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Abstract: The objective of this paper is to propose an approach to decentralized robust
stabilization with state-dependent supervisor for a class of nonlinear switched symmetric
composite systems. The proposed methodology employs the structural properties of the system
to construct a low order control design model as well as the multiple Lyapunov functions
technique. Static output feedback gain matrices robustly stabilizing this model are designed
by using bilinear matrix inequalities (BMIs). These inequalities can be used as linear matrix
inequalities (LMIs) when selecting appropriate parameters in advance. The switching process is
decentralized into independent switching rules operating only on local subsystems states. It is
shown that if the set of gain matrices of this switching controller is implemented as an identical
set into each local switching controller of the global decentralized controller, then the overall
closed-loop system is globally asymptotically stable with robust stability degree α. c© 2008
IFAC

Keywords: Large-scale complex systems, decentralization, methodologies and tools for
analysis of complexity, dynamics and control of large-scale structures

1. INTRODUCTION

There are real world highly complex systems which are not
stabilizable by means of any individual continuous feed-
back controller. Multi-controller switched schemes pro-
vide an effective and powerful mechanism to cope with
such systems or systems with large uncertainties. Multi-
controller switching among smooth controllers provides
a good conceptual framework to solve the problem in
this case. Switched linear systems provide an attractive
approach which bridges the gap between linear systems
and the highly complex or uncertain systems. A switching
system is a dynamic system consisting of a finite number
of continuous-time subsystems and a logical rule that or-
chestrates switching between them. Switched systems nat-
urally belong to the hybrid dynamic systems framework.
The continuous state variables include the state variables
of all the continuous-time subsystems, while the discrete
variable is the subsystem index. Even if each subsystem is
stable, then the overall switched system is not necessarily
stable. On the other hand, switching among individually
unstable subsystems does not imply necessarily the stabil-
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by their support through the Grants IAA200750802 and LA 282,
respectively. M. de la Sen is grateful to the Spanish Ministry of
Education and to the Basque Government by their support through
the Grants DPI 2006-00714 and IT-269-07, respectively.

ity of the switched system. Switched linear systems are
relatively easy to handle as many powerful tools from
linear analysis are applicable to cope with these systems.
The motivation for studying switched dynamic systems
arises in very different applications such as for instance in
control and sensing of mechanical systems, the automotive
industry, aircraft and traffic control, or process control.
The importance of multi-controller switched schemes is
underlined in large scale complex systems when imple-
menting low-order decentralized controllers. It motivates
the development of new control design methods which in-
clude the solution using multi-controller switched schemes
mainly for large scale complex systems.

1.1 Prior work

One of important problems in uncertain switched systems
is the design of switching rules which guarantee quadratic
stability and performance. Such switching rules must be
independent of uncertainties. A state-dependent switching
rule satisfying this requirement which is called the min-
projection strategy presents Ji and Wang [2005], Ji and
Wang [2005] deals with robust H∞ control for switched
state feedback and static output switched feedback when
considering a common Lyapunov function. Bakule [2007]
extends these results into a H∞ decentralized setting in-
cluding decentralized state-dependent switching rule for
continuous-time symmetric composite system, while the
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discrete-time case presents Bakule [2006]. Ji and Wang
[2006] derived sufficient conditions for the robust stability
and stabilization of nonlinear switched systems, where
only the quadratic bound on a nonlinear term must be
satisfied. The multiple Lyapunov functions approach an-
alyze in detail Branicky [1998]. Static output feedback
stabilization for switched systems by using the multiple
Lyapunov functions presents Ji and Wang [2006]. Geromel
and Colaneri [2006] deals with the stabilization of switched
continuous-time systems by using dynamic output switch-
ing control. They use the so-called Lyapunov-Metzler in-
equalities when applying the multiple Lyapunov functions
approach.

Robust Stabilization schemes for nonlinear interconnected
systems with nonlinearity satisfying the quadratic bounds
were developed in Stanković et al. [2007]. Ji and Wang
[2006] proposed sufficient conditions for the synthesis
problem of switched nonlinear systems.

The recent results for this class of systems has benefited
many real world systems such as for instance control
network control Roberts and Stilwell [2006], spatially-
distributed systems Steward et al. [2003], or the problem of
formations of vehicles in cyclic pursuit which was solved by
using circulant matrices in Marshall et al. [2004]. Relevant
references on applications surveys are given in Hovd and
Skogestad [1994], while theoretic results for this class of
systems were presented in Bakule [2005, 2007] and Lam
and Huang [2007] including the references therein.

This paper presents the switching stabilizing controller
design with state-dependent switching rule for nonlinear
continuous-time symmetric composite systems.

To the author’s best knowledge, the problem of low-
order non-fragile control design for symmetric nonlin-
ear switched symmetric composite systems has not been
solved up to now.

1.2 Outline of the paper

This paper presents a novel sufficient condition for the
design of decentralized static output switched controller
for stabilization of nonlinear switched composite systems.
This controller requires the construction of a low order
design model as well as the selection of the gain ma-
trix for this model. The gain switched matrices together
with switching signal guarantees the global asymptotic
asymptotically stable with robust stability degree α of
the global closed-loop system when implemented into the
global system. A multiple Lyapunov functions approach is
used.

2. PROBLEM FORMULATION

Consider a nonlinear switched symmetric composite sys-
tem consisting of N subsystems, where the ith subsystem
is described as follows

ẋi(t) = Ari(t)xi(t) + Bri(t)ui(t) + szi(t) + hri(t)(t, x)
yi(t) = Cri(t)xi(t) i = 1, . . . , N N ≥ 2

(1)

where xi, ui, szi, and yi are n-, m-, ps-, and py-dimensional
vectors of the subsystem states, control inputs, intercon-
nection inputs, and measured outputs, respectively.

Suppose known linear interconnections are described in
the form

szi
(t) =

N∑

j=1

yzj
(t) (2)

where yzjj is the pz-dimensional vector of the interconnec-
tion output from the subsystem j to the subsystem i which
is related to the state vector in the form

yzj (t) = Lrij Czri(t)xj(t) (3)

where Lrii = 0 and Lrij = Lq i 6= j.

Ari(t), Bri(t), Cri(t), Czri(t) are time-varying matrices and
ri(t) ∈ {1, ... κ}. They take only values in given sets
Ari

∈ {A1, ..., Aκ}, Bri
∈ {B1, ..., Bκ}, Cri

∈ {C1, ..., Cκ},
and Czri

∈ {Cz1, ..., Czκ}, for all i. Ak, Bk, Ck, Czk, and
Lq are constant matrices, k ∈ Λ, Λ = {1, ... κ}.
Suppose the structure of unknown nonlinear interconnec-
tions as

hki(t, x) = edi(t, xi)Hdxi +
N∑

l=1,l 6=i

e1l(t, xl)Hxj (4)

where edi(t, xi) ∈ [−1, 1] and e1l(t, xl) ∈ [−1, 1] for all
i, l.

The nonlinearities hki(t, x) are uncertain arbitrarily time-
varying piecewise-continuous functions for all k, i. They all
belong to a class of piecewise-continuous functions Hα as
follows

Hα
def= {hki(t, x) : <+ ×<n → <n|hki(t, x)T hki(t, x)
≤ α2xT HT

i Hix ⊂ Ddi} hki(t, 0) = 0
(5)

over the domains of continuity Dpi for all i, where Hd, H
are given constant matrices and α > 0 is a given scalar.

Consider a piecewise-continuous function ri = ri(xi(t)) :
<+ × <n → {1, ..., κ} to be designed as a switching rule
for the ith structural subsystem. ri(t, xi) = k means
that the kth switching subsystem is activated for the ith
subsystem of the global system. We suppose that each ri

has finite number of discontinuities called switching times
on every bounded time interval. It takes a constant value
on every interval between consecutive switching times.
Suppose for concreteness that ri is continuous from the
right everywhere: ri(t, xi) = limτ→t+ ri(τ, xi) for each
τ ≥ 0.

The goal is to find a decentralized static output feedback
switching controller and a decentralized switching rule
ri(t) = ri(xi(t)) globally asymptotically stabilizing the
system (1)–(5). The controller is composed of N local
identical controllers of the form

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9327



ui(t) = Kri(t)yi(t) i = 1, . . . , N (6)

where yi is the n-dimensional controller input from the
subsystem i. Kri(t) are time-varying matrices such that
Kri(t) ∈ ΩK = {K1, ..., Kκ} for all i, where Kk are
constant matrices.

Denote the global description of the system (1)–(5) as
follows

ẋ(t) = Ar(t)x(t) + Br(t)u(t) + hr(t)(t, x)

y(t) = Cr(t)x(t)
(7)

where x = (xT
1 , ..., xT

N )T , u = (uT
1 , ..., uT

N )T are nN -,
mN -dimensional vectors of the system states and control
inputs, respectively. The terms used in (7) are defined as
follows

Ar(t) = (Arij(t)) Arii(t) = Ar(t) Arij
= LqCzrij(t)

Br(t) = diag(Br1(t), ..., BrN (t))

Cr(t) = diag(Cr1(t), ..., CrN (t))

hr(t)(t, x) = diag(hr1(t)(t, x), ..., hrN (t)(t, x))
(8)

The admissible nonlinearities hk(t, x) in (7) are uncertain
piecewise-continuous functions satisfying the relations (4),
(5).

The bounding matrices H̄ are defined as follows

H = diag(H1, ..., HN )
Hi = (H...H Hd H...H)

(9)

with Hd located at the ith position in Hi.

Consider a stabilizing controller for the system (7)–(9) in
the form

u(t) = Kr(t)y(t) = diag(Kr1(t), ..., KrN (t))y(t) (10)

With the controller (10) we associate a vector switching
function as follows

r(x(t)) = (r1(x1(t)), ... rN (xN (t))) (11)

Denote the resulting closed-loop system as

ẋ(t) = (Ar(t) + Br(t)Kr(t)Cr(t))x(t) + hr(t)(t, x) (12)

It is evident that there are κN switching signals within the
global system, where κ is the maximum number of distinct
elements in each set. Each subsystem has assigned only one
local switching signal operating independently from other
ones.

2.1 The problem

The goal is to derive a complexity-reduced procedure for
designing a decentralized switching rule r(x(t)) (11) and
an associated static output feedback u(t) = Kr(t)y(t)
such that the closed-loop switching system (12) is globally

asymptotically stable with robust stability degree α for all
hi ∈ H. Solve the problem by using a multiple Lyapunov
function approach.

3. SOLUTION

The solution of the problem requires to find the switching
rule as well as the gain matrix of the controller. Let
us divide the solution into three parts. The first part
consists of the construction of a switching control design
model which serves as a low order model for the design
of the centralized switching rule and the gain matrix. The
second part presents the proper design method for this
reduced-order system. The third part shows that when
such switching rule and gain matrix are implemented into
the global system then the overall closed-loop system is
asymptotically stabilized with robust stability degree α

3.1 Reduced-order control design system

Define the matrix LqC
+
z and LqC

−
z its each elements is

given as an elementwise maximum and minimum from
all matrices LqCzr(t), respectively. It means for that an
ijth element of LqC

+
z or LqC

−
z is the maximum or the

minimum from all ijth elements of LqCzr(t), respectively.

Introduce the matrices

LqCz =
LqC

+
z + LqC

−
z

2

Hq =
| LqC

+
z | − | LqC

−
z |

2

(13)

where Hq is a constant matrix.

Now, a low-order control design system is derived. Con-
struct the n-dimensional system as follows

ẋm(t) = Amr(t)xm(t) + Br(t)um(t) + hmr(t)(t, xm)
ym(t) = Cr(t)xm(t)

(14)

where xm, um, and ym are n-, m-, and py-dimensional vec-
tors of the subsystem states, control inputs, and measured
outputs, respectively.

The matrix Amr(t) is defined by the expression

Amr(t) = Ar(t) + (
N

2
− 1)LqCz (15)

while Br(t) ∈ {B1, ..., Bκ} and Cr(t) ∈ {C1, ..., Cκ}.
The nonlinearities in (14) are piecewise-continuous func-
tions defined as

hmr(t)(t, xm) = edm(t, xm)Hdxm(t)

+
(e1m(t, xm) + 1)

2
NHxm(t)

+
(e2m(t, xm) + 1)

2
NHqxm(t)

+ e3m(t, xm)
N

2
LqCzxm(t)

(16)

where e3m(t, xm) ∈ [−1, 1].

The quadratic bounds on the nonlinearities hmk(t, xm)
(k ∈ Λ) in (14) satisfy the inequalities
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Hα
def= {hkm(t, xm) :
<+ ×<n → <n|hkm(t, xm)T hkm(t, xm)
≤ α2xT

mHT
mHmxm ⊂ Dm}

(17)

over the domain of continuity Dm. Hm is a constant matrix
and α > 0 is a scalar given in (4).

The switching signal rm(xm(t)) : <+ × <n → {1, ..., κ}
is a piecewise-continuous function to be designed for the
system (14).

3.2 Control design

Definition 1. The system (14) (with um = 0) is globally
asymptotically stable with robust degree α if the equi-
librium xm = 0 is globally asymptotically stable for all
hkm(t, xm) ∈ Hα, where k ∈ Λ.

The robust stability problem via switching is to design a
switching rule rm(xm(t)) so that the system (14) (with
um = 0) is globally asymptotically stable with robust
degree α.

Consider the switching rule rm(xm(t)) and the multiple
Lyapunov function V (xm(t)) candidate for the system (16)
as follows
rm(xm(t)) = arg max

k∈Λ
{xT

mPkxm} V (xm(t)) = xT
mPr(t)xm

(18)
where Pr(t) ∈ {P1 ... Pκ}, Pk = PT

k > 0 are constant
matrices for all k and t ∈< 0, +∞).

The following centralized LMI-based formulation of the
robust stability problem represents a basis for further
elaborations (Ji and Wang [2006]).

The system (14) (with um = 0) is globally asymptotically
stable with robust degree α if there exist matrices Pk > 0,
constants βkl (k, j ∈ Λ ) satisfying the inequalities

Ys(Amk) =




Sk Pk HT
m

• −I 0
• • −γI


 < 0 γ =

1
α2

∀k, l ∈ Λ

(19)
where

Sk = AmkPk + PkAmk +
∑

k 6=l,l∈Λ

βkl(Pk − Pl) (20)

The Lyapunov function in (18) is not differentiable for
all t ≥ 0. We need to deal with the Dini derivative of
V (xm(t)) denoted as D+V (xm(t)) Garg [1998], (Geromel
and Colaneri [2005]). Then, D+V (xm(t)) < 0 if the
switching rule rm(xm(t)) (18) is applied and V (xm(t)) is
the Lyapunov function for this system (Branicky [1998]),
(Ji and Wang [2006]).

Consider a stabilizing controller for the system (14) in the
form

um(t) = Kr(t)ym(t) Kr(t) ∈ ΩK (21)
The closed-loop system (14), (21) has the form

ẋm(t) = (Amr(t) + Br(t)Kr(t)Cr(t))xm(t)
+ hmr(t)(t, xm)

(22)

Denote Ker(B) and Im(B) the null space and the range
space of B, respectively. The matrix B⊥ is introduces as
the matrix satisfying the relations Ker(B⊥)=Im(B) and
B⊥B⊥T > 0 (Ji and Wang [2006]).

The gain matrices Kk ∈ ΩK can be determined by the
procedure as follow.

Lemma 1. Consider the system (14). Suppose that all Bk

have a full column rank. Then, the system (22) is globally
asymptotically stable with robust stability degree α via
switched output feedback (21) if there exist n×n matrices
Xk > 0, Vk > 0, a n×m matrix Nk, and scalars βkl such
that the following matrix inequalities are satisfied

Y (Amk) =


Tk B̂T

k VkB̂k + B⊥T
k XkB⊥

k HT
m

• −I 0
• • −γI


 < 0

γ =
1
α2

∀k, l ∈ Λ

(23)
where

Tk = (Amk +
∑

k 6=l,l∈Λ

βklI)T B̂T
k VkB̂k

+ B⊥T
k XkB⊥

k (Amk +
∑

k 6=l,l∈Λ

βklI) + AT
mkB⊥T

k XkB⊥
k

+ B̂T
k VkB̂kAmk −

∑

k 6=l,l∈Λ

βkl(B̂T
k VkB̂k + B⊥T

k XkB⊥
k )

+ BkNkCk + CT
k NT

k BT
k

(24)

The gain matrices Kk are given as follows

Kk = M−1
k Nk Mk = (BT

k Bk)−1Vk (25)

The switching rule rm(xm(t)) as well as the multiple
Lyapunov function are given by (18) with Pk = B̂T

k VkB̂k +
B⊥T

k XkB⊥
k , where B̂k = (BT

k Bk)−1BT
k .

Remark 1. Lemma 1 is an extension of Theorem 2 in (Ji
and Wang [2006]) when eliminating equality constraint
originally used for static output feedback control design
for non-switched systems. The inequalities (23) are bilinear
matrix inequalities (BMIs). When selecting parameters βkl

in advance, then (23) are linear matrix inequalities (LMIs)
which can be solved effectively by using well known tools.

Lemma 1 simplifies for the linear switched system

ẋm(t) = Amr(t)xm(t) + Br(t)um(t)
ym(t) = Cr(t)xm(t)

(26)

with the linear controller

um(t) = Kr(t)ym(t) (27)

into an important special case given by the following
result.

Corollary 1. Consider the system (26). Suppose that all
Bk have a full column rank. Then, the system (26), (27) is
globally asymptotically stable with robust stability degree
α via switched output feedback (27) if there exist n × n
matrices Xk > 0, Vk > 0, a n×m matrix Nk, and scalars
βkl such that the following matrix inequalities are satisfied
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Yv(Amk) = (Amk +
∑

k 6=l,l∈Λ

βklI)T B̂T
k VkB̂k

+ B⊥T
k XkB⊥

k (Amk +
∑

k 6=l,l∈Λ

βklI) + AT
mkB⊥T

k XkB⊥
k

+ B̂T
k VkB̂kAmk −

∑

k 6=l,l∈Λ

βkl(B̂T
k VkB̂k + B⊥T

k XkB⊥
k )

+ BkNkCk + CT
k NT

k BT
k

(28)
The gain matrices Kk are given by (25). The switching
rule rm(xm(t)) as well as the multiple Lyapunov function
are given in (18).

3.3 Decentralized switching control of the global system

The system (7) has a bounding matrix H which has a
structure of symmetric composite systems. This structural
feature can be exploited by using the transformation of
states to get two reduced order models. Consider

x̃(t) = Sx(t) (29)

by using the nN × nN matrix S = T−1.

Suppose a real snxsn matrix T (n, s) in the form
T (n, 1) = I

T (n, s) =




I 0 . . . 0 I
0 I . . . 0 I
...

...
. . .

...
...

0 0 . . . I I
−I −I . . . −I I




s > 1
(30)

where I denotes here nxn identical matrix. Then T is
defined as

T (i) = diag[T (n,N − i)I, ..., I] ∈ <Nn×Nn

T = T (0) T (1) ... T (N − 1) i = 0, ..., N − 1
(31)

The constructive way how to use this transformation
presents Yang and Zhang [1995].

Lemma 2. Consider the matrix H by (9) and any given
J = diag[Jo, ..., Jo], where J, Jo are nNxnN , nxn matrices.
Then, the following equalities hold

T−1HT = diag(Hs, ...,Hs, Hc)
TT HT = diag(2Hs, 6Hs, ..., N(N − 1)Hs, NHc)

T−1J(T−1)T = diag(
1
2
Jo,

1
6
Jo, ...,

1
N(N − 1)

Jo)

TT JT = diag(2Jo, ..., N(N − 1)Jo, NJo)

(32)

where Hs = Hp −H and Hc = Hs + NH.

Applying now the transformation (29) on the system (7)
and with respect to (13), we get finally two systems of or-
der n (when, in short, deleting unnecessary dimensionality
indices) as

ẋ(t) = Asr(t)x(t) + Br(t)u(t) + hsr(t, x)
y(t) = Cr(t)x(t)

(33)

ẋ(t) = Acr(t)x(t) + Br(t)u(t) + hcr(t, x)
y(t) = Cr(t)x(t)

(34)

where

Asr(t) = Ar(t) − LqCz

Acr(t) = Asr(t) + NLqCz

hsr(t)(t, x) = ed(t, x)Hdx(t)− e1(t, x)Hx(t)
− e2(t, x)Hqx(t)

hcr(t)(t, x) = hsr(t)(t, x) + e1(t, x)NHx

+ e2(t, x)NHqx(t)

(35)

The structure of (33)–(34) motivates to construct a sin-
gle model containing both systems by decomposing the
difference between the models into the nominal part and
uncertain nonlinear part. The term NLqCz defining the
difference between Acr(t)−Asr(t) in (35) can be considered
as composed of a nominal part 1

2NLqCz and a nonlinear
term e3(t, xm)N

2 LqCz with e3(t, xm) ∈ [−1, 1]. Analo-
gously, this way of reasoning holds for nonlinear terms.
Finally, it leads to the single design model (14)–(17).

Denote the local switching rule for the ith structural
subsystem as

ri(xi(t)) = arg max
k∈Λ

{xT
i Pkixi} (36)

where Pki ∈ {P1 ... Pκ}. Pk = PT
k > 0 are constant

matrices for all k by (18).

The following theorem states the main result.

Theorem 1. Given the symmetric composite nonlinear
switched system (7)–(9): (a) Construct the reduced control
design system (14)–(17). (b) Select the controller gain
matrices Kk by (25) in the controller (21) for the system
(14)–(17) satisfying the inequalities (23) for all a priori
given βkl and k, l. (c) Determine the set of gain matrices
ΩK = {K1, ... Kκ}. (d) Implement the set ΩK into (10) so
that Kri(t) ∈ ΩK for all i together with the switching rule
(11), (36). Then, the overall closed-loop switched system
(7)–(11), (36) is globally asymptotically stable with robust
stability degree α.

Proof. Consider the multiple Lyapunov function candidate
for the system (7)–(9) as

V (x(t)) = xT P r(t)x = xT diag(Pr1(t), ..., PrN (t))x (37)

where Pri ∈ {P1 ... Pκ} for all i.

The asymptotic stability with robust stability degree α of
the global switched closed-loop system (7)–(11) is proved
by using the inequality in Lemma 1 being appropriately
modified to the global system when directly implementing
the gain matrices Kr(t) = diag(Kr1(t), ..., KrN (t)). Note
that Kri are obtained by using Lemma 1 for the closed-
loop system (14)–(17). Therefore, there are available also
the matrices Xk, Vk, Nk as well as constants βkl. Now,
substitute the parameters of the control design system (14)
by those of the global system (7). Substitute the controller
(21) by the controller (10). Denote simply these changes
with the replacements (14)→(7), (21)→(10) and imple-
ment them together with Xk = diag(Xk, ..., Xk),V k =
diag(Vk, ..., Vk), Nk = diag(Nk, ..., Nk) into the inequal-
ity (23). Xk, V k and Nk are nN×nN, nN×nN, and nN×
mN matrices, respectively. Denote the final matrix Y (Ak).
It has the same structure as Y (Amk), but it is reformulated
for the global system (7)–(9). Then, it remains to show
that the matrix Y (Ak) < 0.
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Consider the matrix Y (Ak). Applying now the transfor-
mation of the states S by (29) and Lemma 1, we get the
transformed system resulting in the relation

P−1T−1Y (Ak)TP

= diag(Y (Ask), ..., Y (Ask), Y (Ack))
(38)

with N − 1 diagonal blocks Y (Ask). P is a convenient
permutation matrix. P and T are non-singular matrices.
If Y (Amk) < 0 by Lemma 1, then Y (Ask) < 0, Y (Ack) < 0
because the system (14)–(17) includes both systems (33),
(34) as its special cases.

The switching rule (11) is decentralized as it follows
directly from a block diagonal structure of the matrix
P r(t) in (37) when taking into account the centralized case.
Thus, (37) is the Lyapunov function for the system (7)–(9).

Thereby, the closed-loop system (1)–(5), (6) with the gain
matrices Kri(t) ∈ ΩK , for all i, is globally asymptotically
stable with robust stability degree α. Q.E.D.

4. EXAMPLE

Problem. Consider the system with N = 4, the ith subsys-
tem switching rule ri = ri(xi(t)) : <+ × <n → {1, 2} and
the subsystem matrices which are identical for all i as

A1 =
(−2 0.1
−1 −1

)
A2 =

(
1 1
−2 −1.5

)
B1 = B2 =

(
0
1

)

C1 = C2 = (0.5 0) Lq =
(

0.5 0
0 0.5

)
Cz1 =

(
0 0
0 1.5

)

Cz2 =
(

0 0
0 0.5

)
Hd = 0 H =

(
1 0
0 0

)

(39)
Results. Applying Lemma 1 on the model (14)–(16) with
α12 = α21 = 2 and γ = 0.5 results in the gain matrices

K1 = −0.7876 K2 = 3.899 (40)

when using the matrices

P1 = diag(0.6812, 0.0521) P2 = diag(0.0701, 1.2051)
(41)

for the switching rule (18). The global system (12), (39)
with the feedback gains (10),(40) and the switching rule
(11), (36), (41) is globally asymptotically stable with
robust stability degree α.

5. CONCLUSION

The paper contributes by a new complexity-reduced con-
trol design method for a class of nonlinear switched sym-
metric composite systems. Particular structural properties
of this class of large scale complex systems are used for
the construction of low-order design system. The multiple
Lyapunov functions have been selected for the proper
design of gain matrices by using the matrix inequalities.
The switched controller together with the switching rule
designed for the reduced-order control design model is
consequently implemented into the original system. The
method guarantees that the overall closed-loop switched
symmetric composite systems is globally asymptotically
stable with robust stability degree α.
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centralized dynamic output feedback for robust stabi-
lization of a class of nonlinear intercionnected systems.
Automatica, 43:861–867, 2007.

G.E. Steward, D.M. Gorinevsky, and G.A. Dumont. Feed-
back controller design for a spatially-distributed sys-
tems: The paper machine problem. IEEE Transactions
on Control Systems Technology, 11(5):612–628, 2003.

G.-H. Yang and S.Y. Zhang. Stabilizing controllers for
uncertain symmetric composite systems. Automatica,
31:337–340, 1995.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9331


