
The Unified Enterprise Modelling Language –

Overview and Further Work

Victor Anaya*, Giuseppe Berio**, Mounira Harzallah***,

Patrick Heymans****, Raimundas Matulevičius****, Andreas L. Opdahl*****,

Hervé Panetto******, Maria Jose Verdecho*

* CIGIP, Universidad Politecnica de Valencia, Spain;

(e-mail: {vanaya, mverdecho}@cigip.upv.es).

** Dipartimento di Informatica, Università di Torino, Italy;

(e-mail: berio@di.unito.it)

*** LINA, University of Nantes, France;

(e-mail: mounira.harzallah@univ-nantes.fr)

**** PReCISE, Computer Science Faculty, University of Namur, Belgium;

(e-mail: {phe, rma}@info.fundp.ac.be)

***** Dept. of Information Science and Media Studies, University of Bergen, Norway;

(e-mail: Andreas.Opdahl@uib.no)

****** CRAN, Nancy-University, CNRS, France;

(e-mail: Herve.Panetto@cran.uhp-nancy.fr)

Abstract: The Unified Enterprise Modelling Language (UEML) aims to support integrated use of enterprise and IS

models expressed in a variety of languages. To achieve this aim, UEML provides a hub through which different

languages can be connected, thereby paving the way for connecting the models expressed in those languages. UEML

offers a structured approach to describing enterprise and IS modelling constructs, a common ontology to interrelate

construct descriptions at the semantic level, a correspondence analysis approach to estimate semantic construct

similarity, a quality framework to aid selection of languages, a meta-meta model to organise the UEML and a set of

tools to aid its use and evolution. This paper presents an overview of UEML and points to paths for further work.

1. INTRODUCTION

Emerging information and communication technologies are

increasingly model-driven, in part in an attempt to produce

solutions that are both adaptable and integrated. But model-

driven information systems are often driven by models that

cannot easily be interrelated because they are expressed using

languages that are not interoperable. The models therefore

easily become inconsistent as they evolve, and model-driven

technologies may end up reinforcing, rather than alleviating,

existing interoperability problems. The situation creates a

need for theories, technologies and tools that allow

information systems to be adapted and evolve, each driven by

the most suitable languages for their purposes and context,

while allowing the information systems and the models that

drive them to be used in an integrated manner.

The Unified Enterprise Modelling Language (UEML) refers

to an on-going attempt to develop theories, technologies and

tools for integrated use of enterprise and IS models expressed

in different languages. By this we mean keeping the existing

models as they are and, in addition, establishing

correspondences between them in an explicit and usable way.

Examples of useful services are consistency checking,

automatic update reflection and model-to-model translation

across modelling language boundaries. UEML is thereby

intended to act as a hub connecting different languages along

with the different models expressed in those languages. To

this end, UEML comprises:

� a structured approach to describe enterprise and IS

modelling constructs,

� an evolving common ontology to describe the

semantics of modelling constructs,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11895 10.3182/20080706-5-KR-1001.2158

� a correspondence analysis approach that uses the

common ontology to determine semantic

correspondences between constructs,

� a quality framework to define and evaluate the

quality of enterprise and IS modelling languages in

order to aid language selection for specific purposes,

� a modular meta-meta model to organise the overall

UEML approach and

� a set of tools to aid its use and evolution.

The purpose of this paper is to present an overview of UEML

and discuss paths for further work. The paper is organised as

follows: Section 2 presents UEML's background and its

vision. Section 3 explains how languages and constructs are

described in UEML, whereas Section 4 shows how

descriptions of constructs are tied together by a common

ontology. Section 5 discusses how correspondences between

languages and constructs can be established and used, e.g., to

support model-to-model translation across languages. Section

6 shows how enterprise and IS modelling languages are

classified and selected in UEML according to specific goals.

Section 7 presents the meta-meta models that holds the

UEML approach together, whereas Section 8 reviews the

various prototype tools supporting its use and evolution.

Section 9 discusses UEML in its present state, before Section

10 concludes the paper and offers paths for further work.

2. BACKGROUND

The idea of a Unified Enterprise Modelling Language first

emerged during the ICEIMT’97 conference (Goossenaerts,

Gruninger, Nell, Petit & Vernadat 1997), with the aim of

providing an underlying formal theory for enterprise

modelling languages. A major motivation was the “Tower of

Babel” situation that was assumed to hinder proliferation of

enterprise modelling in industry (Vernadat 2002). The first

development version of a unified enterprise modelling

language was delivered by the UEML Thematic Network

(UEML TN) (2002-2003), funded by the EU’s FP5 (Jochem

2002, Panetto, Berio, Benali, Boudjlida & Petit 2004,

Mertins, Knothe & Zelm 2004, Berio, Anaya & Ortiz 2004).

UEML development has since continued within the Interop-

NoE (2003-2007) Network of Excellence, funded by EU’s

FP6, producing two more development versions, UEML 2.0

and 2.1 (Berio, Opdahl, Anaya & Dassisti 2005a, 2005b,

2006).

The following scenarios illustrate the UEML vision:

� Exchanging information contained in enterprise

and IS models across modelling language

boundaries. This is the central motivation behind

UEML, which explains its focus on interoperability

between modelling languages as a prerequisite for

integrated use of the models that are expressed in

those languages.

� Creating new problem- and/or domain-specific

methods by combining elements from existing

modelling techniques. UEML aims to make it easier

to combine modelling languages and associated

techniques and tools depending on the problem at

hand, an ambition resembling that of method

engineering. In particular, UEML aims to support

local tailoring/adaptation of languages and

constructs to fit local practices and needs, possibly

producing new domain-specific languages as a

result.

� Systematic, quality-driven, reuse of existing

enterprise and IS modelling languages. Combining

techniques and tools across modelling languages

has the side benefit of making the languages

available for the domains where they are most

suited, without limitations posed by modelling tools

and other technologies.

� Defining a core language for enterprise and IS

modelling. As UEML stabilises, it may become

possible to extract a core set of modelling construct

to use as the starting point for a new enterprise/IS

modelling language. Such a UEML core language

should be composed of those constructs that have

proven most useful for practical, integrated model

use. However, the core language scenario should be

understood as a longer term objective that is beyond

the scope of this paper.

� Facilitating a web of languages and of models is

another long-term objective. Whereas much

research and development effort has gone into

techniques and tools for integrated management of

structured data (e.g., relational database theory) and

of semi-structured data (e.g., XML and other web

technologies), there is a lack of theory and

technology for integrating information resources in

the form of diagrammatic models. UEML could

contribute to growing a web of languages and of

models in a way that resembles the touted semantic

web of semi-structured data (Berners-Lee, Hendler,

Lassila 2001).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11896

Although UEML is intended as a hub for connecting

different languages and different models expressed in those

languages, it will not necessarily be the only means of

making enterprise and IS languages and models

interoperable. Other theories, technologies and tools may be

better suited for certain integration needs and should

possibly be made usable alongside UEML.

3. LANGUAGE AND CONSTRUCT DESCRIPTION

UEML facilitates integrated model use by making semantic

correspondences between the modelling constructs of

different languages clear. Making the languages interoperable

is seen as a first step towards also making the models

expressed in those languages interoperable. A central part of

UEML is therefore a standard, integrative and evolvable

approach to describing enterprise and IS modelling

constructs. By standard we mean that the approach provides

a structured path to describing modelling languages, diagram

types and constructs. By integrative we mean that, as soon as

the languages, diagram types and constructs have been

described according to the approach, they have also become

prepared for assessment of semantic correspondences,

possibly across languages. And by evolvable we mean that

UEML will be able to grow and adapt by incorporation and

modification of additional modelling languages and

constructs without becoming overly complex and thus

unmanageable.

The descriptions of individual modelling constructs are

particularly important, because it is this level that connects

different modelling languages. Hence construct descriptions

are more complex than descriptions of languages and

diagram types. Specifically, in UEML, two distinct

descriptions need to be made for each construct (Opdahl

2006):

� Presentation (or concrete syntax), which deals with

the presentation of the modelling construct as part

of model diagrams or in serialised form, e.g., in an

XML file.

� Representation (or semantics), which accounts for

which enterprise phenomena the construct is

intended to represent (in particular covering

reference, a central aspect of semantics).

Whereas a construct can have many presentations, it can have

only one representation. This paper will focus on the

representation part, which has so far been more developed

than presentation.

In UEML, semantics is described by a representation

mapping of each modelling construct into a common

ontology, based on earlier work by Opdahl & Henderson-

Sellers (2004, 2005). The UEML approach uses separation

of reference to break individual modelling constructs into

their ontologically atomic parts, along the following six axes:

1. Which class(es) of things is the construct intended

to represent? Most modelling constructs somehow

represent one or more classes of things. Even when

the primary purpose of a construct is to represent

certain properties, states or transformations, the

construct implicitly also represents a property of,

state of or transformation in, one or more classes of

Figure 1: The main classes of the UEML representation meta-meta model, used to describe the semantics of modelling

constructs.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11897

things. (A transformation may correspond either to

an atomic event or a complex process.)

2. Which properties is the construct intended to

represent? Most modelling constructs somehow

represent one or more types of properties, which

may either be intrinsic properties (belonging to only

one thing) or relationships (properties that are

mutual to several things). Some intrinsic properties

are laws that restrict other properties. Even if the

primary purpose of a construct is to represent

classes, states or transformations, it represents

classes, states or transformations that involve one or

more types of property.

3. Which states is the construct intended to represent?

Some modelling constructs are intended to represent

a more or less restricted state in one or more classes

of things. The state law that restricts the state can be

described in terms of the properties of those classes.

Whereas most modelling constructs represent one or

more properties and, at least, one or more classes,

not all constructs are intended to represent a state.

4. Which transformations is the construct intended to

represent? Some constructs are intended to

represent a simple or complex transformation of one

or more classes of things from one state to another.

The transformation law that effects the

transformation can be described in terms of the

states of those classes. Again, not all constructs are

intended to represent a transformation. Although

some constructs are apparently not intended to

represent behaviour at all, other constructs represent

particular states, transformations.

5. Which instantiation levels is the construct intended

to represent? A modelling construct represents

classes, properties, states and transformations at

either the instance or type level or both.

6. Which modality (or mode) is the construct intended

to represent? We usually think of enterprise and IS

models as assertions of facts about a domain, e.g.,

assertions that something is or is not the case in the

enterprise. But some model elements may instead

state that someone wants something to be the case,

or that someone is not permitted to do something, or

that someone knows something is the case¸ or that

something will be the case some time in the future.

Hence, whereas the two first axes deal with structure, the

next two deal with behaviour. Together, these four axes

describe the semantics of a modelling construct by

describing a state of affairs, or a scene, played by several

classes, properties and, perhaps, states and transformations

together. The final two axes supplement the scene with

information about the construct's intended use, i.e., its

instantiation level and modality/mode.

The UML class diagram in Figure 1 shows the key concepts

used to describe modelling languages and constructs in

UEML. The upper part of the diagram depicts modelling

languages, along with their diagram types and modelling

constructs. The lower part shows how each individual

construct is described by a scene of interrelated classes,

properties, states and transformations.

4. THE COMMON ONTOLOGY

To tie modelling-construct descriptions together, UEML uses

a common ontology into which the represented classes,

properties, states and transformations of each construct are

mapped. The common ontology thereby comes to interrelate

the construct descriptions at the semantic level.

Figure 2: The main classes of the common UEML ontology, into which construct descriptions are mapped.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11898

The UEML ontology is organised into four taxonomies: The

classes in the ontology are organised in a conventional

generalisation hierarchy. Properties, on the other hand, have

their places in a precedence hierarchy, where a property

precedes another if every thing that possesses the second

property necessarily also possess the first. (For example,

associated-with precedes having-content, because everything

that is having-content is also associated-with that content.)

There are similar generalisation hierarchies of states and of

transformations too. Classes, properties, states and

transformations – including the state and transformation laws

– all have attributes. For example, they all have unique

names and there are cardinality constraints and role names on

the associations between classes and properties.

The four taxonomies are interrelated. Classes are related to

the properties that characterise them. Properties are related to

the states they define. States are in turn entered and exited by

transformations. Certain types of properties are laws that

restrict other properties. State laws restrict states, whereas

transformation laws effect transformations. The resulting

organisation of the UEML ontology as four distinct, but

interrelated taxonomies makes it possible to evolve the

ontology over time without increasing complexity more than

necessary. New classes, properties, states and transformations

will always have a clearly identifiable location where they

can be added to the appropriate taxonomy.

The UML class diagram in Figure 2 shows the key concepts

of the common ontology, based on the earlier work of Opdahl

& Henderson-Sellers (2004, 2005). For every construct

incorporated into UEML, each represented class, property,

state and transformation is mapped into an ontology concept

in the ontology. Figure 2 therefore structurally resembles the

lower part of Figure 1.

The UEML ontology was first populated with a set of initial

classes, properties, states and transformations derived directly

from Mario Bunge’s ontological model (Bunge 1977, 1979)

and the Bunge-Wand-Weber representation model of

information systems, the so-called BWW model (Wand &

Weber 1988a, 1988b, 1993, 1995). Since then, it has evolved

and grown as new constructs have been added. Currently,

UEML incorporates a selection of academic and industrial

modelling languages, such as ARIS (Dossogne & Jeanmart

2007), BMM (Tu 2007), BPMN (Dossogne & Jeanmart

2007), coloured Petri nets, GRL (Dallons, Heymans & Pollet

2005, Heymans, Saval, Dallons & Pollet 2005, Matulevičius,

Heymans & Opdahl 2006, 2007a, Tu 2007), IDEF3

(Harzallah, Berio & Opdahl 2007), ISO/DIS 19440, KAOS

(Matulevičius, Heymans & Opdahl 2006, 2007a, 2007b),

UEML 1.0 and selected diagram types from UML 2.0. In

consequence, the most general concepts in the common

ontology are ontologically committed, in the sense that they

have grown out of Bunge's ontology and the BWW model,

whereas the more specific ones have emerged through

language and construct analyses.

5. LANGUAGE AND CONSTRUCT

CORRESPONDENCES

To support integrated use of models, UEML must offer ways

to exploit the mappings to identify and manage

correspondences among language constructs and among

model elements. Correspondences between any pair of

constructs can be examined by comparing their mappings

into the common ontology. If two modelling constructs are

identical, they will map into the exact same ontology

concepts. If two modelling constructs do not overlap at all,

they will map into concepts that are not closely related in

their respective taxonomies. However, the most common

situation will most likely be where the modelling constructs

map into some common ontology concepts, into some

concepts that are closely related and into some that are not.

Three kinds of correspondences have been identified. Each of

them can be precisely formulated in terms of the ontology

classes, properties, states and transformations into which the

constructs in the correspondence map:

� Equality occurs when two or more constructs

represent the exact same state of affairs, as

explained in Section 3. If two constructs are equal,

one can always replace the other without loss of

information, e.g., for model-to-model translation.

� Containment occurs when the state of affairs

represented by one construct has the state of affairs

represented by another as a part. When one

construct contains several others, the former can be

replaced by a combination of the others during

model-to-model translation.

� Generalisation occurs when one modelling

construct represents a state of affairs that

generalises the state of affairs represented by

another. When one construct generalises another,

the general construct can replace the special one in a

model-to-model translation (with some loss of

information), but the inverse replacement is only

appropriate under specific circumstances.

Of course these simple kinds of correspondences are not

independent. For example, constructs that are equal will

trivially contain and generalise one another. There are also

complex correspondences, e.g., when one construct

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11899

represents a state of affairs that generalises a part of the state

of affairs represented by another, thus combining

containment and generalisation. There are also overlapping

constructs, each of which contains part, but not all, of the

other. However, a complete typology of correspondences and

how they combine stills needs to be worked out.

Correspondences are also characterised by different degrees

of precision. For example, it is possible to only take into

account how each construct is mapped into ontology

concepts, ignoring how the concepts are related within the

construct description. More precise correspondences can be

identified by taking into account both ontology concepts and

the relations between them, but ignoring the roles that the

concepts may play in the relations. Finally, both the ontology

concepts, the relations between them and the roles played can

be taken into account.

Because correspondences are generally ways to assess to

what extent constructs are similar or dissimilar (under a

precision degree), it might be possible to characterise

correspondences by using correspondence measures (CM). In

this sense, a CM is a function:

CM: UEMLC UEMLC � � �
�

Where UEMLC represents the set of constructs incorporated

into UEML. CM results from explicit selections ranging on

the following five parameters: correspondence type, precision

degree, technique, type of data and evaluation method, as

shown in Figure 3. The form of the function is related to the

correspondence type to be identified (e.g. equality). There are

three well-known forms of function that can be used, i.e.,

Jaccard, Recall and Precision (Gower & Legendre 1986). The

type of data taken as input by the function is varying

depending on the precision degree required. Type of data

constrains the specific technique that can be used for

effectively evaluating function results as well (using, e.g.,

structure-based, graph-based or attribute-based techniques)

(Lin 1998, Rodrýguez & Egenhofer 2003, Blanchard, Kuntz,

Harzallah & Briand 2006). Finally, the measure should be

meaningful. To this end, an evaluation method should be

defined to evaluate the measurement accuracy. According to

Budanitsky (1999), accuracy of the measure can be evaluated

by comparing the measurement results with correspondences

found in three alternative and distinct ways: 1) theoretical

investigation 2) human judgement and 3) knowledge about a

particular application.

Correspondence measures can also be used to validate the

representation mappings and the common ontology, when

correspondence measures derived automatically from the

common ontology is compared to expert estimates of the

same correspondences. Deviations indicate that the

representation mapping for a construct is wrong and/or that

there are weaknesses in the common ontology. There may be

concepts missing from the common ontology, or there may

be taxonomical relations between ontology concepts missing,

e.g., a missing generalisation relation from a sub- to a

superclass. If left undetected, missing taxonomical relations

can lead to redundancies in the common ontology when the

same subclass is added several times because it cannot be

retrieved as a specialisation of its superclass. In this way,

correspondence measures can also aid elimination of

redundancy in the common ontology.

Correspondence measures as representative of

correspondences are useful as high-level guides for model-to-

model translation and other cross-language services. The

representation mappings and common ontology provide the

Figure 3: The main classes of the UEML correspondence analysis framework, used to identify and manage

correspondences between modelling constructs.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11900

details for how to translate between modelling constructs

belonging to different languages, as soon as the pair of

modelling constructs to translate between have been decided.

But it offers less help with deciding which constructs in one

language to translate into which constructs in another. The

correspondence measures can help by suggesting, for each

construct in a language, which constructs in the other

language that are most suitable as targets for, e.g., translation,

leaving the final choice to be made by the model manager.

When the construct-to-construct correspondences at the

language-level have been established in this way, the

representation mapping and common ontology are there to

support the detailed construct-level mappings.

6. LANGUAGE QUALITY FRAMEWORK

Together, the representation mappings, common ontology

and correspondence measures contribute towards integrated

use of models expressed in different languages. But there is

also a need to select suitable languages to include in the

UEML in the first place. For example, to quickly enrich the

common ontology, it may be better to incorporate a much

used and relatively complete language early on than a

narrower language used only by specific communities. Later,

when using UEML, there is also a need to select suitable

languages for particular purposes among the many available.

UEML therefore includes a language quality framework

(Anaya, Berio & Verdecho 2007) that aids language selection

by:

� defining the concept of quality of a modelling

language;

� supporting methodical, goal-dependent evaluation

of the quality of enterprise and IS modelling

languages.

The current quality framework has adapted and extended the

SEQUAL quality framework (Krogstie 1998, 2005), which

provides a model of the quality of models, later extended to

also account for the quality of languages. SEQUAL identifies

8 quality types for characterising what quality is: physical

quality, empirical quality, syntactic quality, semantic quality,

perceived semantic quality, pragmatic quality, social and

organisational quality. For example, semantic quality is the

correspondence between the model and the domain.

SEQUAL also identifies several types of appropriateness,

each indicating a language aspect that must be considered

when assessing whether a language is appropriate for a

particular purpose (Krogstie 1998, 2005). For example,

comprehensibility appropriateness reflects the ease with

which the language its model can be understood by a certain

audience. In SEQUAL, each quality type is related to one or

more appropriateness types and vice versa. For example,

domain appropriateness is used to assess physical and

semantic qualities. Therefore, the different types of

appropriateness provide the context for evaluating the related

quality types.

In addition to SEQUAL, the UEML quality framework has

been inspired by two additional quality frameworks:

Moody’s framework (2003) and ISO/IEC 9126 international

standard for assessing software product quality (ISO/IEC

2001). These two frameworks have been adapted and aligned

with SEQUAL's appropriateness types through a

generalisation hierarchy (Berio, Opdahl, Anaya & Dassisti

2005b).

The resulting appropriateness types in UEML's quality

framework remain too general to allow concrete evaluations

(Anaya, Berio & Verdecho 2007). Therefore, the framework

also covers requirements and criteria. Requirements are

collected from users (actors or experts), asking them how

enterprise modelling should contribute towards enterprise

integration and interoperability, based on a requirements base

established in the previous UEML Thematic Network

(UEML-TN 2002-2003). Criteria are the operational, or

measurable, counterparts of requirements. Each criterion can

in turn be related to one or more appropriateness types,

making it clear to which quality types the criterion

contributes. The framework provides two complementary

ways of collecting data for evaluating criteria. The language

template is used to gather general and factual information

about a language, such as its notations and meta models,

whereas the language-evaluation questionnaire comprises

both questions derived from current criteria and an associated

glossary (Verdecho & Matulevičius 2007).

The framework also covers language descriptions, which

cover, e.g., a language's owner and version; goals, which are

aggregations of criteria for the purpose for evaluating

language quality; metrics-for-goal, which are selected

metrics relevant to a specific goal (metrics are needed to

perform criteria assessment); metric evaluations, which are

specific evaluations (for instance, a value) of a single metric

on a specific language; combined metrics evaluations, which

are combined evaluation of several metrics evaluations for a

given language and a given goal (an explicit combined

metrics evaluation makes explicit how several single metrics

are combined, e.g., with a weighted formula, to evaluate the

quality of a language with respect to a given goal;

additionally, it is useful because the same metrics evaluation

can be used several times if needed).

The UML class diagram in Figure 4 shows the key concepts

used to evaluate the quality of modelling languages in

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11901

UEML. The associated quality evaluation method gives a

clear picture of how to evaluate and select one or more

enterprise and/or IS modelling languages for a specific

purpose. The first task is to define the goal as an aggregation

of criteria and then select suitable metrics for each criterion.

A list is made of languages to be evaluated. The language

template is used to collect factual information about each

language, and the language-evaluation questionnaire is used

to collect subjective opinions. Hence, whereas only a single

filled-in language template is needed for each language,

multiple filled-in questionnaires from language users are

usually needed. Once the selected criteria are assessed by

using selected metrics and storing these assessments as

metrics evaluations, combined metrics evaluations are

calculated and stored. Finally, languages must be suitably

selected based on the results stored as combined metrics

evaluations. Before its use, an enterprise may undertake a

customisation of the quality framework: This simply means

to define additional requirements, appropriateness types,

criteria and metrics.

7. META-META MODELS

The UML class diagrams of the language and construct

description approach (Section 3), of the common ontology

(Section 4), of the correspondence analysis approach (Section

5) and of the quality framework (Section 6) are all meta-meta

models. They are meta-meta models because models of

modelling languages are meta models and because Figures

1-4 are models of how to model aspects if modelling

languages (thus of how to model meta models). The UML

diagrams are intended as illustrations only. For example,

Figures 1-2 do not show attributes and omit several

association classes and abstract classes. More detailed meta-

meta models can be found in (Opdahl 2006).

Whereas the representation mappings connect Figures 1 and

2, the meta-meta models of the correspondence analysis and

language quality frameworks in Figures 3 and 4 are currently

connected to Figure 1 only through the language description

in Figure 4. Further work should establish a single combined,

yet modular, meta-meta model that covers all constituents of

the UEML approach, the overall UEML meta-meta model.

8. TOOLS

UEML is supported by a set of prototype tools realised using

a selection of existing technologies. There are currently five

tools in the set:

� UEMLBase Repository is a Protege-OWL realisation

of the representation and ontology meta-meta

models of Figures 1-2, translated into OWL.

� UEMLBase Editor is an emerging set of Eclipse

GMF-based editors for browsing and updating the

contents of the UEMLBase repository.

� UEMLBase Manager is a Java-plugin for Protege-

OWL that provides merging, reporting and other

housekeeping functions for the repository.

� UEMLBase Verifier is a set of Prolog rules and a

Prolog rule checker that support formal verification

of the contents in the UEMLBase repository, for

example to check cardinality constraints and ensure

that the construct descriptions are concrete. Prolog

was chosen instead of newer technologies, such as

Figure 4: The main classes of the UEML language quality framework, used to classify and select modelling languages.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11902

SWRL, because of its high availability, robustness

and general versatility (Mahiat 2006).

� UEMLBase Correspondence Analyser uses the

repository to compute similarity measures between

UEMLBase constructs, based on the meta-meta

model in Figure 4, thus paving the way for

consistency checking, automatic update reflection,

model-to-model translation across languages, as

well as other integrated model uses.

Each tool strives to be consistent with the meta-meta models

of Figures 1-4, although they realise more specific

implementation models, such as OWL, Eclipse EMF, Java

classes and Prolog facts. Hence, the meta-meta models is

used to support interoperability within the UEML tool set.

9. DISCUSSION

The paper has presented the main constituents of the UEML

approach and explained how they are related. Languages,

possibly selected with the aid of the quality framework, are

described using separation of reference according to Section

3. The descriptions of the states of affairs are then mapped

into the common ontology of Section 4. It thereby becomes

possible to establish correspondences between different

constructs in terms of their mappings into the common

ontology as in Section 5. The selection of modelling

languages is guided by the quality framework of Section 6. In

the long term, the most used and useful concepts in the

common ontology can be used to form a core UEML

language for enterprise and IS modelling. In the long tern,

UEML could also contribute towards developing a web of

languages and of models in a way that resembles the touted

semantic web of semi-structured data (Berners-Lee, Hendler

& Lassila 2001), which is currently emerging in areas such as

e-science and e-government (Shadbolt, Hall & Berners-Lee

2006).

From an initial set of around 25 concepts taken more or less

directly out of Bunge's ontology and the BWW model, the

common UEML ontology has grown to comprise 110

concepts. Most of them have resulted from analyses of

individual modelling constructs using separation of reference.

(A few initial higher-level remain to organise and structure

the four taxonomies.) As part of the Interop-NoE work, 130

constructs from the following 10 languages have been

mapped into this ontology: ARIS, BMM, BPMN, GRL,

IDEF3, ISO/DIS 19440, KAOS, coloured Petri nets, UEML

1.0 and selected diagram types from UML 2.0. However,

they are not all described in equal detail and none of them are

yet fully validated. The languages, constructs, mappings and

ontology have all been stored in the UEMLBase Repository,

supported by the Editor, Manager, Verifier and

Correspondence Analyser tools.

The standardised approach to language and construct

description has turned out to have several advantages, in

particular at the modelling construct level. The structured

descriptions become complete, consistent, cohesive and, thus,

more learnable and understandable. It therefore becomes

easier to compare them to one another. The structured

approach also offers systematic and detailed advice on how

to proceed when analysing individual language constructs. It

encourages highly-detailed construct description, which leads

to languages that are integrated at a fine level of detail. It

supports ontological analysis in terms of particular classes,

properties, states and events, and not just in terms of the

concepts in general.

The UEML approach has positive network externality, in the

sense that incorporating an additional construct or language

becomes:

� more valuable the more constructs and languages

that have already been incorporated, because the

additional language becomes interoperable with a

larger number of other languages;

� less costly because reusing an enriched common

ontology and existing representation mappings

provide good reference examples and because the

cost of maintaining tools and infrastructure can be

shared by more UEML users.

Similar positive network externality effects can be expected

at the model level beside the language level discussed here.

Early experience with the construct description approach

indicated that it was difficult to use because it was based on a

novel, unconventional way of thinking about the semantics of

modelling constructs. It was sometimes hard to find the

appropriate classes, properties, states and events in the

common ontology to use when describing a construct. Also,

it was sometimes hard to determine exactly which part of a

language that constitutes a modelling construct. As part of the

Interop-NoE, tools and tutorials were developed that have

seemingly resolved many of these problems. Also, early

drafts of the common ontology have become available along

with exemplary representation mappings. As a result, the first

draft of several of the most recent language incorporations

could be made by students with little direct supervision.

The framework for selecting and evaluating the quality of

modelling languages according to specific goals also

provides high benefits for users that need to decide about

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11903

languages to use for practical purposes. First, it gets the voice

of the customer through the consideration of the requirements

of the users making them to appear in the front end of the

framework. Then, these requirements are related to criteria

that make them operational and applicable to the language

evaluation.

10. CONCLUSION AND FURTHER WORK

UEML is an ambitious, long-term effort that will require

several years of cooperation between academia and industry.

The overall challenge for further work is to extend the theory

and tools developed by the Interop-NoE network to support

practical integrated use of models and languages. Although

several limited paper-and-pencil trials have demonstrated the

feasibility of the approach (Berio, Opdahl, Anaya, Dassisti,

2005b; Matulevičius, Heymans, Opdahl, 2007; Harzallah,

Berio, Opdahl, 2007), detailed methods for integrated model

use still need to be developed and implemented.

For UEML-supported integrated model use to be tested in

large-scale, realistic settings, the common ontology and

representation mappings must be verified, validated and

improved. The current ontology and mappings have been

contributed by several Interop-NoE research teams working

in a distributed manner. The most immediate challenge is to

improve the ontology and mappings in two directions. Firstly,

the Editor and Verifier tools are being extended and

improved. Secondly, the Correspondence Analyser tool is

used to compare correspondences calculated from the

common ontology and the representation mappings with

correspondence estimates provided by human experts. The

comparisons are used to identify weaknesses in the

representation mappings. For example, when two constructs

are considered similar by human experts, but not by the

Correspondence Analyser, the reason might be that one or

more ontology concepts have been duplicated. Accordingly,

when the Analyser, but not the human experts, deem two

constructs similar, the reason may be weaknesses in the

generalisation hierarchies in the ontology. In this way,

verification not only supports improving the representation

mappings but also controls the quality of the common

ontology.

As for the overall UEML approach, an obvious path for

further work is to connect the meta-meta models for language

and construct description and for the common ontology with

the one for the quality framework. Also, the combined meta-

meta model must be extended to account for the presentation

part of language and construct description and for construct

correspondences. In addition to tying together the overall

approach, this work can be expected to reveal further

possibilities, such as deriving quality and appropriateness

metrics for languages, not only at the language level, but also

at the construct level from the detailed UEML ontology and

mappings.

These and other possible future developments have been

organised in a UEML roadmap comprising several research

directions, each detailed by specific actions (Opdahl & Berio

2006b): 1. Language breadth – include more languages; 2.

Ontological depth – refine the common ontology; 3.

Ontological clarity – elaborate the common ontology

language; 4. Presentation – extend the support for

presentation issues; 5. Mathematical formality – define

UEML semantics formally; 6. Tool support – develop

prototype tool with GUI and validation support; 7. Model

management – provide support for model management in

addition to language management; 8. Validation – structural

and behavioural language and model validation; 9.

Dissemination – make UEML known in industry and

academia and as a standard; 10. Community – establish and

maintain a committed and cohesive community for managing

and evolving UEML and its approach. Additional directions

that deal specifically with the language quality framework

are: 1. Continuing the development of the quality framework

by introducing new criteria and extending the questionnaire

accordingly; 2. Continuing the accommodation of existing

quality frameworks by specialising appropriateness; 3.

Gradually developing supporting tools based on the meta-

meta model, starting from the current simple support for

filling-in the questionnaire to complete functionality to define

and evaluate metrics; 4. Launching use of the quality

framework and especially by performing evaluations of

languages for developing a core language. For example, more

specific quality frameworks can be used to systematically

introduce new appropriateness measures and to specialise

existing ones. The roadmap still needs to be extended to

account better for correspondence analysis.

The UEML approach may even be useful outside enterprise

and IS modelling, e.g., for software modelling. Significantly,

only the language quality framework is specific to enterprise

modelling. The other major UEML parts might be used for a

wider set of modelling domains.

ACKNOWLEDGMENT

The authors are indebted to all the partners of Interop-NoE

and, in particular, to the researchers participating in its

Domain Enterprise Modelling. The authors are indebted to

the many students who have contributed to the work,

including Emmanuel Blanchard, Aurelie Dossogne, Cedric

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11904

Jeanmart, Alf Harry Karlsen, Jeremy Mahiat, Christophe Tu,

Torbjørn Vefring and Tomas Zijdemans. This work was

partially funded by the Interop Network of Excellence and by

the Interuniversity Attraction Poles Programme, Belgian

State, Belgian Science Policy.

REFERENCES

Anaya, V., Berio, G., and Verdecho, M.J. (2007). Evaluating

Quality of Enterprise Modelling Languages: The UEML Solution.

Proc. I-ESA 2007, Funchal, Portugal.

Berio G., Anaya V., and Ortiz A. (2004). Supporting Enterprise

Integration through a Unified Enterprise Modeling Language. In

Proc. of EMOI 2004 (Enterprise Modelling and Ontologies for

Interoperability), Grundspenkis, J., Kirikova, M. (eds.), joint with

CAiSE*04, Riga Technical University, 3:165-176.

Berio, G., Opdahl, A., Anaya, V. and Dassisti, M. (2005a).

Deliverable DEM1. Publicly available at www.interop-noe.org.

Berio, G., Opdahl, A., Anaya, V., and Dassisti, M. (2005b).

Deliverable DEM2. Publicly available at www.interop-noe.org.

Berio, G., Opdahl, A., Anaya, V., and Dassisti, M. (2006).

Deliverable DEM3. Publicly available at www.interop-noe.org.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web.

Scientific American Magazine - May, 2001

Blanchard E., Kuntz P., Harzallah M. and Briand H. (2006). A tree-

based similarity for evaluating concept proximities in an ontology.

In Proc. 10th Conf. of the International Federation of Classification

Society, pp.3–11. Springer.

Budanitsky, A. (1999). Lexical semantic relatedness and its

application in naturallanguage processing, Technical report, Univ.

of Toronto

Bunge, M. (1977). Treatise on Basic Philosophy: Vol. 3: Ontology

I: The Furniture of the World. Boston:Reidel.

Bunge, M. (1979). Treatise on Basic Philosophy: Vol. 4: Ontology

II: A World of Systems. Boston:Reidel.

Dallons, G., Heymans, P. and Pollet, I. (2005). A Template-based

Analysis of GRL, in Proc. of EMMSAD'05 (CAiSE*05), Tenth

International Workshop on Exploring Modeling Methods in Systems

Analysis and Design, pp. 493-504.

Dossogne A. and Jeanmart C. (2007) Evaluation of ARIS and

BPMN using the UEML approach. Master thesis, University of

Namur.

Goossenaerts, J., Gruninger, M., Nell, J.G., Petit, M. and Vernadat,

F. (1997). Formal Semantics of Enterprise Models. In Proc. of

ICEIMT'97, K.Kosanke and J.G Nell. (Eds.), Springer- Verlag.

Gower, J.C. and Legendre, P. (1986). Metric and euclidean

properties of dissimilarity coefficients’, J. of Classification, 3, 5–48.

Harzallah M., G. Berio, et A.L. Opdahl (2007). Incorporating

IDEF3 into the Unified Enterprise Modelling Language (UEML). In

Proc. VORTE 2007, joint with EDOC07.

Heymans, P., Saval, G., Dallons, G. and Pollet, I. (2005). A

Template-Based Analysis of GRL: Book chapter, in Advanced

Topic in Database Research - Volume 5. Idea Group Publishing.

INTEROP-NoE (2003-2007). Interop Network of Excellence.

www.interop-noe.org, 2003-2007.

ISO/IEC Standard 9126 (2001). Software product quality,

International Standards Organisation (ISO). International

Electrotechnical Commission (IEC).

Jochem, R. (2002). Common representation through UEML –

requirement and approach. In Proc. of ICEIMT 2002, Kosanke K.,

Jochem R., Nell J., Ortiz Bas A. (Eds.), Polytechnic University of

Valencia, Valencia, Spain, April 24-26, Kluwer. IFIP TC

5/WG5.12.

Krogstie, J. (1998). Using a Semiotic Framework to Evaluate UML

for the Development for Models of High Quality. Siau K., Halpin

T., (eds) Unified Modelling Language: System Analysis, Design and

Development Issues, IDEA Group Publishing, pp. 89-106.

Krogstie, J. (2005). Evaluating UML Using a Generic Quality

Framework. Encyclopaedia of Information Science and Technology.

M. Khosrow-Pour Editor, IDEA Group Publishing.

Lin D. (1998). An information-theoretic definition of similarity. In

Proc. 15th International Conference on Machine Learning, pp. 296–

304. Morgan Kaufmann.

Mahiat, J. (2006). A Validation Tool for the UEML Approach.

Master thesis, University of Namur.

Matulevičius R., Heymans P., Opdahl A. L. (2006). Comparison of

Goal-oriented Languages using the UEML Approach. In

Interoperability for Enterprise Software Applications, Panetto H.,

Boudjlida N. (eds), pp 37-48. ISTE.

Matulevičius R., Heymans P., Opdahl A. L. (2007a). Comparing

GRL and KAOS using the UEML Approach. In Enterprise

Interoperability II. New Challenges and Approaches, Concalves, R.

J., Muller, J. P., Mertins, K., Zelm, M. (eds.), pp 77-88. Springer-

Verlag.

Matulevičius R., Heymans P., Opdahl A. L. (2007b). Ontological

Analysis of KAOS Using Separation of Reference. In

Contemporary Issues in Database Design and Information Systems

Development, Siau K. (ed.), pp. 37-54. IGI Publishing.

Mertins, K., Knothe, T., Zelm, M. (2004). User oriented Enterprise

Modeling for Interoperability with UEML. In Proc. of EMMSAD’04

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11905

(Evaluating Modeling Methods for Systems Analysis and Design),

pp.25-36, joint with CAiSE*04, Riga – Latvia, June 7-8.

Moody DL (2003) Measuring the quality of data models: an

empirical evaluation of the use of quality metrics in practice. Proc.

ECIS'2003, Naples, Italy.

Opdahl, A.L. (2006). The UEML Approach to Modelling Construct

Description. Proc. 2nd International Conference on Interoperability

for Enterprise Software and Applications (I-ESA 2006).

Opdahl, A.L. and Berio, G. (2006a). Interoperable Language and

Model Management using the UEML Approach. Proc. G@mma

2006 (International Workshop on Global Integrated Model

Management), pp. 35-42.. ACM Press.

Opdahl, A.L. and Berio, G. (2006b). A Roadmap for the UEML.

Proc. 2nd International Conference on Interoperability for

Enterprise Software and Applications (I-ESA 2006).

Opdahl, A.L. and Henderson-Sellers, B. (2004). A Template for

Defining Enterprise Modelling Constructs. Journal of Database

Management 15(2).

Opdahl, A.L. and Henderson-Sellers, B. (2005). Template-Based

Definition of Information Systems and Enterprise Modelling

Constructs. In Ontologies and Business System Analysis, Peter

Green and Michael Rosemann (eds.). Idea Group Publishing, 2005.

Panetto H., Berio G., Benali K., Boudjlida N. and Petit M. (2004). A

Unified Enterprise Modelling Language for enhanced

interoperability of Enterprise Models. In Proc. of the 11th IFAC

INCOM2004 Symposium, Bahia, Brazil, April 5-7.

Rodrýguez M., Egenhofer M (2003). Determining semantic

similarity among entity classes from different ontologies. IEEE

Transactions on Knowledge and Data Engineering 15(2), pp. 442–

456.

Shadbolt, N., Hall, W. and Berners-Lee, T. (2006). The Semantic

Web Revisited. IEEE Intelligent Systems, May/June 2006.

Tu, C. (2007). Ontological Evaluation of BMM and i* with the

UEML Approach. University of Namur, Master thesis.

UEML-TN (2002-2003) Unified Enterprise Modelling Language

Thematic Network. 2002-2003.

Verdecho M.J. and Matulevičius, R. (2007). Language Evaluation

Questionnaire for Enterprise Modelling Languages. Unpublished.

Vernadat, F. (2002). UEML: Towards a Unified Enterprise

Modelling Language. International Journal of Production Research,

40(17):4309-4321, Taylor & Francis Group.

Wand, Y. and Weber, R. (1988a). An ontological analysis of some

fundamental information systems concepts. In Proc. Ninth

International Conference on Information Systems, DeGross, J.I. and

Olson, M.H. (eds.), Minneapolis/USA, November 30–December 3,

1988, pp. 213–225.

Wand, Y. and Weber, R. (1988b). An Ontological Model of an

Information System. IEEE Transactions of Software Engineering,16

(11):1282-1292, IEEE Press.

Wand, Y. and Weber, R. (1993). On the ontological expressiveness

of information systems analysis and design grammars. Journal of

Information Systems, 3:217–237.

Wand, Y. and Weber, R. (1995). On the deep structure of

information systems. Information Systems Journal, 5:203–223.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11906

