reason, 
imaging techniques are emerging as novel techniques for non 
destructive detection of physiological state in plants. These 
techniques make real-time monitoring and analysis of 
physiological changes in plants, often characterized by a lot 
of dynamics and non-linearity (Hall & Lima, 2001) possible. 
Some of the imaging techniques applied in plants include 
fluorescence imaging, bioluminescence imaging, thermal 
imaging, magnetic resonance imaging and reflectance 
imaging (Chaerle et al., 2001). 

Plant well-being is influenced by physiological stress. Plant 
stress is an external factor that exerts a disadvantageous 
influence on the plant (Taiz & Zeiger, 2002). Response to 
stress is expressed at gene (DNA), cellular, organ and whole 
organism levels in plants. Stress in plants influences stomatal 
resistance, induces changes in surface and internal leaf 
structure, causes accumulation of metabolites or leads to the 
break down of photosynthetic pigments (Peñuela & Filella, 
1998). Internal responses to these changes in a plant are 
reflected on its surface structure and transpiration patterns in 
form of its top projected canopy area (TPCA), canopy 
temperature or multispectral reflectance. Structural 
alterations modify reflection of light from plant leaves or 
canopies. Factors leading to a decrease in light absorption 
automatically increase reflection and vice versa. These 
changes can be visualised by reflectance imaging either in the 
visible or near-infrared spectrums and can be used to indicate 
well-being in plants. 

Visual imaging of plant canopies can provide indirect data 
which can be used to derive their structural or functional 
changes (Peñuelas & Filella, 1998) and has been widely used 
in detecting and quantifying physiological changes and 
accompanying biotic and abiotic stressors in plants (Kacira 
et. al., 2002; Carter & Miller, 1994; Kacira & Ling, 2001; 
Foucher et.al., 2004; Ceccato et al., 2001; Mirik et al., 2006; 
Díaz-Lago et al., 2003). Most of these investigations use 
either grey-level textural features or color information based 
on the Red-Green-Blue (RGB) model. However, relatively 
little is known about the relationship between color 
information and textural attributes (Yin and Panigrahi, 2004). 
In addition, grey-level texture features tend to be globally 
adaptable but they are not locally optimized. 

This study is based on the premise that image roughness 
analysis is more friendly and closer to the human perception 
of surfaces. Roughness analysis has been applied in materials 
development and failure analysis, precision component 
machining, corrosion analysis, paper production and medical 
device development. In biological systems, many studies 
have shown an inherent link between surface roughness well-
being (Anderson et al., 2006; Chung et al., 2003; Tomovich 
and Peng, 2005; Yang et al., 2005; Yonekana et al., 1996).  

There are numerous methods of establishing surface 
roughness. Optical methods involve use of microscopes, 
optical profilers and scattermetry. Electron or ion beam 
methods rely on differing emission of electrons to establish 
the roughness of a surface. 

 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 641 10.3182/20080706-5-KR-1001.2189



 
 

     

 

Mechanical profilers rely on a mechanical stylus that traces 
the roughness profile of a given surface. All these methods 
have their advantages and disadvantages. However, they are 
generally limited in scale and thus may not effectively be 
used for biological systems. In this study, a method that 
allows extraction of roughness parameters from visual 
reflectance images was used. Roughness parameters were 
extracted and used to quantify water stress in Sunagoke moss. 
The study was based on the fact that Sunagoke moss has the 
same chlorophyll-protein complexes as high plants (Aro et 
al., 1981) and alterations in its chlorophyll absorption induce 
changes in its surface and internal leaf structure which 
modify reflection of light from its canopy. These changes can 
be visualized by reflectance imaging, and thus be used to 
quantify its well-being. 

1.1 Surface Roughness Analysis  

Roughness analysis mainly entails determination of 
roughness parameters of a given surface. Roughness 
parameters are statistical parameters that measure the vertical 
characteristics of the surface. Roughness analysis of 2D 
optical colour images mainly entails: image pre-processing, 
multi-resolution filtering and roughness parameter 
determination. Here is a brief description of the roughness 
parameters used in this study: 

1. Arithmetical mean deviation (Ra): This is the average 
roughness deviation of all points from a plane to the test part 
surface. It is obtained by: 

yx
nn

a ave
i=1 j=1x y

1
R = Z(i,j)-Z

n n
∑∑    (1) 

where, Z (i,j) denotes the topography data for the surface 
after image tilt-correction (surface-levelling), Zave average 
surface height, i and j corresponded to the pixels intensities in 
the x and y direction and nx and ny maximum number of 
pixels in the x and y directions (Lindset and Bardal, 1999). In 
this study, tilt-correction was achieved by scanning the 
surface profile and calculating the surface plane according to 
Bhattacharyya and Johnson (1997) using (2). 

i i 1 i1 i22z = z (α+β x -β x )     (2) 

where, zi is surface profile, 1 2,β β  are regression coefficients 
(weights), α is a constant when both variable are zero and xi1 
and xi2 are pixel values. The term in the brackets is the 
regression plane. 
2. Root mean square (rms) deviation (Rq): The average of 
the measured height deviations taken within the evaluation of 
length or area and measured from the mean linear surface. It 
is given by: 
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3. Lowest valley (Rv): This is the maximum distance 
between the mean line and lowest point within the sample. It 
is the maximum data point height below the mean line 
through the entire data set. 

4. Highest peak (Rp): This is the maximum distance 
between the mean line and the highest point within the 
sample. It is maximum data point height above a mean line 
through the entire data set. 

5.0 The total height of the profile (Rt): The absolute value 
between the highest and lowest peaks. It was computed using 
(4). 

t p vR = R +R      (4) 

6. Surface area, given in calibrated units (SA): This is the 
surface area of the roughness profile 

This study is based on the premise that the magnitude of 
surface roughness parameters in a plant can be used to 
quantify its well-being. We hypothesize that the highest level 
of well-being in a plant corresponds to a given minimum 
level of its surface roughness. Beyond this level, roughness 
increases. This implies that the higher the magnitude of 
surface roughness parameters the lower the level of well-
being in a plant and vice-versa. 

1.2 Goal and Objectives 

The overall aim of this study is to develop a stress-imaging 
system that utilizes surface roughness parameters to monitor 
physiological well-being in plants. The objectives were to:  

• compute surface roughness parameters from images 
of Sunagoke moss under different daily water states 

• evaluate the correlation between the parameters 
obtained the previous objective and well-being in 
the sample. 

• propose a speaking organism system concept that 
allows plants to self-regulate their environment via 
quantification of their well-being by image analysis 

2. MATERIAL AND METHODS 

2.1 Sunagoke moss sample 

Figure 1 shows one of the Sunagoke moss (Rhacomitrium 
canescens) samples used in this study. Nine similar samples 
were used in total. The samples were subjected to different 
water states as a means of manipulating its well-being. Water 
state here was defined as the amount of water available to the 
sample at beginning of each day of data acquisition in grams 
per gram of its dry weight. The water sates used in this study 
were: 5gg-1, 4gg-1, 3gg-1, 2gg-1, 1gg-1, and 0. Images were 
acquired for five consecutive days for each water state. At the 
start of each day of experiment, the water state of each 
sample was computed and replenished accordingly. A two 
day interval was allowed between each experiment. It should 
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be noted here that Sunagoke moss exhibits a high level of 
desiccation tolerance (Aro et al., 1981; Bowen, 1933; 
Valanne, 1984). It suspends its photosynthesis and 
transpiration when dry only to resume biological activity 
when exposed to moisture. This made it possible to use the 
same samples throughout the study to avoid errors due to 
natural discrepancies inherent in biological systems. To 
introduce some randomness to the image data, the order of 
data acquisition was: 5gg-1, 3gg-1, 2gg-1, 4gg-1, 1gg-1 and 0. 

 

Fig. 1 Sunagoke moss sample used in this study 

2.2 Experimental data acquisition system  

The procedure used in determining roughness parameters was 
as summarized in Fig. 2. RGB images of size 480×640 
pixels were acquired with a CCD video camera, TRV22E 
(Sony corporation, Japan) placed at 300 mm perpendicular to 
the sample surface as shown in Fig.3. Images were acquired 
after every 10 minutes giving 73 images per day of 
experiment. Light was provided by two 22W lamps 
(EFD25EN/22, National Corporation, Japan) giving an 
average of intensity of 82.32 µmols-1 or 7.20 Klux (400-700 
nm) inside the growth chamber (measured by Li-250A- light 
meter; Li-COR, USA). Data acquisition was conducted in a 
walk-in growth chamber (NK-system) with temperature and 
humidity set to 15 oC and 60% respectively. The light/dark 
period was 12 hours. After acquisition, ImageJ ver 3.8 
(Rasband, NIH) software was used for processing and 
analyzing the images. Images acquired on the third day for 
each water state were selected for roughness analysis giving a 
total of 511 images. It was assumed that by this day the 
sample had acclimatized well to the prevailing water state. 

2.3 Image processing and roughness parameter extraction 

First the RGB images were resized to 292 × 400 pixel by 
cropping. After histogram equalization, they were converted 
to 32 bit floating point grey-level images to reveal more 
details in the shadows than in the highlights (in line with 
human vision). Tilt correction was then carried out using (2). 
After a number of trials, a sampling length of 5 pixels was 
selected for local sampling to ensure that roughness statistics 
are accessed on local regions according to the given sampling 
length. The reported roughness values per sample are the 
average of all the roughness in the local sub-images. 

A gradient analysis was performed on the images to calculate 
SA prior to the determination of roughness parameters (R-
values). Two filtering routines: Gaussian filtering (GF) and 
Fast Fourier Transform (FFT) bandpass filtering were used to 
decompose the processed images into roughness images (high 

frequency information) and waviness images (low frequency 
information). The GF radius was 5 pixels and the FFT 
bandpass filter size was 10 × 20 pixels. 

Image acquisition

Image resizing

Histogram equalization 

Conversion to 32bit grey-level

Surface leveling Local Sampling

Gradient analysis

Gauss Filtering Fast  Fourier 
Transform Filtering

Determination  of 
roughness parameters

Image acquisition

Image resizing

Histogram equalization 

Conversion to 32bit grey-level

Surface leveling Local Sampling

Gradient analysis

Gauss Filtering Fast  Fourier 
Transform Filtering

Determination  of 
roughness parameters  

Fig. 2. Process for determining surface roughness statistics 

 

Fig. 3. Image acquisition system 

2.4 Excess green well-being index 

An excess well-being index (EGWI) was determined using 
(5) to quantify well-being in the samples. The EGWI is 
premised on the assumption that the greener the plant the 
higher the quality of its well-being and vice-versa. 

E E U

E L E U

AG I-AG I
EGWI = 

AG I -AG I
    (5) 

E
2G-R-BAG I=

N     (6) 

where: NGEI = average excess green index given by (6); 
AGEIU = average excess green index of a non-respiring plant 
(upper limit); AGEIL= average excess green index of a non-
stressed plant (lower limit); R, G and B are the pixel intensity 
values for the red, green and blue channels and N is the total 
number of pixels in the image.  
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3.0 RESULTS AND DISCUSSION 

Figure 4 shows three-dimensional profiles of roughness 
images of one of the Sunagoke moss samples at different 
water states. Average roughness parameters extracted from 
similar profiles for the nine samples are listed in Table 1.  

Table 1. Average roughness parameters of Sunagoke moss at 
different water states: (a) Gauss Filtering (GF); (b) Fast Fourier 
Transform (FFT) band pass filtering 

                      Roughness Parameters Water 
state 
(gg-1)  Rq Rv Rv Rp Rt SA 

5 31.45 -61.97 -61.97 61.49 123.46 1752340.31 

4 26.18 -53.78 -53.78 51.20 104.98 1340797.40 

3 25.92 -53.55 -53.55 46.86 103.94 1347291.47 

2 25.02 -52.86 -52.86 58.60 99.72 1263466.20 

1 31.44 -62.24 -62.24 58.60 120.84 1836483.86 

0 39.62 -78.12 -78.12 75.01 145.13 2258519.21 

(a) 

                            Roughness Parameters Water 
state 
(gg-1) Rq  Ra Rv Rp Rt SA 

5 1.35 1.11 -2.28 2.44 4.72 1752340.31 

4 1.25 1.03 -2.97 2.39 4.36 1340797.40 

3 1.19 0.99 -2.01 2.17 4.18 1347291.47 

2 1.16 0.96 -1.84 2.22 4.06 1263466.20 

1 1.87 1.54 -3.12 3.42 6.53 1836483.86 

0 2.54 2.10 -4.44 4.45 8.90 2258519.21 

(b) 

The minimum values of Rq, Ra, Rt, Rp and Sa coincided 
with the maximum values of Rv at 2gg-1 water state. On 
either side of this water state, the values of these parameters 
conversely increased or decreased, respectively. This is more 
clearly shown in Figs 5 and 6. This is more distinctly 
illustrated by Fig. 5. This implies that the well-being of the 
sample was highest at a 2gg-1 water state. EGWI values 
computed using (5) were 0.76, 0.67, 0.86, 0.55, 0.27 and 0.13 
for 5gg-1, 4gg-1, 3gg-1, 2gg-1 and 0gg-1 water states, 
respectively. High EGWI values depict high well-being and 
vice-versa. In this regard, the highest well-being depicted by 
the EGWI was at 3gg-1 compared to 2gg-1 for roughness 
parameters. This was attributed to the fact that changes in 
light absorption (espoused by EGWI) precede changes in 
surface structure (espoused by R-values) in plants. Hence, 
EGWI can detect changes in plant well-being before such 
changes become apparent to humans.  

Table 2 shows the standard deviations of the roughness 
values listed in Table 1. Roughness values at 1gg-1 water state 
displayed the highest variation.  

5 (a) 5 (b)

2 (a) 2 (b)

0(a) 0(b)

5 (a) 5 (b)

2 (a) 2 (b)

0(a) 0(b)  
Fig. 4. Samples of three-dimensional profiles of roughness images 
of Sunagoke moss at different water states: (a) Gaussian Filter (GF); 
(b) FFT bandpass filter. The numbers 5, 2 and 0 represent water 
states in gg-1 

Table 2 Standard deviation roughness parameters of Sunagoke 
moss at different water states: (a) Gauss Filtering (GF); (b) FFT 
bandpass filtering 

          Standard deviations of roughness parameters Water 
state 
(gg-1)  Rq Ra Rv Rp Rt SA 

5 2.33 1.85 4.08 4.75 8.81 188814.07 

4 1.14 0.87 2.30 2.27 4.55 90522.59 

3 1.71 1.31 3.48 3.48 6.93 38672.42 

2 1.15 0.89 2.73 1.96 4.59 91060.93 

1 7.55 6.41 9.24 15.34 24.53 65141.74 

0 1.22 1.00 1.84 2.43 4.20 101634.72 

                                                  (a) 

                    Roughness Parameters Water 
state 
(gg-1)   Rq Ra Rv Rp Rt SA 

5 0.05 0.04 0.10 0.08 0.18 3230.66 

4 0.03 0.02 0.08 0.08 0.10 1744.42 

3 0.02 0.02 0.06 0.04 0.08 1350.24 

2 0.07 0.06 0.20 0.09 0.26 4449.42 

1 0.70 0.58 1.38 1.12 2.43 48312.34 

0 0.06 0.05 0.11 0.11 0.20 4217.27 

                                                 (b) 

This is because at this water state, the samples initially had 
enough water to meet their net fixation. But this was depleted 
quickly due to evapotranspiration exposing the samples to 
extreme water deficit. This caused the roughness values to 
vary from low to high in the same day.  

Figure 5 shows the effect of sampling and levelling (tilt-
correction) on Ra and Rq values in Sunagoke moss. The 
results in Fig. (5a and 5b) show that local sampling has great 
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influence on Ra and Rq values. On the other hand, tilt-
correction has no significant effect on the magnitude of the 
same parameters. We made similar observations for the other 
roughness parameters shown in Table 1. 

0

10

20

30

40

50

0 1 2 3 4 5

Water status in gg-1

V
al

ue
s 

in
 P

ix
el

s

Local sampling and levelling Local sampling, no leveling
Levelling; no local sampling No local sampling and leveli

.  

                                                   (a) 

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5
Water status in gg-1

V
al

ue
s 

in
 p

ix
el

s

Local sampling and leveling Local sampling, no leveling

Leveling, no local sampling No local sampling, no leveling
 

                                             (b) 

Fig. 5. Effect sampling and tilt-correction on roughness 
parameters: (a) average Rq values (b) average Ra values 

The relationship between Ra and Rq values for Sunagoke 
moss at different water states is shown in (Fig. 6). The results 
show that Ra varied with Rq with a linear relationship of 0.84 
and 0.78 for values obtained by GF and FFT bandpass 
respectively. 

Figure 7 shows average values of (RSurfAreaRatio) i.e. the 
ratio between SA of roughness images and SA of the original 
images for the samples used in the study.These results show 
that different water states have a strong effect on surface 
roughness in Sunagoke moss. Thus roughness values can be 
used to quantify its well-being. Lower roughness values 
depict a higher degree of well-being and vice-versa.  

CONCLUSIONS 

In this study image processing and roughness analysis was 
used to quantify well-being in Sunagoke moss. Roughness 
parameters of nine samples at different water states were 
analysed. The results obtained showed that well-being, in 
Sunagoke moss was highest only at a particular water state 
(2gg-1). A above or below this water state, surface roughness 
increased, indicating deterioration of well-being. Though 
Sunagoke moss was used in this study, these results can be 
extended to other plants. 
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Fig. 6. Correlation between Ra and Rq values of Sunagoke 
moss (pixels) analyzed by visual imaging, the dotted lines are 
trend lines: (a) via Gauss Filter (GF); y=3.339x + 16.07, R2 = 
0.936; (b) via FFT Bandpass filter; y = 0.386x + 0.635, R2 = 
0.908 
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Fig 7. RSurfAreaRatio values of Sunagoke moss analyzed by 
visual imaging 

We propose that roughness analysis can be used to develop a 
speaking organism system that allows plants to control their 
own bio-production environment. Fusing roughness results 
with other image analysis results will make such a system 
even more robust. A system that allows plants to self-control  
their own bio-production environment will be a great and 
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timely boost for high value plants especially those of 
medicinal and vaccine value in which the bio-production 
environment critically influences their effectiveness. The 
concept of such a system is illustrated in the appendix. 
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Appendix: Schematic of concept of speaking organism system that 
allows plants to self-regulate their own environment 
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