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Abstract: In this work, we apply the iterative learning control approach to address the traffic density 
control via ramp metering in a macroscopic level freeway environment. The traffic density control 
problem is formulated into an output tracking problem and the tracking trajectories are variable with time 
and iteration change. Rigorous analyses and intensive simulations show that the iterative learning control 
method we proposed can deal with this kind of problem successfully. 
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1. INTRODUCTION 

Freeway traffic congestion is a major problem in today’s 
metropolitan areas. It leads to delays, reduced traffic safety, 
increased fuel consumption, severe air pollution and the 
freeway infrastructure under-used. Consequently, freeway 
traffic control, which aims to solve traffic problems such as 
making the freeway used effectively, becomes ever 
increasing important. 

Among numerous freeway traffic control methods, ramp 
metering, which based on monitoring the freeway on-ramps 
and preventing traffic volume from exceeding freeway 
capacity, is the major one. It can be implemented by using 
traffic lights to meter the number of entering vehicles. Ramp 
metering, when properly applied, is an effective way to ease 
freeway congestion and improve freeway utilization (M. 
Papageorgiou, 1983; M. Papageorgiou et al, 1989; M. 
Papageorgiou et al, 1990a,b; M. Papageorgiou et al, 2002). 

Ramp metering strategies includes local ramp metering and 
coordinated ramp metering. Local ones are much easier to 
design and implement. Moreover, in many cases, they have 
been proven to be non-inferior to coordinated approaches (M. 
Papageorgiou et al, 2002; M. Papageorgiou et al, 1997). The 
demand-capacity (DC) control, the occupancy (OCC) control 
(D. P. Masher, et al, 1975) and ALINEA (M. Papageorgiou et 
al, 1991) are typical local ramp metering strategies.  

It is worth noting that the macroscopic traffic flow patterns 
are in general repeated every day and the congestions 
typically happen at the same locations. Ruling out the 
occasional occurrence of accidents, the routine traffic flow on 
freeway in the macroscopic level will show inherent 
repeatability everyday. However, all the traffic control 
methods mentioned above lack the ability to learn and 
improve the control performance from a repeated traffic 

process. Without learning, a control system can only produce 
the same performance and never works better. To solve this 
problem, we propose to use iterative learning control as we 
mentioned in (Zhongsheng Hou et al, 2007; Zhongsheng Hou 
et al, 2004; Zhongsheng Hou et al, submitted to IEEE TVT). 
However, as we considered in previous research, the tracking 
trajectory is the same in every time and every iteration. 
Practically, the tracking target may various based on the 
actual needs, i.e., the peak hours may be different from other 
time, the rainy days and the sunny days can not be treated as 
the same. Here we will discuss this issue.  

This paper is organized as follows. Section 2 gives the 
discrete traffic flow model and formulates the density control 
into an output tracking problem in the state space. Section 3 
the convergence analysis of the proposed ILC controllers is 
presented. Simulation results are provided in Section 4. 
Section 5 concludes the paper.  

2. TRAFFIC FLOW MODEL AND PROBLEM 
FORMULATION 

2.1  Traffic Model 

The space and time discretized traffic flow model for a single 
freeway lane with one on-ramp and one off-ramp is given by 
(1)-(4) below.  

 1( 1) ( ) [ ( ) ( ) ( ) ( )],i i i i i i
i

Tk k q k q k r k s k
L

ρ ρ −+ = + − + −  (1) 

 ( ) ( ) ( ),i i iq k k v kρ=  (2) 
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ρ
ρ

ρ
= −  (4) 

where T is the sample time interval in hour, 
{ }0,1, ,k K= is the k-th time interval; { }1,2, ,i N= is the 

i-th section of a freeway, and N  is the total number of 
sections. Model variables are listed below. ( )i kρ : density in 
section i  at time kT , (veh/lane/km); ( )iv k : space mean 
speed in section i  at time kT , (km/h); ( )iq k : traffic flow 
departure section i  at time kT , (veh/h); ( )ir k : on-ramp flow 
rate for section i  at time kT , (veh/h); ( )is k : off-ramp flow 
rate for section i  at time kT , (veh/h), which is regarded as 
an unknown disturbance; iL : Length of section i , (km); freev  
and jamρ  are the free speed and maximum possible density 
per lane, respectively; , , , ,l mτ ν κ  are constant parameters 
characterizing a given traffic system in terms of the street 
geometry, vehicle characteristics, drivers’ behaviours, etc. 

2.2  Boundary 

Boundary conditions can be summarized as follows: 

 0 0 1( ) ( ) / ( ),k q k v kρ =  (5) 

 0 1( ) ( ),v k v k=  (6) 

 1( ) ( ),N Nk kρ ρ+ =  (7) 

 1( ) ( ), .N Nv k v k k+ = ∀  (8) 

2.3  Control Objective 

Denote the set of sections that have on-ramps by pI , 

1 2[ , , , ]p pI i i i= , where ( 1, 2, , )ji j p=  is the number of 
the section with an on-ramp, p  is the total number of 
sections with on-ramps. ℜ is a linear transformation mapping 
on a norm space NX , that is, : N pX Xℜ → , 
and ( )X QXℜ = , where 1 2[ , , , ]T

i i ipQ ε ε ε=  is a 

p N× matrix, [0, 0,1,0, ,0]T
ijε = represents the unit 

vector with only the ji th component to be 1. Further 

define TP Q= . The control objective is to seek an appropriate 
control profile which specifies the on-ramp traffic flow ( )

pIr k , 

that drives traffic density of sections pI  at time k  to 
converge to the desired traffic density , ( )

pI desired kρ  for 

{ }0,1, ,k K∈ , despite the modeling uncertainties and 
disturbances occurred at some off-ramps. 

2.4 State Space Representation and Assumptions 

The macroscopic traffic flow model described by equations 
(1) (2) can be written in the following form 

 
1

( 1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
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i i i i i i i i
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Then the model (1)-(4) can be rewritten in the state space 
form as 

 ( 1) ( ( ), ( )),x k f x k y k+ =  (10) 

 ( 1) ( ( )) ( ) ( ) ( ( )) ( ),y k A x k y k BPu k x k Bs kη+ = + + −  (11) 

where ( , )f ⋅ ⋅  is a corresponding vector-valued function. 
( )s k is the unknown leaving traffic flow on off-ramp at 

time k , which will be considered as the repetitive disturbance. 

Throughout the paper, ⋅ denotes the infinite norm, i.e., for 
an s t×  matrix M , in which ,i jm  symbolizes its entries, 

,1 1
max .

t

i ji s j

m
≤ ≤ =

⋅ = ∑ And we define the λ  norm of a vector 

( )u k  as 
[0, ]

( ) sup ( ) ,k

k K
u k a u kλ

λ
−

∈
=  where 0λ >  and 1a > . 
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Assumption 1: Functions ( , )f ⋅ ⋅ , ( ( ))A x k  and ( ( ))x kη  are 
uniformly globally Lipschitz on a compact set X YΩ = ×  
with respect to their arguments for [0, ],k K∈  i.e., 

 

1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

( ( ), ( )) ( ( ), ( ))

( ( ) ( )) ( ( ) ( )) ,

( ( )) ( ( )) ( ( ) ( )) ,

( ( )) ( ( )) ( ( ) ( )) ,

x y

A

f x k y k f x k y k

k x k x k k y k y k

A x k A x k k x k x k

x k x k k x k x kηη η

ℜ − ℜ

≤ ℜ − + ℜ −

ℜ − ℜ ≤ ℜ −

ℜ − ℜ ≤ ℜ −

 (12) 

where , , ,x y Ak k k kη  are Lipschitz constants. X and Y  are the 
ranges of speed and density of the traffic flow on the freeway, 
respectively. 

Assumption 2: The re-initialization condition is satisfied 
throughout the repeated iterations, i.e, 

 , , 1(0) (0) (0),n d n d nx x x += = , , 1(0) (0) (0)n d n d ny y y += =  ,n∀  

where n is the iteration number for the ILC, , (0)d nx is the 
initial value of the desired state of the n-th iteration. 
Assumption 3: There exists a control profile , ( )d nu k  that can 
exactly drive the system output to track the desired trajectory 

, ( )d ny kℜ for the systems (10) and (11) over the finite time 
interval [0, K], n∀ . 

Assumption 4: The variance of the desired input between the 
adjacent iteration is bounded.  

, 1 ,( ) ( ) ( ),d n d n nu k u k kα+ = + 1( ) ,n k
λ

α ε≤ 1 0,ε >  
[0, ],k K∈ .n∀  ( )n kα is the increment. 

Assumption 1 requests the traffic model be globally Lipschitz 
continuous, which is satisfied in our case because the traffic 
flow model (1-4) is continuously differentiable in all 
arguments on any compact set Ω . Moreover, the system 
states (density and mean speed) cannot be infinite in practice. 
In addition, the time interval is also finite. This leads to the 
compact set Ω . Assumption 2 demands the initial state values 
to be consistent with the desired one, and the initial value of 
the desired state of different iteration is the same. In practice, 
if this condition is not met, we can always align the target 
trajectory with the actual one at the initial stage of tracking 
(Mingxuan Sun, and D. Wang, 2003). Assumption 3 is a 
reasonable assumption that the task should be solvable and it 
implies Assumption 4. 

3. ILC BASED RAMP METERING TRACKING VARIOUS 
TRAJECTORIES 

The iterative learning control law is: 

 1 , 1( ) ( ) ( ( 1) ( 1))n n d n nu k u k y k y kβ+ += + ℜ + − +  (13) 

where n indicates the iteration number, and β  is an iterative 
learning gain matrix. , 1 ( )d ny k+ is the desired output signal 
(density) of the (n+1)-th iteration at the time k. 

Theorem 1: Under Assumption 1-4, choosing the learning 
gain matrix β  such that 1p pI QBPβ× − <  in the ILC law 
(13), the output of the traffic system (10) (11) will lead 
to ,lim ( ( ) ( ))d n nn

y k y k
λ

ε
→∞

ℜ − ≤ , ε  for some suitably defined 

constant 0ε >  that depends on 1ε . In the sequel, we 

have ,lim ( ( ) ( )) 0d n nn
y k y k

λ→∞
ℜ − = , if 1 0ε = . 

Proof: See the Appendix. 

4. SIMULATION STUDIES 

In order to verify the effectiveness of the ILC approach, we 
simulate a freeway traffic flow process in the presence of a 
large exogenous disturbance (modeled by an exiting flow in 
an off-ramp during a period). The learning process is iterated 
for 20 cycles. The desired density is various with time and 
iteration change, which is illustrated in Fig.1.  

 

Fig. 1. Desired density 

Consider a long segment of freeway that is divided into 12 
sections. The length of each section is 500 meters. The initial 
traffic volume entering section 1 is 1500 veh/h. The initial 
density and mean speed of each section are set as shown in 
Table 1. The parameters used in this model are also listed 
here. 80( / / )jam veh lane kmρ = , 80( / )freev km h= , 1.8l = , 

1.7m = , 13( / )veh kmκ = , 0.1( )hτ = , 0.00417( )T h= , 
235( / )km hν = . 

In order to show the proposed scheme’s robustness, the initial 
values of density and speed are not in their equilibrium 
position according to the initial flow volume, that is to say, 
the initial ILC convergence conditions (0) 0xδℜ =  is not 
satisfied strictly. 

There are two on-ramps with known traffic demands in 
sections 2 and 9, and an unknown exiting traffic flow in 
section 7 as shown in Fig. 2. 

Two cases are simulated in this part, one is the no control 
case, and another is the ILC based control. 
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Case I. No Control 

Without any control, the traffic on the mainstream entering 
from the traffic demands in on-ramp 2 and 9, and exiting in 
off-ramp 7, which shown by Fig. 2, are so heavy that there 
exists a traffic congestion, which is represented by the 
downstream densities after section 9 getting higher and 
exceeding the critical density, in the sequel results in slow 
traffic speed. 

Case II. ILC Based Control tracking various trajectories 

The ILC gains iβ (i=1, 2) are set to be 15. 

Comparing Fig. 4 (a) (b) to Fig. 3 (a) (b), we can see the 
significant performance improvement in density control. The 
speed after control is mostly higher than 60 km/h, which 
means the freeway is unobstructed. From Fig. 4 (c) we can 
see that the learning error is slight although the desired 
density is changed with time and iteration change. 

5.  CONCLUSION 

In this paper, ILC based control approach has been 
successfully applied to solve the traffic density control 
problem when tracking various trajectories, which has been 
approved by rigorous analyses. The simulation results show 
satisfactory responses and confirm the efficacy of the propose 
approach.  

Table 1: Initial values associated with the traffic model 

Sections 1 2 3 4 5 6

(0)iρ  30 30 30 30 30 30

(0)iv  50 50 50 50 50 50

Sections 7 8 9 10 11 12

(0)iρ  30 30 30 30 30 30

(0)iv  50 50 50 50 50 50

 

Fig. 2. Known traffic demands in on-ramps and unknown 
exiting flow in off-ramp 

 

(a) 

(b) 

Fig. 3. (a) Density profile with no control. (b) Speed profile 
with no control 

(a) 

(b) 
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(c) 

Fig. 4. (a) Traffic volume performances at the 20th iteration. 
(b) Traffic speed performances at the 20th iteration. (c) 

Iterative errors in sections 2 and 9. 
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APPENDIX 

Proof of Theorem 1: 

From the iterative learning control law (13) we have 

 , 1 1

, 1 , 1

( ) ( )
( ) ( ) ( ( 1) ( 1)).

d n n

d n n d n n

u k u k
u k u k y k y kβ

+ +

+ +

−

= − − ℜ + − +
 (14) 

From (11) we get 

 

, 1

, 1 , 1

, 1

, 1 , 1

( ( 1) ( 1))
([ ( ( )) ( ( ))] ( ))
( ( ( ))[ ( ) ( )])

[ ( ) ( )] ( ( ( )) ( ( ))).

d n n

d n n d n
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d n n d n n

y k y k
A x k A x k y k

A x k y k y k
QBP u k u k x k x kη η

+

+ +

+

+ +

ℜ + − +

= ℜ −

+ℜ −

+ − + ℜ −

 (15) 

Inserting (15) into (14) gives 

 

, 1 1 , 1

, 1 , 1

, 1

, 1

( ) ( ) ( )( ( ) ( ))
([ ( ( )) ( ( ))] ( ))
( ( ( ))[ ( ) ( )])
( ( ( )) ( ( ))).

d n n d n n

d n n d n

n d n n

d n n

u k u k I QBP u k u k
A x k A x k y k

A x k y k y k
x k x k

β

β

β

β η η

+ + +

+ +

+

+

− = − −

− ℜ −

− ℜ −

− ℜ −

 (16) 

Taking norm operation of (16) gives 

 
, 1 1 , 1

1 , 1 , 1

( ) ( ) ( ) ( )

( ( ( ) ( )) ( ( ) ( )) ),
d n n d n n

d n n d n n

u k u k I QBP u k u k

x k x k y k y k

β

σ
+ + +

+ +

− ≤ − −

+ ℜ − + ℜ −
 (17) 

where { }1 [0, ]
max ( ),A yd Ak K

k b k bησ β β β
∈

= + . 

From (10), we have 

 
, 1 , 1

, 1
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+

ℜ − ≤ ℜ − − −

+ ℜ − − −
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Taking norm operation for (15) yields 

 

, 1

, 1

, 1

, 1

( ( ) ( ))

( ) ( ( 1) ( 1))
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b y k y k

QBP u k u k

η

+

+

+

+

ℜ −

≤ + ℜ − − −

+ ℜ − − −

+ − − −

 (19) 

Summing up (18) (19), using Assumption 2, we have 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2830



 
 

     

 

 

, 1 , 1

2 , 1

, 1

, 1

2 , 1 , 1

1
1

2 , 1
0

1
2 ,

( ( ) ( )) ( ( ) ( ))

( ( ( 1) ( 1))

( ( 1) ( 1)) )

( 1) ( 1)

( ( (0) (0)) ( (0) (0)) )

( ) ( )

d n n d n n

d n n

d n n

d n n

k
d n n d n n

k
k j

d n n
j

k j
d

x k x k y k y k

x k x k

y k y k

QBP u k u k

x x y y

QBP u j u j

QBP u

σ

σ

σ

σ

+ +

+

+

+

+ +

−
− −

+
=

− −

ℜ − + ℜ −

≤ ℜ − − −

+ ℜ − − −

+ − − −

≤ ℜ − + ℜ −

+ −

≤

∑
1

1
0

( ) ( )
k

n n
j

j u j
−

+
=

−∑

 (20) 

where { }2 [0, ]
max ( ), ( )x A yd Ak K

k k b k k bη ηα
∈

= + + + . Without loss 

of generality, we assume that 2 1σ >  for simplicity, otherwise 
similar approach still applies(Chen, Y.Q., Wen, C.Y., 1999). 

Substituting (20) into (17) and taking λ  norm operation 
gives 

 

2 , 1 1
[0, ]
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Since 
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(21) becomes 

 
, 1 1 , 1

( 1)
2

1 , 1
2 2

( ) ( ) ( ) ( )

1
( ) ( ) .

d n n d n n

K

d n n

u k u k I QBP u k u k

QBP u j u j

λ λ

λ

λλ

β

σ
σ

σ σ

+ + +

− −

+

− ≤ − −

−
+ −

−

(23) 

Thus there exists a sufficiently large constant λ , such that the 
following inequality holds when 1I QBPβ− < , 

 
( 1)

2
1

2 2

1
1

K

I QBP QBP
λ

λ

σ
β σ ρ

σ σ

− −−
− + ≤ <

−
 (24) 

We can conclude 

 , 1 1 , 1( ) ( ) ( ) ( )d n n d n nu k u k u k u k
λ λ

ρ+ + +− ≤ − . (25) 

From Assumption 4 and (25) we get 

 

, 1 , 1

, 1 1

1

,1 0 1
0

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .

d n n d n n

d n n

n
n j

d
j

u k u k u k u k

u k u k

u k u k

λ λ

λ

λ

ε

ρ ε

ρ ε ρ

+

−

−

=

− ≤ − +

≤ − +

≤ − + ∑

 (26) 

Inserting (26) into (25), we have 

 
, 1 1

1
,1 0 1

( ) ( )

(1 )( ) ( )
1

d n n

n
n

d

u k u k

u k u k

λ

λ

ρ ρρ ε
ρ

+ +

+

−

−
≤ − +

−

 (27) 

From (27) we get 

 , 1 1 1lim ( ) ( ) .
1d n nn

u k u k
λ

ρε
ρ+ +→∞

− ≤
−

 (28) 

Equation (19) gives 

 

, 1 1

1
, 1 1

, 1 1

, 1 1

( ( ) ( ))

( ( ( 1) ( 1))

( ( 1) ( 1)) )

( 1) ( 1) .
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d n n

d n n
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y k y k

x k x k

y k y k

QBP u k u k

σ
β

+ +

+ +

+ +

+ +

ℜ −

≤ ℜ − − −

+ ℜ − − −

+ − − −

 (29) 

From (20) and Assumption 2, we get 

 
, 1 1

, 1 1

2
1

2 , 1 1
0

( ( 1) ( 1))

( ( 1) ( 1))

( ) ( ) .
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k
k j
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j
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y k y k

QBP u j u jσ

+ +

+ +

−
− −

+ +
=

ℜ − − −
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≤ −∑

 (30) 

Inserting (30) into (29) and taking λ  norm operation yields 

 
, 1 1

3 , 1 1

( ( ) ( ))

( ) ( ) ,

d n n

d n n

y k y k

u k u k
λ

λ
σ

+ +

+ +

ℜ −

≤ −
 (31) 

where
( 1)(1 )

1 2
3 21

2 2

(1 )
( )

( 1)

K

QBP
λ

λ
λ λ

σ σ
σ σ

βσ σ

− −
−

−

−
= +

−
, when λ  is 

sufficiently large, 3ε can be slight.  

We can drive from (28) and (31)  

, 1 1lim ( ( ) ( ))d n nn
y k y k

λ
ε+ +→∞

ℜ − ≤ , 3 1 1
ρε σ ε

ρ
=

−
, when 

1 0ε = , 0ε = . 

Then , 1 1lim ( ( ) ( )) 0d n nn
y k y k

λ+ +→∞
ℜ − = . 
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