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Abstract: In this paper an RLS-based adaptive controller for active noise and vibration control systems is 

presented. This adaptive controller is designed based on feed-forward architecture and uses IIR filter as 

the control filter. Because the derived algorithm for ANVC systems is based on RLS recursion, its 

computational complexity is of order )( 2
nO which is too high for real-time implementations. Besides, it is 

also vulnerable to round-off and finite precision errors that may occur in real-time implementation of the 

algorithm. Since the aim is to test the algorithm in an experimental duct a fast array implementation of 

the algorithm is proposed. This fast array form is used the extended the fast array algorithms for FIR 

filter which is studied in literature before. The proposed fast array solution of the algorithm not only 

reduces the computational complexity to the order of )(nO  with the same performance, but also because 

of its matrix nature it has good numerical stability in real-time applications which is a necessity in active 

noise and vibration control applications. 

 

1. INTRODUCTION 

Nowadays noise and vibration is known as one of the main 

sources of environmental pollution in the entire world. The 

use of passive methods is shown to be efficient for 

suppression of high frequencies noise and vibration, while a 

fast growing research field of active noise and vibration 

control (ANVC) are proved to be used effectively when the 

incident disturbance are the result of low frequency noise and 

vibration. Active noise and vibration control systems have 

widely been investigated in various applications in recent 

years and some successful results are reported in real world 

(Billoud, 2003, Sano et. al., 2002). In a general view point, 

active control is defined as a technique for suppressing 

unwanted disturbances by the introduction of controlled 

secondary sources such that their outputs interfere 

destructively with the incident primary disturbance (Elliott, 

2001).  

A large group of adaptive algorithms used in ANVC 

applications make the use of FIR filters as the controller, 

whose parameters adapt using stochastic gradient descent 

algorithms (such as LMS algorithms, Newton-LMS, …) or 

recursive least-squares (RLS) techniques. One of the main 

problems with the use of basic LMS algorithms in ANVC 

applications (called FxLMS algorithm) is that the 

convergence rate of the algorithm depends on the difference 

between the minimum and maximum value of auto-spectrum 

of the regression vector. This value is determined by auto-

spectrum of the reference signal and the dynamics of the 

secondary path model which can cause very small 

convergence rate for broadband noise or vibration signals 

[Kuo and Morgan, 1996]. The convergence rate can be made 

independent to the auto-spectrum of the regression vector by 

using the Newton-LMS algorithm [Sayed 2003]. In this way 

the convergence rate depends just to step size and can be 

chosen such that fast convergence is obtained. However, 

since the update of filter coefficients in Newton-LMS 

algorithm is based on the estimates of the inverse auto-

correlation of regressor and cross-correlation between the 

regressor and disturbance, the computational complexity of 

the algorithm is too high ( )( 3nO  where n is the number of 

control filter weights) for most practical applications of 

active noise and vibration control problems. One way to 

reduce the computational cost of the Newton-LMS algorithm 

(Elliott, 2001) is to pre-compute the inverse of the auto-

correlation matrix of the regression vector and use it as a fix 

matrix in the adaptation algorithms. Such an algorithm would 

not, however, be able to accommodate the significant 

changes in the statistical properties of the reference signal. 

Another way to approximate the Newton-LMS update 

direction, is to use affine projection algorithm (APA) 

(Douglas, 1995). Fast implementation of affine projection 

algorithm in ANC applications is proposed by (Bouchard, 

2003, Bouchard and Albu, 2005). Fast affine projection 

algorithm can provide a good trade-off between the 

convergence speed and computational complexity of the 

Newton-LMS algorithm, however, its convergence speed is 

lower than that of recursive-least-squares algorithm (Diego 

et. al., 2004). Although the RLS algorithm is generally 

derived from a rather different perspective, the update 

equation of Newton-LMS algorithm has many similarities 

with the RLS algorithm. The use of RLS-based algorithms in 

ANVC applications with FIR filter structure has become 

more and more common (Auspitzer et. al., 1995, Bouchard 
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and Quednau, 2000, Bouchard, 2002). This is due to the fact 

that in contrary to stochastic gradient descent algorithm the 

convergence behaviour of RLS-type algorithms is quite 

independent of the statistics of the incident noise or vibration 

signal. The computational complexity of RLS-type 

algorithms are of the order )( 2
nO , where n is the length of the 

control filter. One of the main problems in using plain RLS-

type algorithms in ANVC applications is that they suffer 

from numerical instability due to finite precision 

computations. To overcome this difficulty it is shown that 

array-based methods RLS filtering (such as QR algorithm, 

inverse QR algorithm, …) will be more reliable in finite 

precision implementations (Sayed, 2003). In order to reduce 

the computational complexity of RLS-type algorithms used 

in ANVC applications to the order of )(nO floating point 

operations (flops) per sampling instant fast transversal filter 

(FTF) is proposed in (Bouchard and Quednau, 2000) and its 

numerical stability is improved by using QR decompositions 

and lattice structures (Bouchard, 2002). However, The 

comparison study of (Diego et. al., 2004) shows that the 

performance of FTF implementation of RLS algorithms used 

in ANVC applications is reduced in comparison with the 

original RLS algorithm. Array methods (Sayed, 2003) are 

powerful algorithmic variants that are theoretically equivalent 

to the recursive least-squares algorithms but they nevertheless 

perform the required computational in a more reliable 

manner. By exploiting the structure of data in the regression 

vector a fast array implementation of RLS algorithm for 

adapting the FIR filter is derived by (Sayed, 2003). 

The use of IIR filters in ANVC applications date back to the 

development of FuLMS algorithm by (Errikson, 1987) and 

after that some improvements is proposed in literatures 

(Snyder, 1994, Mosquera et. al., 1999). By using the 

hyperstability theory, an RLS-type adaptive IIR filter is 

proposed by the author of the paper in (Montazeri et. al., 

2005), in which it is shown the performance of the proposed 

algorithm is superior than the commonly used FuLMS and 

SHARF algorithms in ANVC applications. Since the 

computational complexity of the algorithm proposed by 

(Montazeri et. al., 2005) is of order )( 2
nO  and it may be 

vulnerable to the finite precision implementations and round-

off errors, in this paper the fast RLS array implementation of 

the algorithm is proposed. This array algorithm is developed 

for IIR filters and is an extension of the algorithms proposed 

in literatures for FIR filters. It will be shown that the array 

form of the algorithm exhibits exactly the same performance 

as the original algorithm while its computational complexity 

is reduced to the order of )(nO . In section 2, the algorithm 

proposed for adaptation of IIR filter will be briefly 

introduced, and in section 3 the fast array form of the 

algorithm is derived. The simulation of the algorithm using 

identified model of an experimental duct is presented in 

section 4, and finally some conclusions will wrap up the 

paper. 

2. ADAPTIVE IIR FILTER BY RLS-TYPE ALGORITHM 

A typical adaptive feedforward ANVC system is shown in 

Fig. 1. Here w(k) is the incident noise, and m(k),n(k) are the 

measurement noises uncorrelated with w(k). Gdw(q) is the 

transfer function of the primary path, Gyu(q) is the transfer 

function of secondary path, Grw(q) is the transfer function of 

detecting path, and finally C(q) is the transfer function of the 

controller in the following form: 
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where 
BA nn ,  are the orders of denominator and numerator of 

the control filter respectively. For simplicity it is assumed 

that Grw(q) is equal to one. The numerator and denominator 

coefficients of the IIR filter (1) must be updated such that the 

sum of the squares of residual signal )(kε  is minimized. The 

selected performance measure will be: 
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where )(kd ′  is the disturbance to be cancelled at time k, 

)(qG yu
is the transfer function of the secondary path, 

)(kφ denote the regression vector, and )(ˆ nθ  is the vector of 

coefficients of denominator and numerator of the IIR filter: 
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By adopting the assumption of slow adaptation of the 

coefficients of the filters, the transfer function of the 

secondary path can be combined with the regression vector in 

(3), and hence the control objective (2) may be formulized as: 
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where )(kfφ  is the filtered regression vector whose elements 

are the filtered version of control and reference signals as 

follows: 

)(),()(),()()( krkqCkukrqGkr ffyuf =′=                             (7) 

By using this formulation, the RLS-type algorithm proposed 

by (Montazeri et. al., 2005) for adapting the coefficients of 

the IIR filter (1) is as follows: 
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7- )1()1()(ˆ)1(ˆ 0 ++−=+ nvngnn θθ                             (14).  
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Fig. 1. Block diagram of adaptive feedforward ANVC system  

In the above equations )(nF  in (10) is the adaptation gain 

matrix or the covariance of parameter estimation error, 

)(1 nλ and )(2 nλ are two weighting sequences in the range 

2)(0,1)(0 21 ≤<≤<< nn λλ  determining how adaptation gain 

evolves in time, )(ne  and )(nε  are a priori and a posteriori 

residual error sensed by error microphone, )(0 nv  and )(nv  are 

filtered a priori and a posteriori error used by the algorithm. 

In (15) )(ˆ qGyu
is an estimation of secondary path impulse 

response, and
jh ’s the coefficients of an FIR filters used to 

filter a posteriori error for stabilizing the adaptive algorithm 

by satisfying some SPR condition. 

3. FAST RLS ARRAY ADAPTIVE IIR FILTER 

3.1  Preliminary Results 

Considering the update equation (8), it requires the gain 

vector )(ng  to compute )(ˆ nθ . In turn, the evaluation of )(ng  

requires the matrix )(nF , and updating )(nF  needs )( 2
nO  

operations per iteration. Besides, the computation of the 

denominator of )(ng  also requires )( 2
nO  operation. Since 

these update steps are the main computational bottleneck in 

the algorithm, the effort is to develop a time-update for )(ng  

directly based on )1( −ng . In order to implement a fast array 

form of the algorithm proposed in section 2, the first thing 

that must be noted is the structure of data in the regression 

vector )(nfφ . By splitting the regression vector into samples 

of the previous outputs of the filter )(1 nfφ , and the samples 

of the reference signal )(2 nfφ , the shift structure of the 

regressor for two successive sampling times will be captured 

by noting the following relation: 
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Here it is assumed that 
1λ  and

2λ  are constant and 

independent of time index n.  
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By partitioning the adaptation gain matrix )(nF  as follows: 
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The time-update equation for the left-hand side of (21) will 

be rewritten as follows (the derivation is omitted here for the 

lack of space): 
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Since the vector )(ng  is required to update the coefficients of 

the IIR filter, it is required to recover )(1 ng  and )(2 ng  from 

the time-update (21). To this end if )1(1 +′− nγ  is computed 

from (22) and subtracted from )(1 n−′γ , the following time-

update relation will be obtained: 
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Equations (21) and (22) show that the update of the gain 

vector )()( 1 nng −′′ γ  as well as )(1 n−′γ  depends only to the 

value of )(nFδ , and hence for the fast implementation of the 

algorithm it is required to compute the time-update of )(nFδ  

with the order of )(nO  operations. For this purpose we start 

by the initialization of the algorithm with the following 

parameters: 
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In this case, )0(Fδ  will be initialized with an M+2 by M+ 2 

( 1++= BA nnM ) matrix with rank four which has two 

positive eigenvalues and two negative eigenvalues as follows: 
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Since )0(Fδ  is a matrix with rank four it can be factored as: 
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where
0L  is a matrix with the size of 4)2( ×+M  and S0 is the 

signature matrix. It can be proved that (the proof is omitted 

here for the lack of space) if )(nFδ  is factorized as 

T

nnn LSLnF 1)( λδ =  (
nn LS ,  has some known property like 

00 , LS ), and )(nF  is updated according to (10), then 

)1( +nFδ  can also be factored as T

nnn LSLnF 1111)1( +++=+ λδ  

with 
nn SS =+1
. 

3.2 Farst Array Algorithm  

By using the initialization (24) and (25), and the statement 

mentioned above, )(nFδ  in (21) and (22) can be replaced by 

its factored form, and hence the following equations will be 

obtained: 
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A close inspection of the above equations reveals that they 

can be written in the following norm preserving and inner-

product matrix form (Sayed, 2003): 
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By putting (26) in a more general matrix form it can be 

rewritten as: 
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






=
















TT

TTTT

EB

DA

S

I

ED

BA

Z

FC

ZF

C

0

0

0

0

                  (27) 

Therefore, there is a SIJ ⊕=  unitary transformation Θ such 

that: 









=Θ









ZF

C

ED

BA 0

                                                            (28) 

and 








=Θ








Θ

S

I

S

I
T

0

0

0

0 . 

It can be shown (the proof is omitted here for the sake of 

brevity) that
1

1

1 +

−= nLZ λ , and hence the array form (28) 
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can be used to update )()( 1 nng −′′ γ , )(1 n−′γ , and 
nL . The 

algorithm proposed in section 2 by (8)-(15) can be 

summarized in the array form following the steps below: 

1- Initialize the algorithm with the following parameters: 



















−

−
=





























=

1000

0100

0010

0001

,

000

000

000

0001

2
1

2
1

2
1

210 SL

M

n

n

A

A

λ

λ

λ
ληλ

MMMM

MMMM

   (29) 

2- By measuring the new samples of the reference signal 

)1( +nr , update the regression vector in pre-array with these 

new calculated samples: 

)(),()(),1()(ˆ)1( nrnqCnunrqGnr ffyuf =′+=+                 (30) 

3- Find a J-unitary )( SIJ ⊕= transformation matrix 
nΘ  such 

that the first element of the first row of the post-array matrix 

will be positive and its last four elements are equal to zero: 

[ ]

[ ]

)31(

0

)1()1(

0

)1()1(

0000)1(

)()(

0

)()(

0

)()1()()()(

1

1

1

2

1

2

2

1

1

2

1

1

1

2

1

2

2

1

1

21
2

1

















































+′+′

+′+′

+′

=Θ













































′′

′′

+′−′

+
−

−

−

−

−

−

−

−

n

n

n

n

T

ff

T

ff

L

nng

nng

n

L

nng

nng

Lnnrnnun

λ

γ

γ

γ

λ

γ

γ

γ φφ

4- Extract the required elements of the first column of post-

array matrix to calculate )1( +′ ng , )1( +′ nγ , and )1( +ng , 

)1( +nγ  subsequently for updating the coefficients of the 

filters: 

))1((

)1()1(

)1()1(
)1( 2

1

2

1

2

2

1

1 +′

















+′+′

+′+′
=+′

−

−

n

nng

nng
ng γ

γ

γ                       (32) 

))1())(1(()1( 2

1

2

1

+′+′=+′ nnn γγγ                                        (33) 

)1()1(
2

1 +′=+ ngng
λ

λ                                                          (34) 

)1(
1

)1(
1

+′=+ nn γ
λ

γ                                                            (35) 

5- Measure a priori residual error: 

)(ˆ)1()1()1( nnndne T

f θφ +++′=+                                        (36) 

6- Calculate filtered a priori error used by algorithm: 

)1()1()1(
1

0 jnhnenv
Hn

j

j −+++=+ ∑
=

ε                                   (37)  

7- Calculate a posteriori residual error by: 

)1())1(.
)1(

1()1(
2

1

1

++
−+

−=+
−

nen
n

n γ
λ

λγ
ε                       (38) 

8- Update the coefficient vector with: 

)1()1()(ˆ)1(ˆ 0 ++−=+ nvngnn θθ                                        (39)  

9- Repeat steps 2 to 9 until the algorithm converges to the 

optimal weights of the IIR filter. 

The computational complexity of both algorithms (number of 

multiplications in each flops) are shown and compared in 

Table 1. It is assumed that the secondary path is modelled 

with an FIR filter of order ns, and M is the number of 

coefficients of IIR control filter. 

Table 1.  Computational complexity of both algorithms 

 Proposed algorithm Fast array 

implementation 

Step 1 ns+M - 

Step 2 2M
2
+M+2 ns+M 

Step 3 6M
2
+M+1 25(M+3) 

Step 4 M 2(M+3) 

Step 5 nH M 

Step 6 M nH 

Step 7 M 4 

Step 8 - M 

Total 8M
2
+6M+ns+nH+3 30M+ns+nH+85 

 

5.  SIMULATION RESULTS 

The performance of the proposed fast-array adaptive IIR 

algorithm in ANVC applications, is evaluated in an 

experimental duct setup. Fig. 2 depicts the experimental duct 

with primary and secondary speakers, and the filter box 

designed to connect the duct to the computer data acquisition 

card. The proposed algorithm is implemented in 

MATLAB/Simulink environment, and real-time window 

target toolbox is used to generate C++ codes requires to run 

the algorithm in real-time manner. The order of the 

numerator and denominator of the IIR filter is chosed by 

identification of primary and secondary path using subspace 

method and SLICOT software. The order obtained for 

numerator and denominator of IIR filter are 18 and 11 

respectively. In order to stabilize the algorithm )(qH  is found 

by trial and error a polynomial of order 11 so that the SPR 

condition requires for the stability of the algorithm satisfied. 

The algorithm is started with zeros initial conditions for the 

weights, 11 =λ , 810=η  and 
2λ  a very small number. The 

primary noise is chosed to be white noise (Fig. 3 up) and the 

error signal is measured at error microphone for 5 second. As 

can be seen the error signal is converged to zero after about 

0.7 second. Fig. 4 shows the convergence behaviour of some 

of the filter weights to their optimal value. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3548



 

 

     

 

 

Fig. 2. Acoustical experimental duct 
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Fig. 3: Primary signal (up) and error signal (down) 
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Fig. 3: Convergence behaviour of some of the filter weight 

6. CONCLUSIONS 

In this paper a fast-array adaptive algorithm for IIR filters in 

ANVC applications is derived. The algorithm is an extended 

form of the array algorithm used for RLS-based adaptive FIR 

filters. The computational complexity of the algorithm is of 

order )(nO which is very lower than the original algorithm 

which is of order )( 2nO . The performance of proposed 

algorithm is shown in an experimental duct using 

MATLAB/Simulink and real-time windows target toolbox. 
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