
A metamodeling approach for safe control software

T. Collonvillé, L. Thiry, J-M. Perronne, B. Thirion

Laboratoire MIPS, Université de Haute-Alsace, Mulhouse (France)

e-mail: {thomas.collonville, laurent.thiry, jean-marc.perronne, bernard.thirion}@uha.fr

Abstract: Control software development is not an easy task. Lots of works deal with this problem and suggest

solutions but in specific context only. The problem is that these solutions are compartmentalized at the technical

and theoretical levels. This paper suggests to use the emerging domain of Model Driven Engineering (MDE) to

simplify the interoperability between the various domains and disciplines used in control software design. The

approach proposed is illustrated with the development of a control software for a legged robot.

Keywords: Model Driven Engineering, Concurrent Systems, Supervisory Control, Model Checking.

1. INTRODUCTION

Control software development is currently a complex task:

Development requires the integration of many disciplines,

models and how-to for modeling, analysis or design. The

design complexity is increased by the domain specificities

required by its implementation. Therefore it is necessary to

insist on the fact that nowadays these design constraints

(W.A. Halang et al., 2006) lead the software systems to

become:

• Heterogeneous: The realization of the software

system needs the use of different languages,

platforms and concepts.

• Reactive: The system evolves according to external

stimuli.

• Concurrent: The system is made up of individual

elements that communicate.

• Fault tolerant: The system must be able to run even

though unexpected stimuli leading to errors occur.

• Embedded: The platforms used are often lightened,

and usable resources are limited.

• Distributed: The application is deployed on different

platforms over a network.

These issues involve a stricter reasoning and more formal

methods. Traditionally, the design of these software, said

to be safety critical, is based on the use of development

cycles such as the V-Model, Spiral Model, as well as the

use of Agile Software Development Methods like: Unified

Process (UP), Rational Unified Process (RUP) and

eXtreme Programming (XP); see Ambler and Jeffries

(2002) or Tomayko and Scragg (2004). In these

development cycles, design and validation alternate but the

development cycle always begins with the specification

followed by the design of the control software. This

consists in the modeling of the system and its constraints

taking into account the specificities of the application

domain.

The problem put forward by Ricardo Sanz is the limitation

of the standard approaches unable to cope with the

increasing complexity in the development of critical

software. He explains that it is difficult to integrate the

various domains which are necessary to design control

software; Sanz and Arzen (2003). In Lee et al. (2004), the

authors deal with this problem: "Recently, most works on

systems modeling and simulation have been mainly

focused on either Continuous Variable Systems (CVS) or

Discrete Event Systems (DES)".

Taking these aspects into account, it is therefore necessary

to build tools, to improve the already existing ones and to

suggest methods for the development of such systems. It is

particularly important to make these different domains

communicate so as to set up a more rational and more

reliable control software design process.

In this context, Model Driven Engineering (MDE)

suggests a multiparadigm approach with various modeling

languages described by meta-models and model

transformations to link together these languages and the

associated tools. In the field of control software

engineering dedicated to concurrent and reactive systems,

the aim of our work is to establish relations between the

various domains required by the development process.

More precisely, the paper proposes a framework for safe

control software based on MDE concepts with meta-

models for supervisory control theory and for model-

checking, and models’ transformations between these two

kinds of models.

This paper is divided into four parts. The first part is the

introduction. The second part introduces the MDE

concepts. The third part presents the proposed approach. In

the fourth and last part, an example illustrating the

rationalized development of a control software is

presented. In particular, these parts present supervisory

control and model checking with MDE concepts.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8455 10.3182/20080706-5-KR-1001.2162

2. MDE CONCEPTS

Model Driven Engineering (MDE) provides a framework

to capture and then to integrate modeling concepts and

tools. This integration is possible thanks to the use of

meta-models, most often represented by UML diagrams,

and to the use of model transformations, corresponding to

graph transformations. In order to achieve this goal, MDE

relates the system, the model, the modeling language and

the meta-model as follows (figure 1); Mellor et al. (2003).

• The modeling language defines a set of models which

includes specific characteristics of a domain.

• The meta-model is a model of a modeling language;

more precisely, a metamodel defines the syntax and

the semantics of this language. A model conforms to

a meta-model is a member of the set of all models

specified by the meta-model.

Fig. 1. Relations between the system, model, meta-model

and modeling language

In order to link two domains, a meta-model has to be

defined for each domain. It is then possible to associate the

concepts of these different domains by the mean of

transformation rules. These transformation rules enable to

map one language to another language. This change in

domains allows to take advantage of each of the modeling

languages. The rules of transformation, applied to a model,

build a new model which is conform to the meta-model of

the targeted domain.

Mosterman and Vangheluwe (2000) propose a multi-

paradigm approach based on MDE to model control

systems. Lacoste-Julien et al. (2004) propose to use

metamodeling concepts to define a hybrid formalism with

AToM3 1 (see de Lara and H.Vangheluwe, 2002), a tool

for metamodeling and model transformations.

MDE also provides tools (Eclipse EMF, Budinsky et al.

(2003); GME, Ledeczi et al. (2001) or MetaEdit+, which

can be configured with these meta-models and used in

specific domains. In Rasse et al. (2005), A. Rasse uses for

example MetaEdit+ to model dynamical systems and

automatically get a representation that can be analyzed

with a Model-Checking tool (in this case, LTSA, Magee

and Kramer (1999)). Then, the model is transformed to

obtain executable code.

3. PROPOSITION

To facilitate the development of control software, this

paper proposes to apply the MDE concepts at each step of

the development process with analysis, design checking,

testing, etc. More precisely, the paper proposes to make

software development easiest using MDE tools configured

with meta-models and models transformations between

domains which are necessary to system global design.

A similar approach has been proposed in Karsai et al.

(2003) where the authors propose a model-integrated

approach for embedded software development. Multiple

views of a model are used in all steps of the software

development cycle. This approach is called Model-

Integrated Computing (MIC). However, this work is

dedicated to embedded software and our approach

proposes a development cycle model able to provide

methods for a flexible approach of control software

development.

The approach implies two kinds of actors. The first actor is

the language architect who makes and integrates meta-

models and transformations rules in MDE tools. The

second actor is the system engineer who uses these pre-

configured tool to model systems.

Thus, the language engineer does:

(1) The identification of the domains which are necessary

to the analysis/design of control software.

(2) The definition of a meta-model for each of the

identified domain.

(3) The refinement of these meta-models through a

software component, which allows to provide a tool

facilitating the design of models.

(4) The definition of transformation rules, by establishing

mapping between the concepts of the various domains.

Fig. 2. V-Model development cycle

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8456

The aim of the previous work is to help the system

engineer to apprehend the complexity of software

development: in particularly, the system engineer must be

able to use the tool pre-configured with various models

(and meta-models) at each step of the design. For instance,

the figure 2 describes the adaptation of a classical V-

Model cycle to a V-Model cycle based on models. Each

activity produces various models; and then there are

models/meta-models (or modeling languages) for

specification, design, deployment and verification. At this

stage, model transformations have to be defined to allow

passage from one activity to another.

4. EXAMPLE

4.1 Presentation

In order to illustrate the proposed approach, the paper

studies the development of control software for a legged

robot (figure 3.a). Further information about this platform,

which is developed by our group, is given by Thirion and

Thiry (2002). The control software is based on the parallel

composition of six local controllers; each one describes the

cycle of figure 3.b and the state machine of 3.c. The

movement of a leg follows a cycle between two positions

aep (anterior extreme position) and pep (posterior extreme

position). A leg is said to be in retraction when it is on the

ground and contributes to the movement of the platform. A

leg is said to be in protraction when it is raised and moves

towards aep. It waits until the event prot (for protraction)

occurs. The simplified operating model of a leg is summed

up in figure 3.c: aep and pep are uncontrollable events and

prep is a controllable event.

a) b)

Protraction

Rétraction

aep

pep c)

Fig. 3. a) Hexapod Robot, b) Leg operating cycle, c) Leg

operating model.

It is necessary to set a few constraints/properties:

(1) The first constraint is required for the stability of the

platform and states that two neighbouring legs cannot be

raised simultaneously.

(2) The second constraint makes sure that the system

always runs and states that the legs always follow their

cycle: protraction, retraction, protraction, etc.

In order to facilitate the presentation, the paper will only

focus on the study of two legs. The two constraints set up

above imply that prot1, aep1, prot2 and aep2 have to

follow one another. As pep1 and pep2 are only events

indicating the end of the movement of the legs (1 and 2),

they do not need any specific management.

The previous description gives the specification model of

the system. Now, it is necessary to define how the control

software has to be realized. The domain that appears in the

development process has to be identified. As the

specification uses discrete states, the main domains to be

used are the one of Discrete Event Systems (DES) and the

one of concurrent systems. More specifically, the two

domains considered here are supervisory control theory,

which allows to synthesize a first model of the control

software and model checking, in order to validate the

realization during the synthesis. In order to guarantee the

equivalence of the model, the relation of bisimulation is to

be used between the models of the supervisory control and

those of the model checking.

4.2 Supervisory control

The first step of the realization consists in using the

supervisory control theory to generate a model of the

controller from the specification model. This proposition

simplifies the realization but is not sufficient to make a

system to satisfy all the constraints expressed by the

specification; that is why Model Checking is used in the

second step. Supervisory control is based on Discrete

Event Systems (DES). It has been introduced by P.J.

Ramadge and W.M. Wonham. It defines three entities: the

model of the system G, the model of a wanted

specification K and the model of the supervisor S.

The system is considered as an entity evolving in a

autonomous way and generating events. It is coupled up

with the supervisor and thus creates a control loop. The

resulting behavior satisfies the constraints defined in the

specification. At runtime, the system evolves as follows: at

each step of the execution of the system G, the supervisor

S is notified by the last generated event. Then, the

supervisor notifies the system of the set of events it is

authorized to. An event can be realized only if it

corresponds to a physically feasible action and if it is

authorized to do so by the supervisor, see Ramadge and

Wonham (1989).

The models used for DES are based on language theory

and on Finite State Machines (FSM); Cassandras and

Lafortune (1999). The behavior of the system is therefore

modeled by the language generated by an FSM with the

following structure:

G = (Q, Σ, δ, q0, Qm) where Q is a set of states, Qm ⊆ Q is

a set of marked states, Σ is a set of events called alphabet,

q0 is the initial state and d is the state transition function

such as δ : Q×Σ →Q.

Two languages can be distinguished: the language

generated L(G) by the FSM, which corresponds to the

possible traces (i.e. sequences of events) of a system, and

the marked language Lm(G) which corresponds to all the

traces ending into a marked state. (Note. Lm(G) ⊆ L(G)).

The prefix closure of the marked language provides the set

of traces Lm(G) and all the prefix of Lm(G) traces

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8457

allowed. If Lm(G) = L(G) then it is guaranteed that the

system G is non-blocking.

At this point, supervisory control provides the means of

synthesizing the supervisor model from the model of the

system and the model of the specification such as the

coupling of the system G and the supervisor S satisfies the

properties K. The coupling ensures that the language of the

closed loop system is equal to the intersection of the

language of the system and the specification so that

L(S/G) = L(G) ∩ L(K). And so, the language L(S/G)

corresponds to a model of behavior compatible with the

activity of the system G and conforms to the specification.

It is possible to design an algorithm for the automatic

synthesis of the supervisor. The supervisor model is:

S=trim(G×K), where trim is an operation deleting the

blocking and non accessible states, and where × is the

operation of strict product (Equivalent to L(G) ∩ L(K))

between two machines G and K. The alphabet Σ is divided

into two subsets: a set of controllable events ΣC and a set

of uncontrollable events ΣU, so that Σ = ΣC ∪ ΣU. Events in

the set ΣU cannot be forbidden by the supervisor. This

restriction has to be taken into account for the synthesis of

the supervisor: if the supervisor were built without taking

controllability into account, it would be likely to forbid a

non controllable event.

The Kumar algorithm takes this into account; it prohibits

the controllable events leading to the uncontrollable events

banned by the specification; see Brandt et al. (1990). The

drawback of this solution is that it can delete states leading

to behaviors necessary to the successful operating of the

system. Indeed, the supervisory control guarantees the

absence of unwished behaviors, but it does not guarantee

the presence of particular behaviors. To face this problem,

the domain of Model Checking provides tools and methods

to check if the system is still satisfying the desired

properties.

Fig. 4. DestKit: Meta-model for Finite State Machines (see

definition G)

To validate our proposition, i.e. simplify the development

of control software using MDE concepts, we have

developed a Java framework (DestKit) for the modeling of

DES and the synthesis of supervisor controllers. The

framework relies on a meta-model, described in figure 4,

which enables to describe and then transform Finite State

Machines. DestKit integrates all the transformations

necessary to the synthesis of a supervisor with a Finite

State Machine describing a non-constrained system and

another finite state machine describing the properties to be

fulfilled. Moreover, it integrates classical operations on

finite state machines such as different products (product or

synchronized composition), the transformation of a non

deterministic FSM into a deterministic FSM, the trim

operation, etc.

Fig. 5. Permissive model of a two leg moving cycle.

Thanks to DestKit, the two legs of the robot are modeled

in their more permissive behavior by the product of the

FSM, describing the behavior of each leg (figure 5). A

specification is also defined in order to described the

movement of the two legs (figure 6). It is then enriched by

transformation: in adding uncontrollable events pep1 and

pep2.

Fig. 6. Stability specification for the hexapod robot.

The supervisor (figure 7) is obtained by applying the

synthesis algorithm and the Kumar algorithm. However, as

the Kumar algorithm may give a more restrictive

supervisor, it is important to check if the supervisor still

fulfills some properties such as liveness. That is why it is

necessary to switch to the domain of model checking; to

check that the required properties are still satisfied.

4.3 Model-Checking

Model Checking is based on three steps: the modeling of

the system M, the specification of the properties K and the

use of an algorithm of model checking which checks

whether the model M satisfies K: M ⊨ K. The modeling

step is generally based on Labelled Transition Systems

(LTS), process algebra or FSM; see E.M. Clarke at al.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8458

(2000). The specification of properties (such as liveness or

safety) uses Linear Temporal Logic (LTL), Computation

Tree Logic (CTL), LTS or FSM. The phase of verification

is realized thanks to tools which put forwards the

behaviors of the model which violate the properties. These

tools usually provide traces leading to an unwished

situation.

Fig. 7. Model of the supervisor

Verification used in our approach is similar to the one

implemented in LTSA (J. Magee and J. Kramer, 1999): a

model of the system M and a model of property K are

expressed in the process algebra FSP (Finite State

Processes); this later is a language to specify LTS models

and LTL formulae. A simplified grammar for this

language is presented by figure 8. A process can be

terminated (STOP) or blocked (ERROR). A process

executes an action a and becomes another process P noted

(a→P). A process can choose between two actions (|). A

process can be defined by the parallel composition of two

processes (||). In order to check the fulfillment of the

properties, LTSA produces the complement K of the

property. So, M ⊨ K if and only if L(M) ∩ L(K) = {}.

After verification, LTSA automatically generates a

possible trace leading to an unwished configuration. It also

allows the user to simulate/test the evolution of the system.

In the example of the hexapod robot, the validation of the

models requires the transformation of the system and of

the supervisor models into FSP to be used by LTSA. This

transformation is illustrated on figure 9; it associates the

key concepts of the metamodel of the supervisory control

(figure 4), and the key concepts of the metamodel of model

checking. Here the metamodel is represented textually by

the grammar of figure 8.

Process :: STOP

 | ERROR

 | Action → Process

| (Process||Process)

 | Process | Process

Fig. 8. Simplified abstract grammar of FSP

Fig. 9. Model of transformation FSM to FSP

So, an FSM turns into a process, an event turns into an

action, etc. The result of this transformation provides the

model of the supervised system, figure 10. On this figure,

the property of liveness for two legs is described in FSP.

Hexapode =A

A=(pep1->B|pep2->C), B=(pep2->D|prot1->E),

C=(pep1->D|prot2->F), D=(prot1->G|prot2->H),

…

progress P1={prot1}

progress P2={prot2}

||CHECK=(HEXAPODE||Prop).

Fig. 10. Extract of the FSP model of the legged robot and

liveness property

In order to validate the model transformations between the

domain of supervisory control and the domain of model

checking, the equivalence of the corresponding models has

to be proved. This can be done using the relation of

bisimulation which allows a stricter equivalence than the

one based on the languages; see R. Milner, 1989.

Definition 1. Given two LTS G=<S,T,α,β,γ> and

G’=<S’,T’,α’,β’,γ’> with the same alphabet Σ and where S

and S’ are sets of states, T and T’ are transition functions,

α and α’ are functions giving source states of a transition, β

and β’ are functions giving target states of a transition and

γ and γ’ are functions giving event of the transition. The

bisimulation relation is a binary relation ℛ ⊆ S×S’ such

that:

1. ∀s ∈ S, ∃s’ ∈ S’ such that s ℛ s’

2. ∀s’ ∈ S’, ∃s ∈ S such that s ℛ s’

3. ∀t ∈ T and ∀s’ ∈ S’ such that α(t) ℛ s’, ∃t’ ∈ T’

such that s’= α(t’), γ(t)= γ’(t’) and β(t) ℛ β’(t’)

4. ∀t’ ∈ T’ and ∀s ∈ S such that s ℛ α’(t’), ∃t ∈ T

such that s= α(t), γ(t)= γ’(t’) and β(t) ℛ β’(t’)

As Finite State Machines are specific LTS, it is possible to

establish the relation of bisimulation between the different

states of the supervisor model (figure 7) and the different

states of model obtained after the transformation in the

domain of model-checking (figure 11).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8459

Fig. 11. LTS model of the supervisor resulting from the

transformation (figure 9)

To conclude, the analysis of the FSP code introduced in

figure 10 with LTSA, shows that specifications are

satisfied. The model of the control system, coming from

the generation of the supervisor at the previous step,

satisfies the liveness property; the system can still generate

the prot1 and prot2 events infinitely often. The design is

done, checked; and what remains to do is to deploy the

system on a platform.

5. CONCLUSION

Based on the example of an hexapod robot, this paper

proposes an approach using the concepts of the Model

Driven Engineering (MDE) community to make the

development of control software easier. More particularly,

this paper shows how to integrate specification models

with design models (FSM and LTS). This integration is

based on synthesis (with supervisory control theory) and

checking (with model checking). The approach can be

generalized to integrate other modeling languages, and

tools, that appear in the analysis/design process. As shown

in the example, the control software was created by using

domains such as supervisory control (for synthesis) and

model checking (for validation). This design therefore

allows a unified conception of software systems, in a more

reliable way. So, this approach allows a simplification of

the process of the software development thanks to the

integration of models allowing to: (1) Realize models at a

higher level of abstraction. (2) Associate various domains

by establishing rules of transformation between the various

metamodels.

Besides, the perspectives of these works, it is important to

define which domains can be used in a single way. In the

same manner, it is also important to determine in which

order they have to be used, which may imply a hierarchy

among the domains considered in the development

process.

REFERENCES

Halang W.A., Sanz R., Babuska R., Roth H., Information

and Communication Technology embraces Control,

Annual Reviews in Control, Vol. 30, pp. 31-40, 2006

Ambler S.W. and Jeffries R., Agile Modeling: Effective

Practices for Extreme Programming and the Unified

Process. Wiley, 2002.

Tomayko J. and Scragg G., Human Aspects of Software

Engineering. Charles River Media, 1er edition, 2004.

Sanz R. and Arzen K.-E., Trends in software and control.

IEEE Control Systems Magazine, 23:12-15, 2003.

Lee J.-S., Zhou M .-C, and Hsu P.-L., A multi-paradigm

modeling approach for hybrid dynamic systems. IEEE

International Symposium on Computer Aided Control

Systems Design, pages 77-82, 2004.

Mellor S.J., Clack A.N., and Fatagami T., Model-driven

development - guest editor's introduction. IEEE

Software, 20:14-18, 2003.

Mosterman P.J. and Vangheluwe H., Computer automated

multi-paradigm modeling in control system design. In

Computer-Aided Control System Design, 2000.

CACSD 2000. IEEE International Symposium on,

pages 65-70, 25-27 Sept. 2000.

Lacoste-Julien S., Vangheluwe H., De Lara J., and

Mosterman P.J., Meta-modelling hybrid formalisms.

In Computer Aided Control Systems Design, 2004

IEEE International Symposium on, pages 65-70, 2004.

De Lara J. and Vangheluwe H., Atom3: A tool for multi-

formalism modelling and meta-modelling. In

Springer- Verlag, editor, European Joint Conference

on Theory And Practice of Software (ETAPS),

Fundamental Ap- proaches to Software Engineering

(FASE), pages 174-188, Grenoble, France, April 2002.

Budinsky F., Steinberg D., Merks E., Ellersick R., and

Grose T.J., Eclipse Modeling Framework. The Eclipse

Series. Addison Wesley Professional, 2003.

Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J.,

Thomason C., Nordstrom G., Sprinkle J., and

Volgyesi P., The generic modeling environment. In

IEEE In-ternational Workshop on Intelligent Signal

Processing, 2001.

Rasse A., Perronne J.M., and Thirion B., Using process

algebra to validate behavioral aspects of object ori-

ented models. In Models/UML'2005, Modeva

Workshop, page 10, Montego bay, Jamaique, 2005.

Magee J. and Kramer J., Concurrency: state models &

java programs. John Wiley & Sons, Chichester, 1999.

Thirion B. and Thiry L., Concurrent programing for the

control of hexapod walking. ACM SIGAda Ada

Letters, 22:17-28, 2002.

Ramadge P.J. and Wonham W.M., The control of discrete

event systems. IEEE Transactions on Automatic

Control, 77(1):81-98, 1989.

Cassandras C. G. and Lafortune S., Introduction to discrete

event systems. Springer, New York, 1999.

Brandt R. D., Garg V. K., Kumar R., Lin F., Marcus S. I.,

and Wonham W.M., Formulas for calculating

supremal controllable and normal sublanguages.

Systems and Control Letters, 15(8):111-117, 1990.

Clarke E.M., Grumberg O., Peled D.A., Model Checking,

The MIT Press, Cambridge, 2000

Milner R., Communication and Concurrency, Prentice

Hall International Series in Computer Science, 1989

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8460

