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Abstract: Known linear stabilizable and detectable systems, which are allowed to be non
minimum phase, are considered: the problem of tracking unknown output reference trajectories
and rejecting unknown input disturbances when the output tracking error is affected by unknown
additive sensor disturbances is addressed. All the exogenous signals to be tracked and/or to be
rejected are assumed to be the sum of sinusoids: only upper bounds on their numbers are
supposed to be known, along with a set in which the output disturbance frequencies may
range. A constructive algorithm is proposed to drive the regulation error exponentially to zero.
The regulation strategy includes an on-line detector of the number of excited frequencies and
exponentially converging estimates of the exosystems parameters. An example containing a
variable number of frequencies is worked out and simulated.
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1. INTRODUCTION AND PROBLEM STATEMENT

A major goal in feedback control system design is the
rejection of unknown disturbances. The output regulation
theory for linear systems establishes the internal model
principle (see Francis and Wonham (1976)): the feedback
control which rejects a disturbance modelled by a lin-
ear exosystem must incorporate the exosystem itself. The
exosystems for sinusoidal disturbances contain their un-
known frequencies: in this case adaptive internal models
are to be resorted to, as shown in Nikiforov (1998). Typi-
cally periodic disturbances are acting on the system input
(see Bodson (2005) for a recent survey) in applications
such as active suspensions design in Landau et. al. (2005),
disk drives speed regulation in Liu and Yang (2004),
eccentricity compensation in De Wit and Praly (2000),
active noise control in Kuo and Morgan (1996), Wu and
Bodson (2003), feedback control vibrations in helicopters
in Bittanti and Moiraghi (1994), Ariyur and Krstic (1999):
in these cases they can be viewed as matching disturbances
in the tracking error dynamics. A different control problem
arises when sinusoidal sensor disturbances act additively
on the measured output. The stabilization problem for
linear systems in this case has been addressed and solved in
Serrani (2006) and Marino, Santosuosso and Tomei (2008)
(see also applications in Wu and Bodson (2003), Zarikian
and Serrani (2007)).

The aim of this paper is to combine the two problems
above: given a linear stabilizable and detectable system,
which is allowed to be non minimum phase, we solve
the regulation problem concerned with tracking unknown
⋆ This work was supported by the Ministero dell’Universià e della
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reference trajectories and rejecting unknown input distur-
bances in the presence of unknown disturbances acting ad-
ditively on the measured output, when all these signals are
generated by unknown exosystems with simple eigenvalues
on the imaginary axis.

The class of linear time invariant systems
{
ẋ = Ax+ bu+ Pwt; ; x(0) = x0

ẇt = Rwt; wt ∈ ℜr, wt(0) = wt0

e = cx− qwt;
(1)

is considered, with state x ∈ ℜn, control input u ∈ ℜ;
output e ∈ ℜ to be regulated to zero; the signals qwt and
Pwt, respectively to be tracked and to be rejected, are both
generated by the unknown linear exosystem ẇt = Rwt,
with state wt ∈ ℜr. The measurable output

y(t) = e(t) + δ(t), y ∈ ℜ (2)

is the sum of the output e(t) of system (1) and the distur-
bance δ(t) generated by an unknown linear exosystem

ẇδ = Rδwδ, wδ ∈ ℜrδ , wδ(0) = wδ0,
δ = qδwδ.

(3)

We address the regulation problem formulated as follows.

Problem 1.1. Consider the extended system (1)-(3), with
known A, b, c, unknown P, q, qδ, R, Rδ where the orders of
R and Rδ are known and the spectra σ(R), σ(Rδ) contain
only simple eigenvalues on the imaginary axis. Design a
dynamic feedback controller{

Ψ̇ = F (Ψ, y)
u = H(Ψ, y)

(4)

from the output y, with state Ψ ∈ ℜnc , suitable initial
condition Ψ(0) = Ψ0 ∈ ℜnc and F (Ψ, y), H(Ψ, y) suitable
functions, such that in the closed loop system (1)-(4), the
output variable e(t) of system (1) tends exponentially to
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zero as t goes to infinity and the state variables (x(t),Ψ(t))
are bounded for any t ≥ 0, for any initial conditions
x(0) ∈ ℜn, wt(0) ∈ ℜr, wδ(0) ∈ ℜrδ , of the extended
system (1)-(3).
We assume the following hypotheses to hold:
(H1) The pair (A, b) is stabilizable, i.e.:
rank(A− λIn, b) < n implies Re (λ) < 0.
(H2) The pair (A, c) is detectable, i.e.:
rank

(
AT − λIn, c

T
)
< n implies Re (λ) < 0.

(H3) rank

(
A− λIn b
c 0

)
= n+1 for any eigenvalue λ of

the matrix R.
The conditions (H1)-(H3), were established in Francis and
Wonham (1976) to be necessary and sufficient for the
solution of the regulator problem arising when δ = 0,
R and r are known. In particular, by virtue of (H1)-
(H3) there exists a unique matrix Γ ∈ ℜn × ℜr and a
unique vector γ ∈ ℜr which solve the regulator equations
ΓR = AΓ+bγ+P and cΓ = q. The pair (Γ, γ) generates the
signals xr = Γwt and ur = γwt which are the references for
x and u respectively, since ẋr = Axr + bur and cxr = qwt.
The transformation x̃ = x− Γwt yields an error system{

˙̃x = Ax̃+ b (u− ur)
y = cx̃+ δ

(5)

with a scalar reference input ur = γwt which satisfies the
“matching condition” given by the reference exosystem
ẇt = Rwt and a scalar output disturbance δ(t) = qδwδ

generated by the disturbance exosystem ẇδ = Rδwδ.
(H4) The set of the eigenvalues of Rδ is disjoint with
respect the set of the eigenvalues of A.
Condition (H4), introduced in Serrani (2006), is shown in
Marino, Santosuosso and Tomei (2008) to be necessary
along with (H1) and (H2) for the solution of the stabiliza-
tion problem of the system (1) with a controller from the
disturbed output cx+ δ(t).
(H5) The unknown eigenvalues of Rδ belong to the set
Sδ = {±jω : κi ≤ ω ≤ κ̄i, i ∈ [1, N ]} where 0 ≤ κ1 <
κ̄1 < κ2 < . . . < κN < κ̄N ≤ ∞ are suitable known
numbers and the eigenvalues of R do not belong to Sδ.

In this paper we prove that hypotheses (H1)-(H5) are
sufficient for the solution of Problem 1.1.

2. REGULATION ALGORITHM

In this section we construct a dynamic controller that
drives regulation error e(t) in (1) exponentially to zero.
By virtue of (H5) the eigenvalue λ = 0 may belong either
to R or to Rδ. For ease of exposition we assume that
λ = 0 belongs to R. In this case let {0,±iω1, . . . ,±iωM}
and {±iω̄1, . . . ,±iω̄M̄} be the eigenvalues of R and Rδ

respectively, with 2M +1 , r, 2M̄ , rδ (M, M̄ are known
integers), ωh ∈ ℜ+, h ∈ [1,M ] , ωj ∈ ℜ+, j ∈

[
1, M̄

]
.

Notice that ur(t) and δ(t) may contain respectively only m
and m̄ harmonics of the exosystems, with 0 ≤ m ≤M, and
0 ≤ m̄ ≤ M̄ . If we assume (without loss of generality) that
the first harmonics ωh, h = 1, 2 . . . m and ω̄j , j = 1, 2 . . . m̄
of the exosystems appear in ur and δ respectively, by
setting θ , [θ1, θ2, . . . θm]T and θ̄ , [θ̄1, θ̄2, . . . θ̄m̄]T where
sm+θ1s

m−1+. . .+θm =
∏m

h=1(s+ω
2
h), and sm̄+θ̄1s

m̄−1+

. . .+ θ̄m̄ =
∏m̄

j=1(s+ ω̄2
j ), respectively, then ur(t) and δ(t)

can be expressed as the outputs of some reduced order

(unknown) exosystems with states w ∈ ℜ2m+1, w̄ ∈ ℜ2m̄,
defined as{

ẇ =
[
A2m+1 − (0, θ1, . . . , 0, θm, 0)TC2m+1

]
w,

ur = C2m+1w, w(0) ∈ ℜ2m+1 (6)

{
˙̄w =

[
A2m̄ − (0, θ̄1, . . . , 0, θ̄m̄)TC2m̄

]
w̄,

δ = C2m̄w̄, w̄(0) ∈ ℜ2m̄ (7)

where (as in the rest of the paper), given a positive integer
j, the “canonical” matrix Aj ∈ ℜj ×ℜj , and the “canoni-
cal” row vector Cj ∈ ℜj are

Aj =

[
0 Ij−1

0 0

]

j×j

, Cj = [ 1 0 · · · 0 ]
1×j

, j ∈ Z+ (8)

with Ij−1 denoting the identity matrix of order j − 1. Let
the rank of the observability matrix of the couple (A, c) be
v ≤ n; then there is a suitable known coordinate change[

xu

xo

]
= TOx̃,

xu ∈ ℜn−v

xo ∈ ℜv (9)

operating a Kalman decomposition of the system ˙̃x = Ax̃
with output cx̃ into the unobservable and observable parts
with vector states xu ∈ ℜn−v, xo ∈ ℜv, respectively. The
system (5) by virtue of (9), becomes

ẋu = Auxu +Auoxo + bu (u− ur) (10)

ẋo = [Av − aCv]xo + bo (u− ur) ; y = Cvxo + δ
(11)

where system (10) with state xu ∈ ℜn−v, known matrices
Auo ∈ ℜn−v × ℜv, Au ∈ ℜn−v × ℜn−v, (Au is Hurwitz
since by (H2) the pair (A, c) is detectable) known vector
bu ∈ ℜn−v is unobservable from the output y = Cvxo + δ

and system (11), (6), (7) with state
[
xT

o , w
T , w̄T

]T
∈ ℜv×

ℜ2m+1×ℜ2m̄ by virtue of (H2)-(H5) is observable from the
output y = Cvxo + δ. The row vectors Cv, Cr are defined
as in (8) with v, r, respectively, in place of j and a ∈ ℜv,
bo ∈ ℜv are known vectors. Consider the linear filter{

˙̄xo = [Av − fCv] x̄o + (f − a) y + bou,
ỹ = y − Cvx̄o

(12)

with state x̄o ∈ ℜv, inputs u ∈ ℜ, y ∈ ℜ, available output
ỹ = (y − Cvx̄o) ∈ ℜ, where a = [a1, a2, . . . av] , bo =

[b1, b2, . . . bv] are defined in (11) and f = [f1, f2 , . . . , fv]
T

with fi ∈ ℜ+, 1 ≤ i ≤ v are design parameters such that

pf (s) = sv + f1s
v−1 + ...+ fv−1s+ fv (13)

has all its roots with negative real part. By setting x̃o =
xo − x̄o, from (11), (12), we obtain the error dynamics{

˙̃xo = [Av − fCv] x̃o + (a− f) δ − bour

ỹ = Cvx̃o + δ = y − Cvx̄o.
(14)

Defining mT , m + m̄, vT , v + 2 (m+ m̄) + 1, and

ϑ = [ϑ1, ϑ2, . . . , ϑmT
]
T

so that smT + ϑ1s
mT −1 + . . . +

ϑmT
=

∏m
h=1

(
s+ ω2

h

) ∏m̄
j=1

(
s+ ω̄2

j

)
, the autonomous

system (14), (6), (7) (with dimension vT ) is observable
from the available output ỹ = Cvx̃o +δ by virtue of (H2)-
(H5); hence it is transformed into the observer canonical
form 




ζ̇ = AvT

ζ − f̄0 [mT ] ỹ −

mT∑

i=1

ϑif̄i [mT ] ỹ;

ỹ = CvT
ζ

(15)

with state ζ ∈ ℜvT , constant vectors f̄i [mT ] ∈ ℜvT ,
i ∈ [0,mT ] given by
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f̄0 [mT ] = [f1, ..., fv, 0, 0, 0, ..., 0, 0, 0]
T
,

f̄1 [mT ] = [0, 1, f1, ..., fv, 0, 0, ..., 0, 0]
T
,

...
...

f̄m [mT ] = [0, 0, 0, ..., 0, 1, f1, ..., fv, 0]T .

(16)

Let Om,m̄(θ, θ̄) be the observability matrix of system (14)
(6), (7) and ΘmT

(ϑ) be the observability matrix of system
(15); by hypotheses (H2)-(H5) they are both nonsingular.

The coordinate transformation from
[
x̃T

o , w
T , w̄T

]T
∈

ℜvT to ζ ∈ ℜvT is

ζ =
[
Θ−1

mT
(ϑ)Om,m̄(θ, θ̄)

] [
x̃T

o , w
T , w̄T

]T
(17)

where the matrix
[
Θ−1

mT
(ϑ)Om,m̄(θ, θ̄)

]
is well defined by

construction. Set d̄ [mT ] = [d̄1, . . . , d̄vT −1]
T ∈ ℜvT −1

where d̄i ∈ ℜ+, 1 ≤ i ≤ vT − 1, are positive real numbers
such that all the roots of pd(s) = svT −1 + d̄1s

vT −2 + · · ·+
d̄vT −1 have negative real part. Define as in Marino and
Tomei (1992) the filters ( ξ̄i ∈ ℜvT −1, µ̄i ∈ ℜ, 1 ≤ i ≤ mT )

˙̄ξi =
[
AvT −1 − d̄ [mT ]CvT −1

]
ξ̄i − [0, IvT −1] f̄i [mT ] ỹ;

µ̄i = CvT −1ξ̄i, 1 ≤ i ≤ mT .
(18)

According to Marino and Tomei (1992), the transforma-

tion ζ̄ = ζ −
[
0,

∑m+m̄
i=1

(
ξ̄iϑi

)T
]T

, mapping the state

vector ζ ∈ ℜvT into a new state vector ζ̄ ∈ ℜvT , transforms
system (15) into an “adaptive observer” form

˙̄ζ = AvT
ζ̄ − f̄0 [mT ] ỹ +

[
1

d̄ [mT ]

]
µ̄Tϑ,

ỹ = CvT
ζ̄

(19)

where µ̄ = [µ̄1, µ̄2, . . . µ̄mT
]
T

; defining the vector func-
tion zm,m̄ ∈ ℜv+1 as

zm,m̄(θ, θ̄, ξ̄1, . . . , ξ̄mT
, ζ̄) =

[0, Iv+1, 0]Adj
[
Om,m̄(θ, θ̄)

]
ΘmT

(ϑ)



ζ̄(t) +




0

m+m̄∑

i=1

ξ̄iϑi









(20)
the state xo ∈ ℜv of system (11) along with the reference
input ur = C2m+1w can be expressed as

(
xo

ur

)
=

(
x̄o

0

)
+
zm,m̄(θ, θ̄, ξ̄1 . . . , ξ̄mT

, ζ̄)

detOm,m̄(θ, θ̄)
. (21)

The equality above requires the inversion of a parameter
dependent mapping, so that if m and m̄ are unknown the
online estimation of these integers along with the vectors
θ, θ̄ is required; this is described in the following.

2.1 Identification of the adaptive observer form system.

In this subsection we describe an estimation strategy for
the state ζ̄ and the parameters ϑj 1 ≤ j ≤ mT of system
(19) in “adaptive observer” form which is a function of

the maximum number of excited sinusoids MT , M + M̄.
We follow the strategy in Marino and Santosuosso (2007),
pages 355, 356. First, three cascaded filters are introduced
to detect the number of frequencies that are excited. The

first filter with state η̄ = [η̄1, η̄2, . . . η̄2MT +2]
T
∈ ℜ2MT +2,

initial condition η̄(0) ∈ ℜ2MT +2, input ỹ(t) given in (14),

output ν = [ν1, ν2, . . . νMT +1]
T

is






˙̄ηj = η̄j+1, 1 ≤ j ≤ 2MT + 1,
˙̄η2MT +2 = −

∑2MT +2
j=1 ᾱ3−j+MT

η̄j + ỹ

ν = [η̄2MT +2, η̄2MT
, . . . , η̄4, η̄2]

T
(22)

where the design parameters ᾱi, 1 ≤ i ≤ 2MT + 2, are
such that the polynomial

pα(s) = s2MT +2 + ᾱ1s
2MT +1 + ᾱ2s

2MT ...+ ᾱ2MT +2 (23)

has all its roots with negative real part. The vector ν(t) ∈
ℜMT +1 is the input to the second filter{

Ω̇ = −c1Ω + c2νν
T , Ω(0) ≥ 0,

̺i = |det (Ωi)|
1/i

, 1 ≤ i ≤MT + 1
(24)

with state Ω ∈ ℜMT +1 × ℜMT +1, 1 ≤ i ≤ MT +
1, symmetric and positive semi-definite initial condition
Ω(0) ≥ 0, outputs ̺i(t), 1 ≤ i ≤MT + 1, where Ωi ∈ ℜi ×
ℜi denotes the matrix collecting the first i × i entries of
Ω and c1, c2 are positive design parameters. The outputs
̺i(t) of filter (24) are the inputs of the third filter with

state χ = (χ1, . . . , χMT
)
T
, where

χ̇j = − [σj (̺j) + ψ(χj)]χj + σ̃j (̺MT +1) , j ∈ [1,MT ]
(25)

in which χj(0) > 0; σj (̺j) and σ̃j (̺MT +1) with 1 ≤ j ≤
MT are suitable class K functions. The function ψ(χj)
depends on a design parameter χ0 ∈ ℜ+ and is defined
as ψ(χj) = 0 if χj ≤ χ0; ψ(χj) = 4 (χj − χ0)

2
/χ2

j if
χ0 ≤ χj ≤ 2χ0 and ψ(χj) = 1 if 2χ0 ≤ χj . Let c3 be
a positive design parameter; define the residuals:

i ∈ [1,MT ] :






βi = 1 if ̺i > c3χi,

βi =

(
̺i

c3χi

)2

if ̺i ≤ c3χi.
(26)

By the arguments in Marino and Santosuosso (2007) page
355, Lemma 3.1, it is shown that all the states of the filters
(22), (24), (25) and the residuals (26) are bounded, and
that limt→∞ βi(t) = 1 exponentially for 1 ≤ i ≤ mT , while
limt→∞ βi(t) = 0 exponentially for mT + 1 ≤ i ≤MT .
Next we design an adaptive observer of system (19) that
estimates the exosystem’s parameters ϑj 1 ≤ j ≤ mT ,
according to the guidelines in Marino and Santosuosso
(2007). To this purpose we define the diagonal matrix
Ū(t) ∈ ℜv+2MT × ℜv+2MT with entries Ūi,i(t) = 1 for

1 ≤ i ≤ v and Ūi,i(t) = βk(t) , with k =

⌈
i− v

2

⌉

for v + 1 ≤ i ≤ v + 2MT . Consider the vectors β̄(t) =[
β̄0(t), . . . , β̄MT

(t)
]

and d̄β(t) defined from (26) as
{
β̄0(t) = (1 − β1(t)); β̄MT

(t) = βMT
(t)

β̄i(t) = βi(t)(1 − βi+1(t)) for 1 ≤ i ≤MT − 1
(27)

d̄β(t) = β̄0(t)

(
d̄ [0]
0

)
+ . . .+ β̄MT

(t)
(
d̄ [MT ]

)
(28)

where in (28) the entries of the constant vectors d̄ [i] ∈
ℜv+2i, 0 ≤ i ≤ MT are design parameters such that
the polynomials sv+2i +

[
sv+2i−1, sv+2i−2, . . . , 1

]
d̄ [i] are

Hurwitz. The matrix Ū(t) and the vector d̄β(t) are tools
to construct a generalization of the filters (18) that are
adaptive with respect to the unknown number mT : they
are defined as




˙̂
ξi = Ū

{(
Av+2MT

− d̄β(t)Cv+2MT

)
ξ̂i

−
(
[0, Iv+2MT

] f̄i [MT ]
)
ỹ
}
− c4

(
Iv+2MT

− Ū
)
ξ̂i;

µ̂i = βiCv+2MT
ξ̂i; 1 ≤ i ≤MT

(29)
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with state variables ξ̂i ∈ ℜv+2MT , 1 ≤ i ≤ MT , arbitrary

initial conditions ξ̂i(0) ∈ ℜv+2MT , where c4 ∈ ℜ+ is a
positive design parameter and f̄i [MT ] , 1 ≤ i ≤ MT are
defined according to (16) with MT in place of mT . We
consider now an observer for system (19) which is adaptive
with respect to the unknown number mT of exosystem’s
frequencies






˙̂
ζ = U

[
Av+2MT +1ζ̂ + k̄

(
ỹ − ζ̂1

)
− f̄0 [MT ] ỹ

+dβ

∑MT

i=1µ̂iθ̂i

]
− c5 {Iv+2MT +1 − U} ζ̂;

˙̂
ϑi = γiµ̂i

(
ỹ − ζ̂1

)
− γ̄i (1 − βi) ϑ̂i; 1 ≤ i ≤MT

(30)

with state ζ̂ ∈ ℜv+2MT +1, ϑ̂ =
[
ϑ̂1, ϑ̂2, . . . , ϑ̂MT

]T

∈ ℜMT ,

arbitrary initial conditions ζ̂(0) ∈ ℜv+2MT +1, ϑ̂(0) ∈

ℜMT , in which ζ̂1 = Cv+2MT +1ζ̂ and f̄0 [MT ] is defined
according to (16) with MT in place of mT . In system (30)

U(t) =

[
1 0
0 Ū

]
, dβ =

(
1
d̄β

)
, the vector k̄(t) ∈ ℜv+2MT +1

defined as k̄(t) =
(
Av+2MT +1 + λ̄Iv+2MT +1

) [
1, d̄T

β (t)
]T

with λ̄ ∈ ℜ+ any positive design parameter and c5 ∈ ℜ+,
γi, γ̄i ∈ ℜ+, with 1 ≤ i ≤ MT , are any positive design
parameters. Let j be an integer such that j ∈ [0,MT ];
consider the subvectors

ξ̂
[j]
i = [Iv+2j , 0] ξ̂i, ζ̂

[j] = [Iv+2j+1, 0] ζ̂, ϑ̂[j] = [Ij , 0] ϑ̂.
(31)

By following the arguments in Marino and Santosuosso
(2007), page 356, Lemma 3.2, it is shown that the states
of the systems (29), (30) are bounded and the partition
in (31) obtained by setting j = mT complies with the
following properties.

Claim 1. (i) The vectors ξ̂i with 1 ≤ i ≤MT , ζ̂ and ϑ̂ are

bounded; (ii) The vectors (ξ̄i − ξ̂
[mT ]
i ), with 1 ≤ i ≤ mT ,

(ζ̄ − ζ̂ [mT ]), (ϑ − ϑ̂[mT ]), tend exponentially to zero; (iii)

the last 2 (MT −mT ) entries of the vectors ξ̂i with 1 ≤

i ≤MT , the last 2 (MT −mT ) entries of the vector ζ̂, the

last MT −mT entries of the vector ϑ̂ tend exponentially
to zero.

2.2 Identification of the exosystems structure

In this section we describe an algorithm to obtain from ϑ̂(t)
along with the residuals β(t) suitable estimates of θ ∈ ℜm

and θ̄ ∈ ℜm̄ along with their dimensions m and m̄ respec-

tively. To this purpose, given ϑ̂ =
[
ϑ̂1, ϑ̂2, . . . , ϑ̂MT

]T

in

(30), consider the polynomial

sMT +ϑ̂1(t)s
MT −1+. . .+ϑ̂MT

(t) =
∏MT

j=1
(s− ̺j(t)) (32)

with MT complex roots ̺j(t) ∈ C 1 ≤ j ≤MT , and define

the vector ω̂(t) = [ω̂1, ω̂2, . . . , ω̂MT
]
T
∈ ℜMT ,

ω̂ , sort
[√

‖̺1(t)‖, . . . ,
√

‖̺MT
(t)‖

]
, (33)

obtained by sorting in descending magnitude order the
square roots of the euclidean norms of the complex num-
bers ̺j(t) ∈ C, 1 ≤ j ≤ M. In order to determine if
each angular frequency estimate ω̂j(t), 1 ≤ j ≤ mT , is

associated to the input reference ur(t) or to the output
disturbance δ(t), consider the piece-wise continuous time
functions ℓ1(t), . . . ℓMT

(t), ℓ̄1(t), . . . ℓ̄MT
(t), defined as

{
ℓh(t) = βh(t) if ω̂h(t) /∈ Sδ

ℓh(t) = 0 if ω̂h(t) ∈ Sδ
1 ≤ h ≤MT (34)

{
ℓ̄j(t) = βj(t) if ω̂j(t) ∈ Sδ

ℓ̄j(t) = 0 if ω̂j(t) /∈ Sδ
1 ≤ j ≤MT (35)

where Sδ is the known subset of ℜ+ to which the angular
frequencies δ(t) belong, while β1, β2, . . . , βMT

are defined
in (26). Define iteratively the vectors Vi ∈ ℜMT , V̄i ∈ ℜMT ,
with i = MT , . . . , 1, 0 as follows:

VMT
= V̄MT

= [0, 0, . . . , 0, 1]
T

;
Vi−1(t) =

[
AMT

+ ω̂2
i (t)ℓi(t)IMT

]
Vi(t), MT ≥ i ≥ 1;

V̄i−1(t) =
[
AMT

+ ω̂2
i (t)ℓ̄i(t)IMT

]
V̄i(t), MT ≥ i ≥ 1.

It can be shown that the first m entries of V0(t) tend to
θ and the first m̄ entries of V̄0(t) tend to θ̄. Continuous
estimates of these constant parameter vectors are given

by the filters with states θ̂ ∈ ℜM , ˆ̄θ ∈ ℜM̄ respectively,

˙̂
θ = −c6

(
θ̂ − [IM , 0]V0(t)

)
,

˙̄̂
θ = −c6

(
ˆ̄θ − [IM̄ , 0] V̄0(t)

)
,

(36)

with suitable initial conditions θ̂(0) ∈ ℜM , ˆ̄θ(0) ∈ ℜM̄ ,
where c6 is a constant design parameter. The functions∑MT

h=1ℓh(t) and
∑MT

h=1ℓ̄h(t) can be shown to define suitable
estimates of the positive numbers m and m̄. Continuous
estimates of these integers are given by the filters with
states m̂ ∈ ℜ and ˆ̄m ∈ ℜ defined as





˙̂m = −c6[m̂(t) −
MT∑
h=1

ℓh(t)]

˙̄̂m = −c6[ ˆ̄m(t) −
MT∑
h=1

ℓ̄h(t)]

(37)

with suitable initial conditions m̂(0) ∈ ℜ and ˆ̄m(0) ∈ ℜ,
where c6 is the positive design parameter in (36). Let h,
j be integers such that h ∈ [0,MT ] , j ∈ [0,MT ] and

consider a partition of the vectors θ̂(t) ∈ ℜM , ˆ̄θ ∈ ℜM̄

into subvectors whose dimension depends on the integers
h, j as follows:{

θ̂[h] = [Ih, 0] θ̂, θ̂[h] ∈ ℜh, h ∈ [0,M ]

ˆ̄θ
[j]

= [Ij , 0] ˆ̄θ, ˆ̄θ
[j]

∈ ℜj , j ∈
[
0, M̄

]
.
. (38)

The vector functions in (36) and (37) defined above can
be shown to be bounded, and by construction (see Marino
and Tomei (1992)) comply with the following property:

Claim 2. (i): The functions m̂(t), ˆ̄m(t), θ̂(t), ˆ̄θ(t) in
(37) and (38) are bounded. (ii): limt→∞ m̂(t) = m,

limt→∞ ˆ̄m(t) = m̄, limt→∞ θ̂[m](t) = θ and

limt→∞
ˆ̄θ
[m̄]

(t) = θ̄. (iii): the last MT −m entries of θ̂(t)

and the last MT − m̄ entries of ˆ̄θ(t) tend exponentially to
zero.

2.3 Compensator design

In this section we describe the control law constructed
after the estimation of the state ζ̄ ∈ ℜvT of the system (19)
and the unknown parameter vector ϑ ∈ ℜmT along with

the vectors θ ∈ ℜm, θ̄ ∈ ℜm̄ via the estimates θ̂(t) ∈ ℜM ,
ˆ̄θ(t) ∈ ℜM̄ . The crucial step in the controller design is
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obtaining estimates of the state xo ∈ ℜv of system (11)
and of the reference input ur given by (21). We follow the
adaptive saturation approach in Marino and Santosuosso
(2007) to the problem in this note. In particular, let
sC(z) : ℜ → ℜ be the continuous and piece-wise linear
even scalar function defined as: sC(z) = 1 for |z| ≤ 1/4
and sC(z) = 0 for |z| ≥ 3/4; define the (M + 1) functions
κh(t) = sC(h − m̂(t)) for 0 ≤ h ≤ M and the (M̄ + 1)
functions κ̄j(t) = sC(j − ˆ̄m(t)) for 0 ≤ j ≤ M̄. Consider
the M + M̄ +2 scalar filters with states ph(t), 0 ≤ h ≤M,
and p̄j(t), 0 ≤ j ≤ M̄, defined as

ṗh = c7[−c8ph + |1 − κh| +
2
π arctan(c9

∣∣∣ỹ − ζ̂1

∣∣∣)],
˙̄pj = c7[−c8p̄j + |1 − κ̄j | +

2
π arctan(c9

∣∣∣ỹ − ζ̂1

∣∣∣)],
(39)

driven by the inputs (1 − κh(t)), (1 − κ̄j(t)) , 0 ≤ h ≤M,

0 ≤ j ≤ M̄, along with the estimation error
∣∣∣ỹ − ζ̂1

∣∣∣ ,
where c7, c8, and c9 are positive design parameters. It can
be shown that if ph(0) > 0, p̄j(0) > 0 then all ph(t), p̄j(t)
with h 6= m, j 6= m̄ are greater than a positive lower
bound, while pm(t) and p̄m̄(t) both tend exponentially to
zero as t goes to infinity. The filters in (39) are tools to
estimate (xo,ur) given by (21) via the adaptive saturation
algorithm (see Marino and Santosuosso (2007))





Υhj =






1

det Ôh,j

if
∣∣∣det Ôh,j

∣∣∣ > (ph + p̄j) ,

det Ôh,j

(ph + p̄j)
2 if

∣∣∣det Ôh,j

∣∣∣ ≤ (ph + p̄j) ,

(
x̂o

ûr

)
=

(
x̄o

0

)
+

M∑

h=0

M̄∑

j=0

κhκ̄j (Υhj ẑh,j) .

(40)

where ẑh,j = zh,j(θ̂
[h], ˆ̄θ

[j]
, ξ̂

[h+j]
1 , . . . , ξ̂

[h+j]
mT

, ζ̂ [h+j]) and

Ôh,j = Oh,j(θ̂
[h], ˆ̄θ

[j]
) are obtained from (17) and (20)

with h and j in place of m, m̄ respectively, and θ̂[h], ˆ̄θ
[j]
,

ξ̂
[h+j]
1 , . . . , ξ̂

[h+j]
mT

, ζ̂ [h+j] are defined via (31), (38), in
place of θ, θ̄, ξ̄1, . . . , ξ̄m+m̄, ζ̄. The task of the positive
signals ph(t), p̄j(t) is to avoid the singularities in which

det Ôh,j(t) = 0, while the functions κh, κ̄j select the
correct disturbance estimate of (x0, ur) given by (21)
with indices (m, m̄) among all combinations Υhj ẑh,j with
h ∈ [0,M ] , j ∈

[
0, M̄

]
. Since by hypothesis (H1) the

system (1) is stabilizable and by virtue of (H2) the matrix
Au is Hurwitz, then the couple (Ao, bo) is stabilizable and
there exists a suitable row vector kc ∈ ℜv such that the
matrix Ao + bokc is Hurwitz. The overall compensating
control law is

u = kcx̂o + ûr (41)

Previous arguments lead to the following result.

Proposition 2.1. Consider system (1)-(3). If assumptions
(H1)-(H5) are satisfied, then Problem 1.1 is solvable any
initial condition x(0) ∈ ℜn, wt(0) ∈ ℜr, wδ(0) ∈ ℜrδ

via the control law (40)-(41) with dynamics (12), (22),
(24), (25), (29), (30), (36), (37), (39), for any initial
condition of the dynamic compensator such that Ω(0) ≥ 0,
χi(0) > 0, i ∈

[
1,M + M̄

]
, ph(0) > 0, p̄j(0) > 0,

h ∈ [0,M ] , j ∈
[
0, M̄

]
, for any admissible choice of the

design parameters, which are: any positive real numbers
f1, f2,, . . . fv, and ᾱ1, ᾱ2, . . . ᾱ2(M+M̄)+2, such that the

polynomials pf (s) in (13) and pα(s) in (23) respectively,
are Hurwitz; any vectors d̄ [i] ∈ ℜv+2i, 0 ≤ i ≤M+M̄ such
that the polynomials sv+2i+

[
sv+2i−1, sv+2i−2, . . . , 1

]
d̄ [i]

are Hurwitz; any class K functions σj (̺j) and σ̃j (̺MT +1)
with 1 ≤ j ≤M + M̄ ; any positive real numbers cj ∈ ℜ+,
with 1 ≤ j ≤ 9, γi ∈ ℜ+, γ̄i ∈ ℜ+, 1 ≤ i ≤ M + M̄ ,
χ0 ∈ ℜ+, λ̄ ∈ ℜ+, and any row vector kc ∈ ℜv such that
the matrix (Ao + bokc) is Hurwitz.

Proof. It is a consequence of the Claims 1, 2 along with
the arguments in Marino and Santosuosso (2007), Marino,
Santosuosso and Tomei (2008).

3. AN EXAMPLE

Consider the system



ẋ =

[
−3 1
1 2

]
x+

[
−1
2

]
(u− ur)

e = [ 1 0 ]x; y = e+ δ,
(42)

with state x = [x1, x2]
T

∈ ℜ2, control input u ∈ ℜ.
System (42) has non minimum phase and unstable un-
forced dynamics, that are stabilized via the state feedback
control law u = kcx with kc = [−1, 0] . The output
y = x1 + δ is available for measurement, where ur(t) is an
input reference and δ(t) is a disturbance. The regulation
task is to drive the state x1 to zero. We consider two
operating conditions, in particular for 0 < t ≤ 100 we
set ur(t) = −1, δ(t) = sin (1.5t) and for 100 < t ≤ 200
we set ur(t) = sin (0.5t) , δ(t) = 1

2 (sin (t) + sin (2t)).
We assume that Sδ is the set of all angular frequencies
ω ≥ 0.7. We construct a controller to regulate the output
trajectory x1(t) to zero via the algorithm proposed in this
note, by setting M = 1, M̄ = 2, so that the extended
system (1)-(3) has order 9. We simulate the algorithm for
0 < t ≤ 200 choosing the numerical values of the constant
design parameters as follows: in system (12) we choose
f = [5, 6] , in system (22) we set the parameters ᾱ1, ᾱ2,
. . . , ᾱ8, so that pα(s) = s8 + ᾱ1s

5 + ... + ᾱ7s + ᾱ8 is
the polynomial whose roots coincide all with the number
−3/2. In system (24) we let c1 = 1, c2 = 104, in system
(25) we set σ1 = 0.5 arctan(0.5̺1), σ2 = 0.5 arctan(5̺2),
σ2 = 0.5 arctan(200̺3), σ̃1 = σ̃2 = σ̃3 = 50 arctan(100̺3),
χ0 = 106, in expression (26) we set c3 = 10−4, in (28) we
set d̄ [0] , d̄ [1] , d̄ [2] , d̄ [3] so that the roots of the polyno-
mials s2+2h +

[
s1+2h, s2h, . . . , 1

]
d̄ [h] with h = 0, 1, 2, 3

coincide with the number −3/2 and in system (29) we set
c4 = 1. In system (30) we set c5 = 1, λ̄ = 10, γ1 = 105;
γ2 = 15 · 105, γ3 = 2 · 105; γ̄1 = γ̄2 = γ̄3 = 500; in system
(36) and (37) we set c6 = 1, in system (39) we set c7 = 1,
c8 = 50, c9 = 103. The compensator dynamics have been
simulated starting from zero initial conditions except for
χi(0) = 106, i ∈ [1, 2, 3] and pj(0) = p̄h(0) = 50, j ∈ [0, 1]
and h ∈ [0, 2] .
The simulation results are reported in Figures 1-3. In Fig-
ure 1 the input ur(t) along with disturbance δ(t) are plot-

ted. In Figure 2 the time histories of the estimates θ̂1(t),
ˆ̄θ1(t),

ˆ̄θ2(t) of the parameters θ1, θ̄1, θ̄2, are described. For
0 < t ≤ 100 in the reference exosystem (6) there aren’t
unknown parameters while in the disturbance exosystem

(7) we have θ̄1 = 2.25, so that θ̂1(t) → 0, ˆ̄θ1(t) → 2.25 and
ˆ̄θ2(t) → 0. For 100 < t ≤ 200 the exosystem (6) has the
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Fig. 1. In (A): the reference input ur(t); in (B): the
disturbance δ(t).
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Fig. 2. In (A): the estimate θ̂1(t); in (B): the estimate ˆ̄θ1(t),

in (C) the estimate ˆ̄θ2(t).
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Fig. 3. In (A): the control input u(t); in (B): the system
undisturbed output e(t) = x1(t).

unknown parameter θ1 = 0.25, while in the exosystem (7)
there are the parameters θ̄1 = 5, θ̄2 = 4; as a consequence

θ̂1(t) → 0.25, ˆ̄θ1(t) → 5, ˆ̄θ2(t) → 4. Figure 3 reports the
control input u(t) that drives exponentially to zero the
regulation error e(t) in all three operating conditions.
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