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Abstract: Control software development is not an easy task. Lots of works deal with this problem and suggest 

solutions but in specific context only. The problem is that these solutions are compartmentalized at the technical 

and theoretical levels. This paper suggests to use the emerging domain of Model Driven Engineering (MDE) to 

simplify the interoperability between the various domains and disciplines used in control software design. The 

approach proposed is illustrated with the development of a control software for a legged robot. 

 

Keywords: Model Driven Engineering, Concurrent Systems, Supervisory Control, Model Checking. 

 

1. INTRODUCTION 

Control software development is currently a complex task: 

Development requires the integration of many disciplines, 

models and how-to for modeling, analysis or design. The 

design complexity is increased by the domain specificities 

required by its implementation. Therefore it is necessary to 

insist on the fact that nowadays these design constraints 

(W.A. Halang et al., 2006) lead the software systems to 

become: 

• Heterogeneous: The realization of the software 

system needs the use of different languages, 

platforms and concepts. 

• Reactive: The system evolves according to external 

stimuli. 

• Concurrent: The system is made up of individual 

elements that communicate. 

• Fault tolerant: The system must be able to run even 

though unexpected stimuli leading to errors occur. 

• Embedded: The platforms used are often lightened, 

and usable resources are limited. 

• Distributed: The application is deployed on different 

platforms over a network. 

These issues involve a stricter reasoning and more formal 

methods. Traditionally, the design of these software, said 

to be safety critical, is based on the use of development 

cycles such as the V-Model, Spiral Model, as well as the 

use of Agile Software Development Methods like: Unified 

Process (UP), Rational Unified Process (RUP) and 

eXtreme Programming (XP); see Ambler and Jeffries 

(2002) or Tomayko and Scragg (2004). In these 

development cycles, design and validation alternate but the 

development cycle always begins with the specification 

followed by the design of the control software. This 

consists in the modeling of the system and its constraints 

taking into account the specificities of the application 

domain. 

The problem put forward by Ricardo Sanz is the limitation 

of the standard approaches unable to cope with the 

increasing complexity in the development of critical 

software. He explains that it is difficult to integrate the 

various domains which are necessary to design control 

software; Sanz and Arzen (2003). In Lee et al. (2004), the 

authors deal with this problem: "Recently, most works on 

systems modeling and simulation have been mainly 

focused on either Continuous Variable Systems (CVS) or 

Discrete Event Systems (DES)". 

Taking these aspects into account, it is therefore necessary 

to build tools, to improve the already existing ones and to 

suggest methods for the development of such systems. It is 

particularly important to make these different domains 

communicate so as to set up a more rational and more 

reliable control software design process.  

In this context, Model Driven Engineering (MDE) 

suggests a multiparadigm approach with various modeling 

languages described by meta-models and model 

transformations to link together these languages and the 

associated tools. In the field of control software 

engineering dedicated to concurrent and reactive systems, 

the aim of our work is to establish relations between the 

various domains required by the development process. 

More precisely, the paper proposes a framework for safe 

control software based on MDE concepts with meta-

models for supervisory control theory and for model-

checking, and models’ transformations between these two 

kinds of models. 

This paper is divided into four parts. The first part is the 

introduction. The second part introduces the MDE 

concepts. The third part presents the proposed approach. In 

the fourth and last part, an example illustrating the 

rationalized development of a control software is 

presented. In particular, these parts present supervisory 

control and model checking with MDE concepts. 
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2. MDE CONCEPTS 

Model Driven Engineering (MDE) provides a framework 

to capture and then to integrate modeling concepts and 

tools. This integration is possible thanks to the use of 

meta-models, most often represented by UML diagrams, 

and to the use of model transformations, corresponding to 

graph transformations. In order to achieve this goal, MDE 

relates the system, the model, the modeling language and 

the meta-model as follows (figure 1); Mellor et al. (2003). 

• The modeling language defines a set of models which 

includes specific characteristics of a domain. 

• The meta-model is a model of a modeling language; 

more precisely, a metamodel defines the syntax and 

the semantics of this language. A model conforms to 

a meta-model is a member of the set of all models 

specified by the meta-model. 

 

Fig. 1. Relations between the system, model, meta-model 

and modeling language 

In order to link two domains, a meta-model has to be 

defined for each domain. It is then possible to associate the 

concepts of these different domains by the mean of 

transformation rules. These transformation rules enable to 

map one language to another language. This change in 

domains allows to take advantage of each of the modeling 

languages. The rules of transformation, applied to a model, 

build a new model which is conform to the meta-model of 

the targeted domain.  

Mosterman and Vangheluwe (2000) propose a multi-

paradigm approach based on MDE to model control 

systems. Lacoste-Julien et al. (2004) propose to use 

metamodeling concepts to define a hybrid formalism with 

AToM3 1 (see de Lara and H.Vangheluwe, 2002), a tool 

for metamodeling and model transformations.  

MDE also provides tools (Eclipse EMF, Budinsky et al. 

(2003); GME, Ledeczi et al. (2001) or MetaEdit+, which 

can be configured with these meta-models and used in 

specific domains. In Rasse et al. (2005), A. Rasse uses for 

example MetaEdit+ to model dynamical systems and 

automatically get a representation that can be analyzed 

with a Model-Checking tool (in this case, LTSA, Magee 

and Kramer (1999)). Then, the model is transformed to 

obtain executable code. 

3. PROPOSITION 

To facilitate the development of control software, this 

paper proposes to apply the MDE concepts at each step of 

the development process with analysis, design checking, 

testing, etc. More precisely, the paper proposes to make 

software development easiest using MDE tools configured 

with meta-models and models transformations between 

domains which are necessary to system global design. 

A similar approach has been proposed in Karsai et al. 

(2003) where the authors propose a model-integrated 

approach for embedded software development. Multiple 

views of a model are used in all steps of the software 

development cycle. This approach is called Model-

Integrated Computing (MIC). However, this work is 

dedicated to embedded software and our approach 

proposes a development cycle model able to provide 

methods for a flexible approach of control software 

development. 

The approach implies two kinds of actors. The first actor is 

the language architect who makes and integrates meta-

models and transformations rules in MDE tools. The 

second actor is the system engineer who uses these pre-

configured tool to model systems. 

Thus, the language engineer does: 

(1) The identification of the domains which are necessary 

to the analysis/design of control software. 

(2) The definition of a meta-model for each of the 

identified domain. 

(3) The refinement of these meta-models through a 

software component, which allows to provide a tool 

facilitating the design of models. 

(4) The definition of transformation rules, by establishing 

mapping between the concepts of the various domains. 

 

Fig. 2. V-Model development cycle 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8456



The aim of the previous work is to help the system 

engineer to apprehend the complexity of software 

development: in particularly, the system engineer must be 

able to use the tool pre-configured with various models 

(and meta-models) at each step of the design. For instance, 

the figure 2 describes the adaptation of a classical V-

Model cycle to a V-Model cycle based on models. Each 

activity produces various models; and then there are 

models/meta-models (or modeling languages) for 

specification, design, deployment and verification. At this 

stage, model transformations have to be defined to allow 

passage from one activity to another. 

4. EXAMPLE 

4.1 Presentation 

In order to illustrate the proposed approach, the paper 

studies the development of control software for a legged 

robot (figure 3.a). Further information about this platform, 

which is developed by our group, is given by Thirion and 

Thiry (2002). The control software is based on the parallel 

composition of six local controllers; each one describes the 

cycle of figure 3.b and the state machine of 3.c. The 

movement of a leg follows a cycle between two positions 

aep (anterior extreme position) and pep (posterior extreme 

position). A leg is said to be in retraction when it is on the 

ground and contributes to the movement of the platform. A 

leg is said to be in protraction when it is raised and moves 

towards aep. It waits until the event prot (for protraction) 

occurs. The simplified operating model of a leg is summed 

up in figure 3.c: aep and pep are uncontrollable events and 

prep is a controllable event. 

a) b)

Protraction

Rétraction

aep

pep  c)  

Fig. 3. a) Hexapod Robot, b) Leg operating cycle, c) Leg 

operating model. 

It is necessary to set a few constraints/properties: 

(1) The first constraint is required for the stability of the 

platform and states that two neighbouring legs cannot be 

raised simultaneously. 

(2) The second constraint makes sure that the system 

always runs and states that the legs always follow their 

cycle: protraction, retraction, protraction, etc. 

In order to facilitate the presentation, the paper will only 

focus on the study of two legs. The two constraints set up 

above imply that prot1, aep1, prot2 and aep2 have to 

follow one another. As pep1 and pep2 are only events 

indicating the end of the movement of the legs (1 and 2), 

they do not need any specific management.  

The previous description gives the specification model of 

the system. Now, it is necessary to define how the control 

software has to be realized. The domain that appears in the 

development process has to be identified. As the 

specification uses discrete states, the main domains to be 

used are the one of Discrete Event Systems (DES) and the 

one of concurrent systems. More specifically, the two 

domains considered here are supervisory control theory, 

which allows to synthesize a first model of the control 

software and model checking, in order to validate the 

realization during the synthesis. In order to guarantee the 

equivalence of the model, the relation of bisimulation is to 

be used between the models of the supervisory control and 

those of the model checking. 

4.2 Supervisory control 

The first step of the realization consists in using the 

supervisory control theory to generate a model of the 

controller from the specification model. This proposition 

simplifies the realization but is not sufficient to make a 

system to satisfy all the constraints expressed by the 

specification; that is why Model Checking is used in the 

second step. Supervisory control is based on Discrete 

Event Systems (DES). It has been introduced by P.J. 

Ramadge and W.M. Wonham. It defines three entities: the 

model of the system G, the model of a wanted 

specification K and the model of the supervisor S.  

The system is considered as an entity evolving in a 

autonomous way and generating events. It is coupled up 

with the supervisor and thus creates a control loop. The 

resulting behavior satisfies the constraints defined in the 

specification. At runtime, the system evolves as follows: at 

each step of the execution of the system G, the supervisor 

S is notified by the last generated event. Then, the 

supervisor notifies the system of the set of events it is 

authorized to. An event can be realized only if it 

corresponds to a physically feasible action and if it is 

authorized to do so by the supervisor, see Ramadge and 

Wonham (1989). 

The models used for DES are based on language theory 

and on Finite State Machines (FSM); Cassandras and 

Lafortune (1999). The behavior of the system is therefore 

modeled by the language generated by an FSM with the 

following structure: 

G = (Q, Σ, δ, q0, Qm) where Q is a set of states, Qm ⊆ Q is 

a set of marked states, Σ is a set of events called alphabet, 

q0 is the initial state and d is the state transition function 

such as δ : Q×Σ →Q. 

Two languages can be distinguished: the language 

generated L(G) by the FSM, which corresponds to the 

possible traces (i.e. sequences of events) of a system, and 

the marked language Lm(G) which corresponds to all the 

traces ending into a marked state. (Note. Lm(G)  ⊆ L(G)). 

The prefix closure of the marked language provides the set 

of traces Lm(G) and all the prefix of Lm(G) traces 
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allowed. If Lm(G) = L(G) then it is guaranteed that the 

system G is non-blocking.  

At this point, supervisory control provides the means of 

synthesizing the supervisor model from the model of the 

system and the model of the specification such as the 

coupling of the system G and the supervisor S satisfies the 

properties K. The coupling ensures that the language of the 

closed loop system is equal to the intersection of the 

language of the system and the specification so that  

L(S/G) = L(G) ∩ L(K). And so, the language L(S/G) 

corresponds to a model of behavior compatible with the 

activity of the system G and conforms to the specification. 

It is possible to design an algorithm for the automatic 

synthesis of the supervisor. The supervisor model is: 

S=trim(G×K), where trim is an operation deleting the 

blocking and non accessible states, and where × is the 

operation of strict product (Equivalent to L(G) ∩ L(K)) 

between two machines G and K. The alphabet Σ is divided 

into two subsets: a set of controllable events ΣC and a set 

of uncontrollable events ΣU, so that Σ = ΣC ∪ ΣU. Events in 

the set ΣU cannot be forbidden by the supervisor. This 

restriction has to be taken into account for the synthesis of 

the supervisor: if the supervisor were built without taking 

controllability into account, it would be likely to forbid a 

non controllable event. 

The Kumar algorithm takes this into account; it prohibits 

the controllable events leading to the uncontrollable events 

banned by the specification; see Brandt et al. (1990). The 

drawback of this solution is that it can delete states leading 

to behaviors necessary to the successful operating of the 

system. Indeed, the supervisory control guarantees the 

absence of unwished behaviors, but it does not guarantee 

the presence of particular behaviors. To face this problem, 

the domain of Model Checking provides tools and methods 

to check if the system is still satisfying the desired 

properties. 

 

Fig. 4. DestKit: Meta-model for Finite State Machines (see 

definition G) 

To validate our proposition, i.e. simplify the development 

of control software using MDE concepts, we have 

developed a Java framework (DestKit) for the modeling of 

DES and the synthesis of supervisor controllers. The 

framework relies on a meta-model, described in figure 4, 

which enables to describe and then transform Finite State 

Machines. DestKit integrates all the transformations 

necessary to the synthesis of a supervisor with a Finite 

State Machine describing a non-constrained system and 

another finite state machine describing the properties to be 

fulfilled. Moreover, it integrates classical operations on 

finite state machines such as different products (product or 

synchronized composition), the transformation of a non 

deterministic FSM into a deterministic FSM, the trim 

operation, etc. 

 

Fig. 5. Permissive model of a two leg moving cycle. 

Thanks to DestKit, the two legs of the robot are modeled 

in their more permissive behavior by the product of the 

FSM, describing the behavior of each leg (figure 5). A 

specification is also defined in order to described the 

movement of the two legs (figure 6). It is then enriched by 

transformation: in adding uncontrollable events pep1 and 

pep2. 

 

Fig. 6. Stability specification for the hexapod robot. 

The supervisor (figure 7) is obtained by applying the 

synthesis algorithm and the Kumar algorithm. However, as 

the Kumar algorithm may give a more restrictive 

supervisor, it is important to check if the supervisor still 

fulfills some properties such as liveness. That is why it is 

necessary to switch to the domain of model checking; to 

check that the required properties are still satisfied. 

4.3 Model-Checking 

Model Checking is based on three steps: the modeling of 

the system M, the specification of the properties K and the 

use of an algorithm of model checking which checks 

whether the model M satisfies K: M ⊨ K. The modeling 

step is generally based on Labelled Transition Systems 

(LTS), process algebra or FSM; see E.M. Clarke at al. 
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(2000). The specification of properties (such as liveness or 

safety) uses Linear Temporal Logic (LTL), Computation 

Tree Logic (CTL), LTS or FSM. The phase of verification 

is realized thanks to tools which put forwards the 

behaviors of the model which violate the properties. These 

tools usually provide traces leading to an unwished 

situation.  

 

Fig. 7. Model of the supervisor 

Verification used in our approach is similar to the one 

implemented in LTSA (J. Magee and J. Kramer, 1999): a 

model of the system M and a model of property K are 

expressed in the process algebra FSP (Finite State 

Processes); this later is a language to specify LTS models 

and LTL formulae. A simplified grammar for this 

language is presented by figure 8. A process can be 

terminated (STOP) or blocked (ERROR). A process 

executes an action a and becomes another process P noted 

(a→P). A process can choose between two actions (|). A 

process can be defined by the parallel composition of two 

processes (||). In order to check the fulfillment of the 

properties, LTSA produces the complement K of the 

property. So, M ⊨ K if and only if L(M ) ∩ L(K) = {}. 

After verification, LTSA automatically generates a 

possible trace leading to an unwished configuration. It also 

allows the user to simulate/test the evolution of the system. 

In the example of the hexapod robot, the validation of the 

models requires the transformation of the system and of 

the supervisor models into FSP to be used by LTSA. This 

transformation is illustrated on figure 9; it associates the 

key concepts of the metamodel of the supervisory control 

(figure 4), and the key concepts of the metamodel of model 

checking. Here the metamodel is represented textually by 

the grammar of figure 8. 

Process :: STOP 

 |  ERROR 

 |  Action → Process 

|  (Process||Process) 

 |  Process | Process 

Fig. 8. Simplified abstract grammar of FSP 

 

Fig. 9. Model of transformation FSM to FSP  

So, an FSM turns into a process, an event turns into an 

action, etc. The result of this transformation provides the 

model of the supervised system, figure 10. On this figure, 

the property of liveness for two legs is described in FSP.  

Hexapode =A  

A=(pep1->B|pep2->C), B=(pep2->D|prot1->E), 

C=(pep1->D|prot2->F), D=(prot1->G|prot2->H), 

…  

progress P1={prot1}  

progress P2={prot2}  

||CHECK=(HEXAPODE||Prop).  

Fig. 10. Extract of the FSP model of the legged robot and 

liveness property 

In order to validate the model transformations between the 

domain of supervisory control and the domain of model 

checking, the equivalence of the corresponding models has 

to be proved. This can be done using the relation of 

bisimulation which allows a stricter equivalence than the 

one based on the languages; see R. Milner, 1989. 

Definition 1. Given two LTS G=<S,T,α,β,γ> and 

G’=<S’,T’,α’,β’,γ’> with the same alphabet Σ and where S 

and S’ are sets of states, T and T’ are transition functions, 

α and α’ are functions giving source states of a transition, β 

and β’ are functions giving target states of a transition and 

γ and γ’ are functions giving event of the transition. The 

bisimulation relation is a binary relation ℛ ⊆ S×S’ such 

that: 

1. ∀s ∈ S,  ∃s’ ∈ S’ such that s ℛ s’ 

2. ∀s’ ∈ S’, ∃s ∈ S such that s ℛ s’ 

3. ∀t ∈ T and ∀s’ ∈ S’ such that α(t) ℛ s’, ∃t’ ∈ T’ 

such that s’= α(t’), γ(t)= γ’(t’) and β(t) ℛ β’(t’) 

4. ∀t’ ∈ T’ and ∀s ∈ S such that s ℛ α’(t’), ∃t ∈ T 

such that s= α(t), γ(t)= γ’(t’) and β(t) ℛ β’(t’) 

 

As Finite State Machines are specific LTS, it is possible to 

establish the relation of bisimulation between the different 

states of the supervisor model (figure 7) and the different 

states of model obtained after the transformation in the 

domain of model-checking (figure 11). 
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Fig. 11. LTS model of the supervisor resulting from the 

transformation (figure 9) 

To conclude, the analysis of the FSP code introduced in 

figure 10 with LTSA, shows that specifications are 

satisfied. The model of the control system, coming from 

the generation of the supervisor at the previous step, 

satisfies the liveness property; the system can still generate 

the prot1 and prot2 events infinitely often. The design is 

done, checked; and what remains to do is to deploy the 

system on a platform. 

5. CONCLUSION 

Based on the example of an hexapod robot, this paper 

proposes an approach using the concepts of the Model 

Driven Engineering (MDE) community to make the 

development of control software easier. More particularly, 

this paper shows how to integrate specification models 

with design models (FSM and LTS). This integration is 

based on synthesis (with supervisory control theory) and 

checking (with model checking). The approach can be 

generalized to integrate other modeling languages, and 

tools, that appear in the analysis/design process. As shown 

in the example, the control software was created by using 

domains such as supervisory control (for synthesis) and 

model checking (for validation). This design therefore 

allows a unified conception of software systems, in a more 

reliable way. So, this approach allows a simplification of 

the process of the software development thanks to the 

integration of models allowing to: (1) Realize models at a 

higher level of abstraction. (2) Associate various domains 

by establishing rules of transformation between the various 

metamodels. 

Besides, the perspectives of these works, it is important to 

define which domains can be used in a single way. In the 

same manner, it is also important to determine in which 

order they have to be used, which may imply a hierarchy 

among the domains considered in the development 

process. 
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