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Abstract: A parameterized three-stage Kalman filter (PTSKF) is proposed, serving as a
unified solution to unbiased minimum-variance estimation for systems with unknown inputs
that affect both the system and the outputs. The PTSKF is characterized by two design
parameters and includes three parts: one is for the main system state estimate, the second
is for the optimal unknown inputs estimate, and the last is added to further enhance the robust
filtering performance. It is shown that the extended robust two-stage Kalman filter (ERTSKF),
which is an extension of the previously proposed RTSKF, and the optimal two-stage Kalman
filter (OTSKF) are special cases of this new filter. Simulation results show that not only the
filtering performance of the PTSKF is compatible to that of the previous proposed parameterized
minimum-variance filter (PMVF) but also the computational complexity of the former is less
intensive than that of the latter.
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1. INTRODUCTION

Unknown inputs filtering has played a significant role
in many applications, e.g. bias compensation (Hsieh &
Chen, 1999; Ignagni, 2000), geophysical and environmental
applications (Kitanidis, 1987), and fault detection and
isolation problems (Chen, 1996). As is known (Hsieh &
Chen, 1999), when the statistics of the unknown inputs
is perfectly known, then the optimal state estimator can
be represented by the optimal two-stage Kalman filter
(OTSKF), which can be seen as a special implementation
of the KF via the TSKF structure. However, this TSKF
is limited to systems with unknown inputs that have
a prescribed statistical model. To be more general, it
may not be any knowledge concerning the model of the
unknown inputs.

A general approach to solve the aforementioned state esti-
mation for unknown inputs that have arbitrary statistics
is to apply unknown-input decoupled state estimation.
Among these, three major approaches have been used in
the literature. The first is unbiased minimum-variance es-
timation (UMVE) (Kitanidis, 1987; Chen & Patton, 1996;
Darouach & Zasadzinski, 1997; Hsieh, 2000; Darouach,
Zasadzinski, & Boutayeb, 2003). In this approach, the filter
parameters are first determined to satisfy some algebraic
constraints according to the unbiasedness requirements
of the filter. In general, the solutions of the algebraic
constraints are parametrized by some parameter matrices.
Next, the parameter matrices are determined such that
the estimation error variance is minimum. The second is
� This work was supported by the National Science Council of
Taiwan, R.O.C. under grant NSC 96-2221-E-233-006.

the equivalent system description (ESD) method (Hou &
Müller, 1994; Hou & Patton, 1998). In this approach, an
equivalent system description for designing an unknown-
input decoupled filter for the considered system is first
given. Then, the linear minimum-variance estimation is
derived by making use of the innovations filtering tech-
nique. The system considered in Hou and Patton (1998)
has the general form where the unknown inputs affect both
the system model and the measurements and the system
and measurement noises are correlated. In the last, the
filter is designed based on state estimation techniques for
descriptor systems (Nikoukhah, Campbell, & Delebecque,
1999).

This paper considers the optimal filtering for systems with
unknown inputs that affect both the system model and
the measurements via the UMVE method. In an early
paper (Hsieh, 2006), we proposed the optimal unbiased
minimum-variance filter (OUMVF) through which the di-
rect relationship between the UMVE and the ESD ap-
proaches is clearly illustrated. Specifically, the relation-
ships with the existing literature results, i.e., Chen and
Patton (1996), Hou and Müller (1994), and Darouach,
Zasadzinski, and Boutayeb (2003) are addressed. However,
the optimal linear minimum-variance estimator (OLMVE)
in Hsieh (2006), which was derived by using the ESD and
the innovations filtering method, can not be re-derived
via the OUMVF. In Hsieh (2007a), we proposed an ex-
tended version of the OUMVF to exactly implement the
OLMVE. Moreover, a robust version of the OUMVF and a
parameterized minimum-variance filter (PMVF) were also
proposed to solve the robust filtering problem for uncertain
systems with unknown inputs (Hsieh, 2007b).
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Recently, a specific extension of the robust two-stage
Kalman filter (RTSKF) (Hsieh, 2000) has been proposed
serving as a useful mean to derive the unified structure of
unbiased minimum-variance reduced-order filters (Hsieh,
2007d). In Hsieh (2007c), an extension of the RTSKF,
named as the ERTSKF, has also been proposed to serve
as an alternative to the OUMVF. This gives a direct
connection between the two existing filtering methods
for systems with unknown inputs: the UMVE method
and the RTSKF technique. Moreover, it was shown that
the ERTSKF is computationally more attractive than
the OUMVF. Besides, the ERTSKF has the potential
advantage over the OUMVF that the filter yields the
optimal estimate of the unknown inputs (see Gillijns and
Moor (2007) for details).

In this paper, we continue the research in order to deriving
a unified filter structure for systems with unknown inputs
that may or may not have a prescribed statistical model,
and further purpose a parameterized three-stage Kalman
filter (PTSKF), which serves as a unified solution to
UMVE for systems with unknown inputs that affect both
the system and the outputs. The PTSKF is characterized
by two design parameters and includes three parts: one is
for the main system state estimate, the second is for the
optimal unknown inputs estimate, and the last is added
to further enhance the robust filtering performance. It is
shown that the aforementioned ERTSKF and OTSKF are
special cases of this new filter.

This paper is organized as follows. In Section 2, the state-
ment of the problem is addressed. Section 3 previews two
ERTSKFs that are related to the PTSKF. An alternative
derivation of the OTSKF by using UMVE is presented in
Section 4. Next, the proposed PTSKF is derived in Section
5, and its unbiasedness property is addressed in Section 6.
Finally, illustrative examples showing the usefulness of the
proposed results are provided in Section 7.

2. STATEMENT OF THE PROBLEM

Consider the linear discrete-time stochastic time-varying
system with unknown inputs in the form

xk+1 = Akxk + Bkuk + Fkdk + wk (1)

yk = Hkxk + Gkdk + vk (2)
where xk ∈ Rn is the state vector, uk ∈ Rm is the known
input vector, yk ∈ Rp is the measurement vector, and
dk ∈ Rq is an unknown input vector. Matrices Ak, Bk,
Fk, Hk, and Gk have appropriate dimensions. Without
loss of generality, it is assumed that rank(Hk) = m. The
process noise wk and the measurement noise vk are zero-
mean white noise sequences with the following covariances:
E{wkw′

l} = Qkδkl, E{vkv′l} = Rkδkl, and E{wkv′l} = 0,
where ′ denotes transpose and δkl denotes the Kronecker
delta function. The initial state x0 is of mean x̂0 and
covariance P0 and is independent of wk and vk.

The filtering problem considered in this paper is to esti-
mate xk from the measurements {yt}, where 0 ≤ t ≤ k,
such that E[ek] = 0 and tr(E[eke′k]) is minimized, where
ek = xk − x̂k. No prior knowledge about the unknown in-
puts dk is assumed to be available, and hence the unknown
inputs can be any type of signal. In Hsieh (2007b), the

PMVF, which is listed in Appendix A, was derived to solve
the above-mentioned unknown inputs filtering problem.
The PMVF can achieve an optimal compromise between
the optimal estimator filter (OEF) (Darouach, Zasadzin-
ski, & Boutayeb; 2003) and the conventional Kalman filter.

The aim of this paper is to extend the previous research
in order to deriving a unified filter structure, which is
in the form of TSKF, for systems with unknown inputs
that may or may not have a prescribed statistical model.
Specifically, we intend to explore the possibility of deriving
the following TSKF:

x̂k = x̄k|k + Vkdk|k (3)

Pk = P x̄
k|k + VkP d

k|kV ′
k (4)

where x̄k|k, dk|k, P x̄
k|k, P d

k|k, and Vk are to be determined,
such that the filter structure of the TSKF is more compact
than that of the PMVF, while the filtering performance of
the former is still compatible to that of the latter.

3. EXTENSIONS OF THE ROBUST TWO-STAGE
KALMAN FILTER

To facilitate the development, we briefly preview two
extended RTSKFs (ERTSKFs) (Hsieh, 2007e), which give
the optimal system state that is unaffected by the values
of the unknown inputs, via the direct application of the
previously proposed RTSKF (Hsieh, 2000).

The first is obtained by augmenting the unknown inputs
as follows:

dk → da
k =

[
d′k d′k

]′
. (5)

Then, the system model (1) and (2) can be represented as
follows:

xk+1 = Akxk + Bkuk + F̄kda
k + wk (6)

yk = Hkxk + Ḡkda
k + vk (7)

where

F̄k = [ 0 Fk ] , Ḡk = [ Gk 0 ] . (8)
The obtained ERTSKF is named as the ARTSKF, and is
listed as follows:

x̂k = x̄k|k + Vkdk|k (9)

Pk = P x̄
k|k + VkP d

k|kV ′
k (10)

where x̄k|k is given by

x̄k|k−1 = Ak−1x̂k−1 + Bk−1uk−1 (11)

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (12)

P x̄
k|k−1 = Ak−1Pk−1A

′
k−1 + Qk−1 (13)

K x̄
k = P x̄

k|k−1H
′
kC−1

k (14)

P x̄
k|k = (I − K x̄

kHk)P x̄
k|k−1 (15)

dk|k is given by

dk|k = Kd
k(yk − Hkx̄k|k−1) (16)

Kd
k = P d

k|kS̄′
kC−1

k (17)

P d
k|k = {S̄′

kC−1
k S̄k}+ (18)
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in which M+ denotes any one-condition generalized in-
verse of M , i.e., MM+M = M , and

Vk = F̄k−1 − K x̄
k S̄k (19)

S̄k = HkF̄k−1 + Ḡk = [ Gk Sk ] , Sk = HkFk−1 (20)

Ck = HkP x̄
k|k−1H

′
k + Rk. (21)

The unbiasedness constraint of the above ARTSKF is
given as follows:

F̄k−1 − F̄k−1K
d
k S̄k = 0. (22)

The other, on the other hand, is obtained by decoupling
the unknown inputs from the measurement equation. This
is achieved by pre-multiplying (2) by

Tk = I − GkG+
k (23)

which leads to

Tkyk = TkHkxk + Tkvk. (24)

Note that (24) exists only if rank[Gk] < p. The obtained
ERTSKF is named as the DRTSKF, which is the alterna-
tive of the one presented in (Hsieh, 2007c), and is listed as
follows:

x̂k = x̄k|k + V̄kdk|k (25)

Pk = P x̄
k|k + V̄kP d

k|kV̄ ′
k (26)

where x̄k|k is given by

x̄k|k−1 = Ak−1x̂k−1 + Bk−1uk−1 (27)

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (28)

P x̄
k|k−1 = Ak−1Pk−1A

′
k−1 + Qk−1 (29)

K x̄
k = P x̄

k|k−1H
′
kC̄+

k , C̄k = TkCkT ′
k (30)

P x̄
k|k = (I − K x̄

kHk)P x̄
k|k−1 (31)

dk|k is given by

dk|k = Kd
k (yk − Hkx̄k|k−1) (32)

Kd
k = P d

k|kS′
kC̄+

k (33)

P d
k|k = {S′

kC̄+
k Sk}+ (34)

and V̄k is given by

V̄k = Fk−1 − K x̄
kSk. (35)

The unbiasedness constraint of the above DRTSKF is
given as follows:

Fk−1 − Fk−1K
d
kSk = 0. (36)

The optimality issues of the above ARTSKF and DRT-
SKF are fully explored in Hsieh (2007e). To simplify the
derivations, in the following discussions we only consider
the ARTSKF.

4. OTSKF DESIGN FOR UNKNOWN INPUTS
DESCRIBED BY RANDOM-WALK PROCESS

In this section, we present the optimal unknown inputs
filtering via the TSKF filter structure for systems with
unknown inputs by using the similar approach as given in
Hsieh (2007b). Assume that the unknown inputs can be
described by the following random-walk process:

dk+1 = dk + wd
k (37)

where wd
k is a zero-mean white noise sequence with the fol-

lowing covariances: E{wd
k(wd

l )′} = Qd
kδkl, E{wd

k(wl)′} =
0, and E{wd

kv′l} = 0. The initial state d0 is of mean d̄0 and
covariance P d

0 , and is independent of wk, wd
k, and vk.

Defining the estimation error of the unknown-input filter
as ed

k = dk − dk|k, the estimator dk|k must satisfy a)
unbiasedness: E[ed

k] = 0 and b) minimum-variance: min
tr(P d

k|k). In this paper, we consider the following unknown-
input filter form:

dk|k = (I − Kd
k(S̆k + HkΨk−1))dk−1|k−1

+Kd
k(yk − Hk(Ak−1x̂k−1 + Bk−1uk−1)) (38)

where Kd
k , S̆k, and Ψk−1 are to be determined. From (1),

(2), (37), and (38), the estimation error ed
k can be written

as

ed
k =

(
I − Kd

k (HkFk−1 + Gk)
)
ed

k−1 − Kd
kvk

+Kd
k

(
S̆k − Hk(Fk−1 − Ψk−1) − Gk

)
dk−1|k−1

−Kd
kHk(Ak−1ek−1 + wk−1) + (I − Kd

kGk)wd
k−1.(39)

Using unbiasedness requirement in (39) yields

S̆k = Ŝk − HkΨk−1, Ŝk = HkFk−1 + Gk. (40)
From (54) of Hsieh and Chen (1999), one has

E{ek(ed
k)′} = VkP d

k|k. (41)

Using (40) and (41), we can obtain the following error
covariance matrix:

P d
k|k = P d

k|k−1 + Kd
k{•}(Kd

k)′ − {•}1(Kd
k )′ − Kd

k{•}′1 (42)

where

P d
k|k−1 = P d

k−1|k−1 + Qd
k−1 (43)

{•}= (HkF̆k−1 + Gk)P d
k−1|k−1(HkF̆k−1 + Gk)′

+GkQd
k−1G

′
k + Ck

−HkAk−1Vk−1P
d
k−1|k−1V

′
k−1A

′
k−1H

′
k (44)

{•}1 = P d
k−1|k−1F̆

′
k−1H

′
k + P d

k|k−1G
′
k (45)

F̆k−1 = Ak−1Vk−1 + Fk−1. (46)
Finding Kd

k which minimizes the trace of (42), one obtains

Kd
k = {•}1{•}−1 (47)

P d
k|k = P d

k|k−1 − {•}1(Kd
k)′. (48)

Using (40), (43), and (46), and choosing Ψk−1 as follows:
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Ψk−1 = Fk−1 − F̆k−1P
d
k−1|k−1(P

d
k|k−1)

−1 (49)

(45) can be simplified as

{•}1 = P d
k|k−1S̆

′
k. (50)

Using (40) and (49), (44) can be simplified as

{•} = S̆kP d
k|k−1S̆

′
k + C̆k (51)

where

C̆k = HkQ̆k−1H
′
k + Ck (52)

Q̆k = (Fk − Ψk)Qd
kF̆ ′

k − AkVkP d
k|kV ′

kA′
k. (53)

Thus, using (47), (48), (50), and (51), the gain matrix Kd
k

and the error covariance matrix P d
k|k are given, respec-

tively, as follows:

Kd
k = P d

k|k−1S̆
′
k{S̆kP d

k|k−1S̆
′
k + C̆k}−1 (54)

P d
k|k = (I − Kd

k S̆k)P d
k|k−1. (55)

Next, we show how to determine the system state estimate
x̂k. Assume that x̄k|k and Vk in (3) to be taken by the
following forms:

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (56)

Vk = Uk − K x̄
k S̆k (57)

where

x̄k|k−1 = Ak−1x̂k−1 + Bk−1uk−1 + Ψk−1dk−1|k−1. (58)

Using (1)-(3), (37)-(38), (40), and (56)-(58), we obtain the
error dynamics ek as follows:

ek = (I − LkHk)(Ak−1ek−1 + wk−1)

−Lk(Gkwd
k−1 + vk) + (Fk−1 − LkŜk)ed

k−1

+(Fk−1 − Ψk−1 − Uk)dk−1|k−1 (59)

where

Lk = UkKd
k + K x̄

k (I − S̆kKd
k). (60)

Using the unbiasedness constraint in (59) yields

Uk = Fk−1 − Ψk−1. (61)

Using (40), (43), (44), (46), and (61), the error covariance
matrix of (59) is described by

Pk = Lk{•}L′
k − (P x̄

k|k−1H
′
k + F̆k−1P

d
k−1|k−1S̆

′
k)L′

k

−Lk(P x̄
k|k−1H

′
k + F̆k−1P

d
k−1|k−1S̆

′
k)′

+P x̄
k|k−1 + F̆k−1P

d
k−1|k−1U

′
k (62)

where P x̄
k|k−1 is given by (70). Finding Lk which minimizes

the trace of (62) and using (47), (50), (51), and (57) in (60),
one obtains

P x̄
k|k−1H

′
k + F̆k−1P

d
k−1|k−1S̆

′
k = K x̄

k C̆k + UkP d
k|k−1S̆

′
k.(63)

Solving (63) for K x̄
k , one obtains

K x̄
k = P x̄

k|k−1H
′
kC̆−1

k . (64)

The error covariance matrix (62) corresponding to (64) is
given as follows:

Pk = P x̄
k|k−1 − K x̄

k C̆k(K x̄
k )′ + F̆k−1P

d
k−1|k−1U

′
k

−UkP d
k|k−1U

′
k + Vk(P d

k|k−1 − Kd
k{•}(Kd

k)′)V ′
k

= (I − K x̄
kHk)P x̄

k|k−1 + VkP d
k|kV ′

k (65)

where (42), (47), and (57) are used.

Finally, the obtained OTSKF is summarized as follows:

x̂k = x̄k|k + Vkdk|k (66)

Pk = P x̄
k|k + VkP d

k|kV ′
k (67)

where x̄k|k is given by

x̄k|k−1 = Ak−1x̂k−1 + Bk−1uk−1 + Ψk−1dk−1|k−1 (68)

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (69)

P x̄
k|k−1 = Ak−1Pk−1A

′
k−1 + Qk−1 + Q̆k−1 (70)

K x̄
k = P x̄

k|k−1H
′
kC̆−1

k (71)

P x̄
k|k = (I − K x̄

kHk)P x̄
k|k−1 (72)

dk|k is given by

dk|k = (I − Kd
k S̆k)dk−1|k−1 + Kd

k(yk − Hkx̄k|k−1)(73)

Kd
k = P d

k|k−1S̆
′
k{S̆kP d

k|k−1S̆
′
k + C̆k}−1 (74)

P d
k|k = (I − Kd

k S̆k)P d
k|k−1 (75)

and

Vk = Uk − K x̄
k S̆k, Uk = F̆k−1P

d
k−1|k−1(P

d
k|k−1)

−1(76)

S̆k = HkUk + Gk (77)

C̆k = HkP x̄
k|k−1H

′
k + Rk. (78)

Remark 1: The above OTSKF is exactly the one given in
Hsieh and Chen (1999) and Ignagni (2000), where the OT-
SKF are derived by using a two-stage U−V transformation
approach and from basic estimating principles, respec-
tively. Hence, the proposed unbiased minimum-variance
filtering given in this section can be seen as an alternative
to those given in Hsieh and Chen (1999) and Ignagni
(2000) to derive the OTSKF.

5. THE DERIVATION OF THE PTSKF

It is known that the ARTSKF is an optimal filter that is
not affected by the values of the unknown inputs, which
is an important consideration when the unknown-input
model is highly non-Gaussian or has unknown statistics.
However, due to the limitation of the existence condition,
the ARTSKF may need to include some information of
the unknown inputs, e.g., random-walk process, in order
to enhance the filtering performance. On the other hand,
the OTSKF can produce the global optimal system state
estimates. Nevertheless, this is achieved only when the
unknown-input model is exactly known. Thus, the OTSKF
is not a robust filter and its optimality can be compromised
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by a poor estimation of the unknown inputs. In this
section, we shall derive the PTSKF, which may achieve
an optimal compromise between the ARTSKF and the
OTSKF.

First, we rewrite the original system (1) and (2) as follows:

xk+1 = Akxk + Bkuk + F̃kdk + Fkdk + wk (79)

yk = Hkxk + G̃kdk + Gkdk + vk (80)

where

F̃k = Fk −Fk, G̃k = Gk − Gk (81)

in which Fk and Gk are design parameters that signify
the terms Fkdk and Gkdk should be decoupled from the
estimation. Assuming the unknown inputs described by
(37), the system (79) and (80) can be rewritten as follows:

Xk+1 = ĀkXk + B̄kuk + F̄kdk + Wk (82)

yk = H̄kXk + Gkdk + vk (83)

where Xk =
[
x′

k d′k
]′ is an augmented state and

Āk =
[

Ak F̃k

0 I

]
, B̄k =

[
Bk

0

]
, F̄k =

[
Fk

0

]

Wk =
[

wk

wd
k

]
, H̄k =

[
Hk G̃k

]
. (84)

Second, applying the ARTSKF to (82) and (83), we obtain

X̂k = X̄k|k + V a
k d̃k|k (85)

PX
k = P X̄

k|k + V a
k P d̃

k|k(V a
k )′ (86)

where X̄k|k is given by

X̄k|k−1 = Āk−1X̂k−1 + B̄k−1uk−1 (87)

X̄k|k = X̄k|k−1 + KX̄
k (yk − H̄kX̄k|k−1) (88)

P X̄
k|k−1 = Āk−1P

X
k−1|k−1Ā

′
k−1 + QX

k−1 (89)

KX̄
k = P X̄

k|k−1H̄
′
k(CX

k )−1 (90)

P X̄
k|k = (I − KX̄

k H̄k)P X̄
k|k−1 (91)

d̃k|k is given by

d̃k|k = K d̃
k(yk − H̄kX̄k|k−1) (92)

K d̃
k = P d̃

k|kS̃′
k(CX

k )−1 (93)

P d̃
k|k = {S̃′

k(CX
k )−1S̃k}+ (94)

and

V a
k = F̄a

k−1 − KX̄
k S̃k, F̄a

k−1 =
[
0 F̄k−1

]
(95)

S̃k = [ Gk HkFk−1 ] (96)

CX
k = H̄kP X̄

k|k−1H̄
′
k + Rk (97)

QX
k = diag{Qk, Qd

k}. (98)

The system state estimate x̂k and its error covariance
matrix Pk are then obtained as follows:

x̂k = [ I 0 ] X̂k, Pk = [ I 0 ]PX
k [ I 0 ]′ . (99)

Third, noting that X̄k|k given by (87)-(91) is an augmented
state Kalman filter (ASKF), and hence using the following
notations:

x̃k|k = [ I 0 ] X̄k|k, P̃k|k = [ I 0 ] P X̄
k|k [ I 0 ]′ (100)

and applying the OTSKF design, which is given in the
previous section, to the ASKF, X̄k|k, we may obtain

x̃k|k = x̄k|k + V̄k d̄k|k (101)

P̃k|k = P x̄
k|k + V̄kP d̄

k|kV̄ ′
k (102)

where x̄k|k is given by

x̄k|k−1 = Ak−1x̂k−1 + Bk−1uk−1 + Ψ̄k−1d̄k−1|k−1 (103)

x̄k|k = x̄k|k−1 + K x̄
k (yk − Hkx̄k|k−1) (104)

P x̄
k|k−1 = Ak−1Pk−1A

′
k−1 + Qk−1 + ŪkQd

k−1F̆
′
k−1

−Ak−1V̄k−1P
d̄
k−1|k−1V̄

′
k−1A

′
k−1 (105)

K x̄
k = P x̄

k|k−1H
′
kC̄−1

k , C̄k = HkP x̄
k|k−1H

′
k + Rk (106)

P x̄
k|k = (I − K x̄

kHk)P x̄
k|k−1 (107)

and the optimal unknown-input filter is given as follows:

d̄k|k = (I − K d̄
k S̆k)d̄k−1|k−1 + K d̄

k(yk − Hkx̄k|k−1)(108)

K d̄
k = P d̄

k|k−1S̆
′
k{S̆kP d̄

k|k−1S̆
′
k + C̄k}−1 (109)

P d̄
k|k = (I − K d̄

k S̆k)P d̄
k|k−1 (110)

where

V̄k = Ūk − K x̄
k S̄k (111)

Ūk = F̃k−1 − Ψ̄k−1 (112)

S̄k = HkŪk + G̃k (113)

Ψ̄k−1 = F̃k−1 − F̆k−1P
d̄
k−1|k−1(P

d̄
k|k−1)

−1 (114)

F̆k−1 = Ak−1V̄k−1 + F̃k−1 (115)

P d̄
k|k−1 = P d̄

k−1|k−1 + Qd
k−1 (116)

S̆k = Ŝk − HkΨ̄k−1. (117)

Then, using the following relationships (see Hsieh and
Chen (1999) for details):

X̄k|k−1 =
[

x̄k|k−1 + Ūkd̄k−1|k−1

d̄k−1|k−1

]
(118)

KX̄
k =

[
K x̄

k + V̄kK d̄
k

K d̄
k

]
(119)

P X̄
k|k−1 =

[
P x̄

k|k−1 + ŪkP d̄
k|k−1Ū

′
k ŪkP d̄

k|k−1

P d̄
k|k−1Ū

′
k P d̄

k|k−1

]
(120)

Eqs. (92), (95), and (97) can be rewritten as follows:

d̃k|k = K d̃
k(yk − Hkx̄k|k−1 − S̄kd̄k−1|k−1) (121)

V a
k =

[
0 Fk−1

0 0

]
−

[
K x̄

k + V̄kK d̄
k

K d̄
k

]
S̃k (122)

CX
k = S̄kP d̄

k|k−1S̄
′
k + C̄k. (123)
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Finally, summarizing the above results and using (99) and
(121)-(122), we obtain the PTSKF as follows:

x̂k = x̄k|k + V̄kd̄k|k + Ṽkd̃k|k (124)

Pk = P x̄
k|k + V̄kP d̄

k|kV̄ ′
k + ṼkP d̃

k|kṼ ′
k (125)

where x̄k|k, d̄k|k, d̃k|k, P x̄
k|k, P d̄

k|k, P d̃
k|k, and V̄k are given

by (104), (108), (121), (107), (110), (94), and (111),
respectively, and

Ṽk = [ I 0 ] V a
k = [ 0 Fk−1 ] − (K x̄

k + V̄kK d̄
k)S̃k. (126)

Note that the above PTSKF can be easily rewritten as the
prescribed TSKF form (3)-(4), which is listed as follows:

x̂k = x̄k|k + Vkdk|k (127)

Pk = P x̄
k|k + VkP d

k|kV ′
k (128)

where Vk =
[
V̄k Ṽk

]
, dk|k =

[
d̄′k|k d̃′k|k

]′
, and P d

k|k =

diag{P d̄
k|k, P d̃

k|k}.

Remark 2: The proposed PTSKF may be seen as an
alternative to the previous proposed HTSKF (see Hsieh
(2000) for details) and is characterized by two design
parameters: Fk and Gk. If one chooses Fk = Fk and
Gk = Gk, then the obtained PTSKF will be equivalent
to the ARTSKF. Howerver, if one chooses Fk = 0 and
Gk = 0, then the obtained PTSKF, on the other hand,
will be equivalent to the OTSKF.

6. ON THE UNBIASEDNESS OF THE PTSKF

To facilitate the following discussions, the PTSKF is
rewritten, by using (104), (111), (108), (121), and (124),
as follows:

x̂k = (I − LkHk)x̄k|k−1 + Lkyk

+
(
Ūk − LkS̄k − V̄kK d̄

k(S̆k − S̄k)
)

d̄k−1|k−1 (129)

Lk = K x̄
k + V̄kK d̄

k + ṼkK d̃
k . (130)

First, we show that the gain matrix Lk, given by (130),
satisfies the following constraint:

LkS̃k = [ 0 Fk−1 ] (131)
which is the unbiasedness constraint of the PMVF. Using
(93), (94), (126), and (130), we obtain

LkS̃k = (K x̄
k + V̄kK d̄

k)(CX
k )1/2(Mk − MkM+

k Mk)

+ [ 0 Fk−1 ] M+
k Mk (132)

where Mk = (CX
k )−1/2S̃k. One can easily check that under

the following condition:

rank

[
Mk

[ 0 Fk−1 ]

]
= rank [ Mk ] (133)

the constraint (131) is satisfied.

Next, we show the unbiasedness requirement of the filter
(129). Using (1)-(2), (81), (103), (113), and (129)-(131),
we obtain the error dynamics ek as follows:

ek = (I − LkHk)(Ak−1ek−1 + wk−1) − Lk(G̃kwd
k−1 + vk)

+
(
(I − LkHk)F̃k−1 − LkG̃k)

)
ed

k−1

+V̄kK d̄
k(S̆k − S̄k)d̄k−1|k−1

which is unbiased if V̄kK d̄
k(S̆k − S̄k) = V̄kK d̄

k S̃k [ I I ]′ = 0.
This is always satisfied if one has

V̄kK d̄
k S̃k = 0. (134)

Note that the ARTSKF and the OTSKF both satisfy the
unbiasedness requirement (134), which are given by V̄k = 0
and S̃k = 0, respectively.

7. ILLUSTRATIVE EXAMPLES

To show the proposed results, the numerical example
given by Darouach, Zasadzinski, and Boutayeb (2003) is
considered, where the parameters of system (1) and (2)
are given as follows:

Case 1:

Ak =
[
−0.0005 −0.0084
0.0517 0.8069

]
, Hk =

[
1 0
0 1

]
,

Fk =
[

0.0129 0
−1.2504 0

]
, Gk =

[
0 0
0 1

]
,

Qk =
[

0.0036 0.0342
0.0342 0.3249

]
, Rk =

[
0.01 0
0 0.16

]
.

Without loss of generality, the known input uk is not
considered in this simulation case. The initial state and
its estimate are both assumed to be zero, and the initial
covariance is given by P0 = diag(10, 200). The unknown
inputs are given by

dk =
[

5us[k] − 5us[k − 20] + 5us[k − 70]
4us[k] − 4us[k − 30] + 4us[k − 65]

]
where us[k] is the unit-step function. In this simulation
example, we assume that Qd

k = diag{0.025, 0.016}, and
the simulation time is 100 time steps.

As considered in Hsieh (2007b), four forms of Fk−1 and
two of Gk are chosen as follows:

F1
k−1 =

[
0 0
0 0

]
, F2

k−1 =
[

0 0
−1.2504 0

]
, G1

k =
[

0 0
0 0

]
,

F3
k−1 =

[
0.0129 0

0 0

]
,F4

k−1 =
[

0.0129 0
−1.2504 0

]
,G2

k =
[

0 0
0 1

]
from which 8 different models of the PTSKF are obtained.
In the following discussions, we will name the PTSKF
which is characterized by F i

k−1 and Gj
k as model k(=

2(i − 1) + j), denoted by the PTSKFk. Note that the
PTSKF1 and the PTSKF8 correspond to the OTSKF and
the ARTSKF, respectively. We list the root-mean-square-
errors (rmse) and the trace of the state error covariance
matrix, i.e. tr[Pk], for these models in Table 1. Moreover,
we list the performances of the corresponding PMVFs in
Table 2.

From Table 1, we obtain the following observation: the
PTSKF3 filter has the best filtering performance, which

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14507



is slightly better than the KF (PTSKF1) and is much
better than the ARTSKF/OEF (PTSKF8). The filtering
degradation of the PTSKF8 is due to the fact that the
matrix S̃k is of full row rank, which renders the obtained
filter to a degenerated filter (see Darouach, Zasadzinski,
and Boutayeb (2003) for more details), and hence results
in an unacceptable state error covariance. This simulation
suggests a possible way to apply a filter other than existing
ones to give potentially the global minimum-variance state
estimates. It is also clear from Table 2 that the best
filtering performance of the PMVF is given by the PMVF3.
This illustrates a compatible result between the PTSKF
and the PMVF. Specifically, the filtering performances of
the models 1 and 8 of the PTSKF are as the same as those
of the corresponding PMVFs.

Next, we consider the complexity issue. In this regard, we
use floating point operations, or “flops,” in Matlab as a
measure of the computational complexity. The flops of the
aforementioned filters are also listed in Tables 1 and 2,
from which we obtain that all the flops of the PTSKFs are
fewer than the corresponding results of the PMVFs. This
shows that the PTSKF is potentially more compact, in the
sense of less computational complexity, than the PMVF.
This is due to the fact that the sub-filters imbedded in the
former are all in the form of the KF, which in general has
a more compact filter structure than the UMVF.

Finally, to further show the filtering performance of the
PTSKF is indeed compatible to that of the PMVF, the
numerical example given by Chen and Patton (1996) is
considered, where the parameters of system (1) and (2)
are given as follows:

Case 2:

Ak =

[ 0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

]
, Hk = I3×3

Bk =

[ 0.4252
−0.0082
0.1813

]
, Fk =

[ 1 0
0 1
0 0

]
, Gk =

[ 0 0
0 0
0 1

]
.

The covariance matrices are given as Rk = 0.12I3×3 and
Qk = diag{0.12, 0.12, 0.012}. In the simulation, we set
uk = 10, x0 = 0, P0 = 0.12I3×3, and

dk =
[

Δa11 Δa12 Δa13

Δa21 Δa22 Δa23

]
xk +

[
Δb1

Δb2

]
uk

where Δaij = −0.5aij and Δbj = 0.5bj. The simulation
time is 100 time steps.

The following Fk−1 and Gk are considered.

F1
k−1 =

[ 0 0
0 0
0 0

]
, F2

k−1 =

[ 1 0
0 0
0 0

]
, F3

k−1 =

[ 0 0
0 1
0 0

]
,

F4
k−1 =

[ 1 0
0 1
0 0

]
, G1

k =

[ 0 0
0 0
0 0

]
, G2

k =

[ 0 0
0 0
0 1

]
.

We list the rmse in the state estimates, the trace of the
state error covariance matrix, and the flops of the PTSKFs
and the PMVFs in Tables 3 and 4, respectively. From
the tables, we conclude that the filtering performance of

Table 1. The rmse performance, the trace of
the state error covariance matrix, and the flops

of the PTSKFs for case 1

filter rmse(e1) rmse(e2) tr[Pk] flops

PTSKF1 0.0852 2.4416 1.5725 1259
PTSKF2 0.0725 5.4302 4.8001 1385
PTSKF3 0.0647 2.4285 1.4332 1365
PTSKF4 0.0670 5.3024 0.1101 1462
PTSKF5 0.0994 2.4751 1.5756 1365
PTSKF6 0.0993 5.4534 4.8040 1600
PTSKF7 0.0656 2.4459 1.4217 1365
PTSKF8 0.0993 11.4414 134.7506 1600

Table 2. The rmse performance, the trace of
the state error covariance matrix, and the flops

of the PMVFs for case 1

filter rmse(e1) rmse(e2) tr[Pk] flops

PMVF1 0.0852 2.4416 1.5725 1559
PMVF2 0.0685 4.7539 2.9303 1505
PMVF3 0.0637 2.4338 1.6191 1605
PMVF4 0.0657 5.2918 0.1101 1611
PMVF5 0.0993 2.4503 1.5835 1698
PMVF6 0.0993 4.6288 2.9480 1856
PMVF7 0.0656 2.4315 1.6154 2021
PMVF8 0.0993 11.4414 134.7506 2050

Table 3. The rmse performance, the trace of
the state error covariance matrix, and the flops

of the PTSKFs for case 2

filter rmse(e1) rmse(e2) rmse(e3) tr[Pk] flops

PTSKF1 0.1053 0.6243 1.6177 0.0218 2273
PTSKF2 0.1053 0.6074 1.6922 0.0218 2355
PTSKF3 0.1060 0.6248 1.6169 0.0219 2335
PTSKF4 0.1060 0.6074 1.6924 0.0219 2574
PTSKF5 0.1053 0.1489 1.5356 0.0289 2320
PTSKF6 0.1053 0.0949 1.8080 0.0267 2590
PTSKF7 0.1075 0.1484 1.5374 0.0289 2509
PTSKF8 0.1060 0.0949 1.8080 0.0268 3184

Table 4. The rmse performance, the trace of
the state error covariance matrix, and the flops

of the PMVFs for case 2

filter rmse(e1) rmse(e2) rmse(e3) tr[Pk] flops

PMVF1 0.1053 0.6243 1.6177 0.0218 3848
PMVF2 0.1053 0.6203 1.6235 0.0219 3732
PMVF3 0.1060 0.6243 1.6179 0.0219 3779
PMVF4 0.1060 0.6203 1.6237 0.0220 3760
PMVF5 0.1053 0.0949 1.8098 0.0267 3826
PMVF6 0.1053 0.0949 1.8078 0.0267 3734
PMVF7 0.1060 0.0949 1.8100 0.0268 3871
PMVF8 0.1060 0.0949 1.8080 0.0268 4058

the PTSKF is compatible to that of the PMVF and the
computational superiority of the former over the latter is
definitely true.

8. CONCLUSION

In this paper, an attempt to define a unified solution
to unbiased minimum-variance filtering for systems with
unknown inputs is presented. It is shown that, with a
novel parameterized design method, the PTSKF serving
as a dedicated unified solution to unknown inputs filtering
problem is derived. The proposed PTSKF is characterized
by two design parameters: Fk−1 and Gk and is an extension

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14508



of the conventional TSKF. Simulation results show that
not only the filtering performance of the PTSKF is com-
patible to that of the PMVF but also the computational
complexity of the former is less intensive than that of the
latter. This research suggests a possible way other than
existing methods to derive a minimum-variance filter in
order to enhance filtering performance for systems with
unknown inputs.

The extended work of finding the adaptive model switching
rule that can achieve the optimal filtering performance in
general conditions via optimally determining the design
parameters is under investigation.
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Appendix A. A PARAMETERIZED
MINIMUM-VARIANCE FILTER

For easy reference, the parameterized minimum-variance
filter (PMVF) derived in Hsieh (2007b) for the special case
ΔAk = 0 and ΔBk = 0 is listed as follows.

1) System State Estimator:

x̂k = (I − LkHk)(Ak−1x̂k−1 + Bk−1uk−1)

+Vkd̂k−1 + Lkyk (A.1)

Pk = P̄ a
k−1 − ĞkP̄ b

k −
(
(P̄ b

k )′ − Ğk{•}
)

L′
k (A.2)

where

Lk = Ğk + K̆kT̆k (A.3)

Ğk = [ 0 Fk−1 ] [ Gk HkFk−1 ]+ (A.4)

K̆k =
(
(P̄ b

k )′ − Ğk{•}
)
T̆ ′

k

(
T̆k{•}T̆ ′

k

)+

(A.5)

T̆k = I − [ Gk HkFk−1 ] [ Gk HkFk−1 ]+ (A.6)

Vk = F̃k−1 − Lk(HkF̃k−1 + G̃k) (A.7)

{•}= HkP̄ a
k−1H

′
k + Rk + G̃k(P d

k−1 + Qd
k−1)G̃

′
k

+G̃k{•}′1H ′
k + Hk{•}1G̃

′
k (A.8)

{•}1 = Ak−1P̃k−1 + F̃k−1P
d
k−1 (A.9)

{•}2 = P̄k−1 + F̃k−1P̃
′
k−1A

′
k−1 (A.10)

P̄ a
k−1 = {•}1F̃

′
k−1 + {•}2 (A.11)

P̄ b
k = HkP̄ a

k−1 + G̃k{•}′1 (A.12)

P̄k = AkPkA′
k + Qk. (A.13)

2) Unknown Inputs Estimator:

d̂k = (I − Kd
kSk)d̂k−1

+Kd
k(yk − Hk(Ak−1x̂k−1 + Bk−1uk−1)) (A.14)

P d
k = P d

k−1 + Qd
k−1 − Ξk(Kd

k)′ (A.15)

(A.16)
where

Kd
k = Ξk(Cd

k )−1 (A.17)

Ξk = P d
k−1S′

k + Qd
k−1G

′
k + P̃ ′

k−1A
′
k−1H

′
k (A.18)

Cd
k = HkP̄k−1H

′
k + Rk + SkP d

k−1S′
k + GkQd

k−1G
′
k

+SkP̃ ′
k−1Ak−1H

′
k + HkAk−1P̃k−1S′

k (A.19)

P̃k = Φk{•}1 − Φk({•}1S′
k + {•}2H

′
k)(Kd

k)′

+LkRk(Kd
k )′ − LkG̃kP d

k (A.20)

Sk = HkFk−1 + Gk (A.21)

Φk = I − LkHk. (A.22)
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