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Abstract: Metabolic system modeling for use in glycaemic control is increasing in importance. Few 

models are clinically validated for both fit and prediction ability. For such models, this research introduces 

a new form of pharmaco-dynamic (PD) surface comparison for model validation. These 3D surfaces are 

developed for 3 validated models, including the well-known Minimal Model, and fit to clinical data. The 

approach is clearly highlights differences in modeling methods, dynamics utilized and physiological 

assumptions that may not appear as clearly in other validation approaches. The deficiencies of the Minimal 

Model in comparison to more physiologically representative models are illustrated in this context. 

 

1. INTRODUCTION 

Type 1 and Type 2 diabetes are epidemic with significant 

economic cost driven by the inability of individuals, and their 

clinicians, to adequately control blood glucose levels. Hence, 

the rate of costly chronic complications is rising. Critical care 

studies (van den Berghe et al (2001); Krinsley (2002)) have 

shown tight glycaemic control can significantly reduce 

mortality and cost (Krinsley, 2006). However, achieving it 

has proven difficult, even though initial results show tighter 

control is better (Chase et al, 2007; Egi et al, 2007).  

The potential of models for managing glycaemic levels in any 

insulin resistant cohort is thus of growing import. However, 

relatively few models have been clinically validated. For 

most, the primary form of validation has been simple fitting 

of the model to clinical data. Occasionally, more rigorous 

prediction validation is used. However, only a few clinically 

validated models can predict within clinically acceptable 

ranges (e.g. Wong et al, 2006; Lotz et al, 2006; Arleth et al, 

2000; Hovorka et al, 2004).  

This paper presents a new form of model validation, by 

examining the steady state pharmaco-dynamic (PD) surfaces, 

including underlying pharmaco-kinetics (PK). A 3D surface 

of plasma insulin (x), plasma glucose (y) and resulting rate of 

change in endogenous glucose balance (z) is compared to 77 

sets of glycaemic clamp data (Arleth et al, 2000), creating a 

new form of clinical model validation in the comparison.  

2. METHODS 

2.1  Models 

Three clinically validated models are used in this analysis: 

1. Non-linear PK/PD Model (ND) 

2. Minimal Model (MM) 

3. Receptor Model (RM) 

The ND model has been used in several critical care studies 

(e.g. Wong et al, 2006). The MM is well documented and 

used (Pacini et al, 1986). The RM model was developed for a 

Type 1 diabetes decision support system (Arleth et al, 2000).  

The dynamic models (MM, ND) share the same basic PD 

formulation and can be jointly defined (Lotz et al, 2006): 

 

where G(t) [mmol/L] is the total plasma glucose, Q(t) [mU/L] 
is interstitial insulin assumed equal to plasma insulin in this 

steady state analysis, P(t) [mmol/min] is exogenous 

carbohydrate appearance, Pend [mmol/min] represents 

endogenous glucose appearance in a glucose distribution 

volume VG. Patient endogenous glucose clearance and insulin 

sensitivity are pG [1/min] and SI [L/(mU.min)]. Michaelis-
Menten function αG [L/mU] captures saturation of plasma 
insulin disappearance and glucose uptake by insulin, and αG2 
[L/mmol] allows for the saturation of glucose-dependent 

glucose clearance.  

Clinical trials, fitting and prediction validation, and model 

details for the ND model can be found elsewhere (e.g. Wong 

et al, 2006; Hann et al, 2005). The Minimal Model (MM) is 

thus effectively the case where: Pend = αG2 = αG = 0, -pG*G is 
redefined as -pG*(G-GE), where GE is a basal glucose value 

not used in the ND model of Equation (1), but defined in the 

MM (e.g. Pacini et al, 1986), and SI is the ratio used in the 
original MM formulation for active insulin. 

In this steady state PD surface analysis, Q(t) � Qss and G(t) 
� Gss, and Ġ � Pss in Equation (1) represent the endogenous 
balance change for that input in the steady state. Hence, the 
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steady state ND and MM model pharmaco-dynamics can be 

obtained from versions of Equations (1). 

The receptor model (RM) is defined (Arleth et al, 2000): 

where all terms and values are as defined in Arleth et al, 

(2000). Note that this model is defined based on clinically 

observed gains/losses from the liver (Hepatic), and losses to 

the kidneys (Renal), insulin-dependent periphery (P14) and 

insulin-independent periphery (P13). Hence, this receptor 

based model is physiologically defined. Finally, Is is a 
saturated insulin effect for insulin-dependent uptake, and it 

should be noted that P13 is a saturable insulin independent 

uptake of glucose and P14 a saturable insulin dependent 

uptake. The other specific values are obtained by fitting to 77 

clinical studies.  

The net results of this model (EndoBal) creates the 3D PD 

surface used for this comparison. This surface must be 

mathematically defined for the MM and ND models. Note 

that the RM model was created by directly fitting to clinical 

data, and thus needs no further alteration or analysis. 

2.2  PD Surface Fitting and Error Metrics 

To fit the PD surface for the ND and MM cases, a grid search 

was used over physiological ranges of important variables. In 

this case, the values of αG2, αG, SI were allowed to vary with 
Pend, PG, and VG set to constants, as in Table 1. The 

physiological ranges for αG2, αG, SI are based on an extensive 
literature search, model validation study and sensitivity study 

(Hann et al, 2005), and are also shown in Table 1 for normal 

subjects, as the clinical studies utilised normal subjects. 

Table 1: Variable values used in ND and MM analyses 

 Value 

PG 0.006 min
-1
 

VG 13.3 L (for 70kg), VG = 0.19*Mass (kg) 

Pend 1.2 mmol/L/min               (0 for the MM case) 

SI 1.5e-3 – 3.5e-3 L/mU/min 

αG 1/20 – 1/80 L/mU             (0 for the MM case) 

αG2 1/5 – 1/20 L/mmol            (0 for the MM case) 

 

For each set of variables in the lower part of Table 1, Ġ = -Pss 

is calculated from the model at the (Qss, Gss) from each of the 

77 clamp studies, creating 77 sets of (Qss, Gss)�Ġ = -Pss 
points for each combination of (αG2, αG, SI). Importantly, this 
approach assumes that the steady state glucose infusion in the 

clamp (Pss) is the negative of the glucose rate of change (Ġ) 
that would occur without it. Hence, these terms represent the 

same value, with Pss for the clamp infusion to maintain 

euglycaemia and Ġ for the equivalent endogenous balance 
change that would occur for the given glucose and insulin 

levels without it. The difference is in the sign with Pss 

positive and Ġ negative in this usage.  

Details on the clamp cohort (n = 77) are in Arleth et al (2000) 

but consist of a wide selection of euglycaemic and 

hyperglycaemic clamp studies in the literature. 

Overall, 11,424 variable sets (αG2, αG, SI) result in 77 error 
values (per set) in endogenous balance, summarised by:  

1. RMS Error (RMS) – this metric rewards solutions that 

minimise error over all studies. 

2. Absolute Mode of Error (AME) – most frequent 

absolute error, rewarding solutions with more errors 

near zero and allows more outliers to account for 

variation observed in clamp studies. 

3. Frequency of Error Near Zero (FNZ) – number of 

errors within +/-0.025 of 0.000 error value or ~5% of 

mean Ġ observed in the clinical studies. This metric 
rewards solutions that have greater concentrations 

within observed glycaemic clamp variability of 5%, 

regardless of the specific mode. 

Each error metric rewards different quality of fit. RMS 

minimises outliers, without accounting for outlying clinical 

results or variation. AME rewards solutions that maximise 

“inliers” but not to a specific value. FNZ rewards “inlier” 

solutions within clinically observed variability for glycaemic 

clamps, allowing outliers for study variability and error. The 

grid search results were analysed based on all three metrics, 

and compared to the RM results. Differences are then 

discussed in the context of the model dynamics. 

Note that the RM model of Equations (2)-(7) was created by 

direct fitting to this data, and needs no further alteration. 

3. RESULTS & DISCUSSION 

Results are presented for 2 basic model types from Equations 

(1)-(3). The MM model where there is no saturation (αG = αG2 
= 0), and the ND model with either 1 non-zero saturation 
(αG) term denoted ND1, or with both saturation terms (αG and 
αG2), which is denoted ND2.  

Figure 1 shows the histograms comparing the ND2 model 

when sorted by RMS and FNZ. FNZ and AME results were 

similar, so the latter is not shown. FNZ allows more outliers, 

but has greater numbers around zero. Qualitatively FNZ was 

used because the results were almost identical in the ND2 

case, and identical in the ND1 and MM cases. The use of 

FNZ may account slightly more for variation in methods and 

procedures in the clinical study than RMS.  

Figure 2 compares the errors for the ND1 and RM cases. As 

expected, the RM model is tighter having been fit to this 

clinical data in its derivation. The ND2 model error is more 

tightly distributed than ND1. Interestingly, the ND1 and ND2 

models had greater FNZ than the RM model, but slightly 

EndoBal = Hepatic – Renal – P13 – P14 (2) 

Hepatic = -0.46min
-1
 G – 1.475mmol/min/mU Is + 

1.259mmol/L/min;    Gmax=12.0 mmol/L 
(3) 

Renal = 0.004L/mmol/min G2 – 0.064min-1 G + 
0.278mmol/L/min 

(4) 

P13 = 0.56min
-1
 *G/(G + 1.5mmol/L) (5) 

P14 = 5.09mmol/L/min/mU G*Is /(G+5.0 mmol/L) (6) 

Is = I * 1/((I-0.083mU/L)
1.77
+ (0.539mU/L)

1.77
)
(1/1.77) 

(7) 
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wider distributions. The MM is not shown due to its very 

wide distribution of errors. 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

40

45

Endogenous Balance Error (mmol/L/min)

F
re

q
u
e
n
c
y
 (

o
f 

7
7
 s

tu
d
ie

s
)

 

 

  Best RMS

  Best FNZ

 

Fig. 1: ND2 error histogram, RMS vs FNZ metrics 
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Fig. 2: ND1 and RM errors. Note ND1 results were identical 

for RMS and FNZ metrics. 

FNZ sorted error results are given in Table 2, with relatively 

tight ND1 and ND2 distributions, compared to the RM 

model. In contrast, the MM has very large error and outliers. 

Table2: Results (parameter values and errors). Best FNZ 

and RMS results are identical for the ND1, MM and RM 

Model Values 

ND1 αG = 1/48 L/mU, αG2 = 0 L/mmol,  

SI = 0.0016 L/mU/min 

RMS = 0.07; AME = -0.01, FNZ = 36 

ND2 

Best FNZ 

αG = 1/44 L/mU, αG2 =1/7 L/mmol,  

SI = 0.0029 L/mU/min 

RMS = 0.06; AME = -0.01, FNZ = 39 

ND2 

Best RMS 

αG = 1/50 L/mU, αG2 =1/5 L/mmol,  

SI = 0.0032 L/mU/min 

RMS = 0.05; AME = -0.00, FNZ = 38 

MM αG = αG2 = 0 L/mU &  L/mmol 

SI = 0.0015 L/mU/min 

RMS = 4.77; AME = -0.05, FNZ = 3 

RM RMS = 0.04; AME = -0.01, FNZ = 32 

ND1, ND2 and RM are similar, while the MM model is quite 

different. Sorting for best RMS or FNZ for ND2 has no 

effect, and optimal solutions were robust over the variables. 

However, small differences in error are more evident in 

waterfall plots of the insulin-endogenous balance plane.  

Figures 3-4 show these waterfalls for the MM. Outlying 

errors are clearly due to the linear nature of the MM model 

glucose-insulin dynamics in this plane. In these figures, lines 

of constant glucose increase in value from the top to bottom 

lines, with clinical data marked individually. The MM errors 

will be very large for the higher insulin level values in Figure 

3, resulting in the large RMS error of Table 2. 
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Fig. 3: MM waterfall with lines showing constant glucose at 

Gss = 4.0, 4.5, 5.0, 5.5 and 6.0 mmol/L.  Clinical Studies: 

Squares: Gss = 4-4.75 mmol/L, Circles: Gss = 4.75-5.25 

mmol/L and Triangles: Gss = 5.25-6.0 mmol/L.  
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Fig. 4: MM waterfall with lines showing constant glucose at 

Gss = 7.5, 9.5, 11.5, 12.5 mmol/L.  Clinical Studies: Circles: 

Gss = 7-8 mmol/L studies, Triangles: Gss = 9-10 mmol/L, 

Squares: Gss = 10-11 mmol/L, and the X is 12-13 mmol/L.  

Figures 5-8 show the waterfall plot results for the ND1 and 

ND2 models. The ND2 figures are for the values sorted for 

best FNZ results. The results of Figures 5-8 are significantly 

improved versus the MM results, as also seen in Table 2. 

This difference is largely due to the MM model’s linear 
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removal of glucose as a function of insulin (at a given 

glucose level), which prevent it from capturing clinical values 

above (relatively) very low insulin values. Hence, the 

saturation that is clearly evident in the clinical data cannot be 

captured by the MM dynamics, resulting in very large error 

values over the entire clinical data set.  
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Fig. 5: ND1 waterfall with data as defined in Figure 3. 
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Fig. 6: ND1 waterfall with data as defined in Figure 4. 
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Fig. 7: ND2 waterfall with data as defined in Figure 3. 
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Fig.8: ND2 waterfall with data as defined in Figure 4. 

However, the ND models also fail to fully capture some 

clinical values. However, Figures 5 and 7 in particular show 

that from 30-100 mU/L on the insulin axis both models have 

difficulty capturing some of the clinical data points. 

Figures 9-10 show the RM model waterfalls. These plots 

more accurately fit the central portion of the clinical data, as 

expected due to the direct fitting of the model to this data. A 

salient difference is provided by the highly non-linear 

saturation curve of Equation (7), allowing the tighter 

distribution of constant glucose lines seen in these figures. 
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Fig.9: RM waterfall with data as defined in Figure 3. 
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Fig.10: RM waterfall with data as defined in Figure 4. 
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From the ND to RM models the difference in fit and 

behaviour are due primarily to two factors: 

1. A highly non-linear insulin effect saturation curve fit to 

the clinical data (Equation (7)) 

2. A separate saturated glucose loss in the periphery in 

Equation (5), along with independent saturation of 

glucose and insulin in Equations (6)-(7). 

The first difference appears in the insulin-endogenous 

balance plane and is illustrated in Figure 11. The RM model 

insulin saturation curve (scaled) is much sharper than the 

Michaelis-Menten saturation of the ND models. Different 

Michaelis-Menten constants thus fit the clinical data better at 

different insulin levels, but none work well over the entire 

range used here. In this case, 2-3 Michaelis-Menten constants 

work well in different ranges, where the RM fitted to the 

clinical data works over all ranges for this data. 
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Fig 11: Comparison of insulin saturation curves 

The sharper, highly non-linear saturation curve also results in 

the closer lines of constant glucose in Figures 9-10. The 

softer Michaelis-Menten term only offers the wider glucose 

curves in Figures 5-8. Thus, the ND model provides a lesser 

fit to this clinical data, which is more sharply saturated, as 

seen in all of Figures 3-10. Note that while the ND2 model is 

tighter with its second saturation, it is still not sharp enough 

to capture all the clinical data shown. This result thus 

suggests that there is a different saturation dynamic 

physiologically than is captured (fully) by Michaelis-Menten 

terms, at least over this range of clinical studies. 

Interestingly, the ND and RM model have qualitatively very 

similar errors. Thus, comparing Figures 5-7 to Figures 9-10, 

greater similarity might have been expected. This result 

shows how this PD surface approach can clearly delineate 

model differences more than point-wise error values. More 

specifically, it shows dual Michaelis-Menten saturations 

provide a better fit to otherwise variable clinical glycaemic 

clamp data than a single saturation, but that the shape of these 

saturation curves may not be ideal, at least in this case.  

However, the MM model is distinctly different, trying to 

adapt to its lack of dynamics by a lower SI value at the lower 
limit, matching reported under prediction when used in clamp 

studies. Importantly, the similar SI value for ND1 results in 

much smaller errors and is due to a trade off between SI and 
αG2. The MM model SI must be lowered by 10x to get RMS 
errors less than 0.5 or close to ND1 results, showing the 

reported under prediction of SI outside a physiological range 
for this model. These results also show how this PD surface 

analysis can clearly differentiate models.  

For further illustration, Figures 12-14 show the 3D PD 

surfaces for the RM, ND1 and ND2 models. They clearly 

show the flattening effect of the individual saturation 

dynamics, as well as the sharper saturation from Equation (7). 

However, qualitatively the fit to clinical data appears similar.  
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Figure 12: RM 3D surface, dots are clinical studies 
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Figure 13: ND1 3D surface, dots are clinical studies 
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Figure 14: ND2 3D surface, dots are clinical studies 
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In clinical situations, the ND models have shown very good 

predictive accuracy to within measurement error over 92% of 

the time, validating them for their clinical use in critical care 

(e.g. Wong et al, 2006; Hann et al, 2005). The RM model has 

less clinical validation, but 1-2 hour prediction accuracy 

using the same data (unpublished) yield essentially equivalent 

results to the ND model. Hence, both models, despite 

differences in the surfaces and dynamics in this analysis, are 

clinically effective for glycaemic management. 

Thus, the primary differences revolve around the shape of the 

saturation curve for insulin and the multiple glucose-insulin 

saturation dynamics. It is clear from this data that the sharper 

saturation of Equation (7) is potentially more physiological 

and should be validated with larger data sets. The separate 

saturations could also be incorporated into the ND model of 

Equation (1) and examined for improved predictive power. 

However, the current predictive accuracy of the ND and RM 

models is within measurement error over 90% of the time, so 

it may be difficult to further differentiate these models. 

This situation does not hold true for the Minimal Model 

(MM). This model is clearly deficient outside of low insulin 

and glucose values in Figures 4-5. The 3D surface of Figure 

15 with a z-axis 3x larger than Figures 12-14 clearly shows 

this result. The lack of well known physiological saturations 

and effects is clearly evident here, as in Table 2. 
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Figure 15: MM 3D surface, dots are clinical studies. 

4. CONCLUSIONS 

A new PD surface oriented approach to model validation has 

been presented for metabolic systems models. Two non-

linear, physiologically representative dynamic models (ND) a 

receptor-based (RM) model and the well-known Minimal 

Model (MM) were examined. The ND and RM models 

provide similar dynamics with salient differences due to the 

exact method of adding physiological saturation dynamics. In 

contrast, the MM is not physiologically representative 

enough to provide a 3D surface that captures the clinical data 

outside low insulin and glucose ranges, illustrating the 

difficulty in using this model for predictive glycaemic 

control. The reported under-prediction of insulin sensitivity 

by the MM is clearly evident. Comparing ND1 and ND2 

shows the need for two saturation terms in the ND1 model 

due to trade offs between insulin sensitivity and the second 

saturation term. The RM model would benefit from 

validation on additional data in future work. 
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