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Abstract: The paper presents a novel approach to the decentralized task assignment for
multiple cooperative unmanned air systems, in a multiple target-multiple task environment.
The vehicles (or agents) may have complete or partial a priori information about the targets
that populate the scenario. Each vehicle autonomously computes the cost for servicing each task
available at each target using a path planning algorithm, taking into account obstacles, pop-up
threats, and weights the total path cost including potential risk areas. Vehicles assign an initial
ranking to each task, and then exchange their ranking information with the others. Each agent
then updates the ranking of its tasks using a non linear dynamic programming algorithm that
is proven to be stable and to converge to an equilibrium point. The ranking dynamics is initially
formulated as a continuous time system, and then time-discretized depending on available data,
and transmission rate among the network. Stability of the network and independence of steady
state values from the data rate are proved analytically. Current studies are directed towards
the effect of communication delays. The validity and performance of the proposed method are
verified via extensive numerical simulation, and compared with alternate techniques such as an
optimal MILP based integrated task assignment and path planning solver.

Keywords: Co-operative control; Decentralized control; Dynamic systems; Discrete systems;
Tasks.

NOTATION

n number of agents/vehicles
m number of tasks
wi,j generic weight
ci,j simple task cost
bi,j simple task benefit
Ci,j task-to-task benefit
Bi,j total task benefit
T sampling time
1 ones matrix

1. INTRODUCTION

Cooperative control among a team of agent is a complex
problem of optimization involving the path-planning and
the task-assignment issues. While the path-planning can
be efficiently solved by many existing procedures (Hersh-
berger and Suri [1999], Huang and Chung [2004], Kall-
mann et al. [2003]), the task assignment is a much harder
problem and finding the optimal solution is known to
be NP-hard; for this reason many alternative approaches
have been proposed in literature. An optimal procedure
based on Mixed Integer Linear Programming (MILP) have
been employed to solve the path planning and the task
assignment problems at the same time (How et al. [2001],

How et al. [2004]). This method has the advantage of
producing the optimal solution w.r.t. a specific cost index
that can be modified depending on the objectives of the
mission. On the other hand, the MILP approaches to the
cooperative control problem reveal too much computa-
tionally expensive even in receding-horizon realizations.
Moreover the MILP approach is intrisically centralized and
not dynamic. These problems prevent the use of MILP for
real-time implementations.

Another common approach is to divide the path planning
and the task assignment problems. This approach allows
to focus on the task assignment assuming that the path
planning is solved at an earlier step. The present work
follows the latter approach focusing on the cooperative
task assignment. Many procedures are proposed in lit-
erature, the majority take as an input the cost of each
task to be performed and then try to assign the vehicles
while obtaining the smallest possible total cost. A simple
task-assignment procedure is based on the Hungarian Al-
gorithm (Munkres [1957]) that minimizes the total sum of
the costs of the assigned tasks. From a control point of
view this procedure has the drawback of being centralized
and not dynamic and hence it is not applicable in real-
time implementations. Another task-assignment procedure
found in literature is based on Auctioning (Bertsekas and
Castanon [1993], Ahmed et al. [2005]). Following the Auc-
tioning approach, each agent can act as the auctioneer
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for a given task while the other agents act as bidders
following a different dynamics. The price of a given task is
increases and, after some steps, the auctioneer announces
the winners of the auction. Auctioning has the advantage
of being a dynamic procedure but the decentralization
is not full because the auctioneer act as a central node
for the rest of the team. From a computational point of
view the agents must perform both the auctioneer and the
bidder policy at the same time, because there can be many
simultaneous auctions.

In the present work a novel approach to decentralized task-
assignment is proposed and it is based on a dynamic task
ranking (DTR) procedure. The remaining of the paper is
organized as follows: in section §2 the generale problem
is defined; then in section §3 the dynamic task ranking is
presented together with many properties. In section §4 the
discrete version of the procedure and the implementation
issues are presented. Finally in §5 some examples concludes
the paper.

2. PROBLEM DEFINITION

The problem addressed is the task assignment among a
group of autonomous agents. It is assumed that each agent
is capable of calculating the cost ck it experiences to
accomplish any given task k. If an agent is not capable
of performing a particular task, then the associated cost
is set to infinity. In this work benefits are used instead of
costs. Benefits bk are defined as follows:

bk =
1

ck

; k = 1, 2, . . . , n (1)

Since the costs ck are non-negative values, then the bene-
fits are non-negative as well. In the remainder it is assumed
that bi,j is the benefit that the ith agent has to accomplish
the jth task, following (1). Definition (1) takes care of the
agent-task costs only, neglecting the task-task costs. This
is a crucial point since, as it will be seen later, using a
simple control architecture, all the agents can have a more
larger view of the entire scenario. In order to consider the
task-task costs the total benefit Bi,j of a given task j for
a given agent i is defined as follows:

Bi,j = bi,j +
m

∑

t=1,t6=j

Cj,t (2)

where Cj,t is the benefit that a generic agent has to
accomplish the tth task after the completion of the jth

task, defined in analogy with (1). The benefit of a task then
depends not only on the single task itself, but also on the
other tasks configuration, that is the benefit of servicing
the other tasks after the completion of the given task. In
this view, if many tasks are near (that is, the relative task-
task costs are low) it means that if an agent accomplished
one of those task, then it will be favored to accomplish the
others.

3. ASSIGNMENT PROCEDURE VIA DYNAMIC
RANKING

In this subsection the decision dynamics of the of the
agents are defined. Each dynamic is fully decentralized and

it is performed by a single agent. It is assumed that the
total benefits Bi,j are positive constant values. Let wi,j

be the generic weight that task j has on the agent i. The
weights of each agent must verify the following relations:

0 < wi,j ≤ 1 (3)
m

∑

j=1

wi,j ≤ 1 (4)

The entire set of weights Wv of an agent v is defined as
follows:

Wv = {wi,j | i = v, j = 1 . . .m} (5)

The decision dynamics of each agent are conceptually
divided into two parts: the first can be called selfish while
the second can be named cooperative. The former is a linear
system in the weights variables:

ẇS
v,t = (1 −

m
∑

j=1

wv,j)Bv,t (6)

The latter is a nonlinear system depending on the weights
and benefits values of the other agents:

ẇC
v,t = −λv





n
∑

i=1,i 6=v

Bi,twi,t



 wv,t (7)

Adding (6) and (7), yields the resulting weight derivative:

ẇv,t =



1 −
m

∑

j=1

wv,j



 Bv,t − λv





n
∑

i=1,i 6=v

Bi,twi,t



wv,t(8)

3.1 Well Posedness

Considering all the weights of all the agents the total
dynamics can be written as follows:

Ẇ = f(W ) (9)

where:

W = {wi,j | i = 1 . . . n; j = 1 . . .m} (10)

The dynamics expressed in (9) is a nonlinear differential
equation and, given some initial values, the standard
Cauchy problem is obtained:

{

Ẇ = f(W )
W (t0) = V0

(11)

where:






















f : Ω → ℜnm

W,V0 ∈ Ω

Ω = {x ∈ ℜnm | xv,t > 0,
m

∑

j=1

xv,t ≤ 1,

∀v = 1 . . . n, t = 1 . . .m}

(12)

Definition 1. The problem given by (11) and (12) is said
to be well posed if the solution exists and it is unique.

In the remaining of this section the well-posedness of the
problem is analyzed. To this end we state the following
theorem:

Theorem 2. The problem defined in (11) together with
(12) is well posed.
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Proof Let fv,t = ẇv,t be the generic weight derivative,
then the generic entry of the Jacobian matrix is given by
the following relations:

∂fv,t

∂wi,j

=











−Bi,t if i = v, j 6= t
−Bi,t − λvsv,t if i = v, j = t
−λvwv,tBi,t if i 6= v
0 otherwise

(13)

where:

sv,t =
n

∑

i=1,i 6=v

Bi,twi,t (14)

From (13) and since the Bi,j , wi,j and λv are bounded,
then the Jacobian matrix has bounded norm. This is a
sufficient condition (together with the continuity of f(W ))
to the Cauchy-Lipschitz theorem to hold, and then for any
given initial point V0 the solution of (11) exists and it is
unique. As a consequence, the stated problem is well-posed.

3.2 Stability

In this subsection the stability properties of the dynamic
ranking are presented.

Proposition 3. Given an initial condition V0 ∈ Ω and
V0 /∈ ∂Ω, then the time evolution of the state variables
is fully inside Ω.

Proof The proof of the previous proposition is made
for exhaustion. Assume that there exist a time t such
that W

(

t
)

/∈ Ω. Since the nonlinear system (15) does
not present discontinuities, and since the initial values are
strictly inside Ω, then there exist a time tC such that
tC < t and W (tC) ∈ ∂Ω. In this case, two different
situations can be verified:

• Any of the state variables wv,t = 0. In this case the
nonlinear part of the dynamics is multiplied by zero
and hence ẇv,t is non-negative.

• The sum
∑m

j=1
wv,j is equal to one. In this case, the

state variables derivatives of vehicle v are affected by
the cooperative part only, and hence ẇv,j ≤ 0 for all
j

The previous two conditions mean that if W (tC) ∈ ∂Ω

then Ẇ has a direction which is inside Ω thus demonstrat-
ing the proposition.

3.3 Equilibrium Point

Consider an equilibrium point W̄ of (11), which is found
by solving the following equation:

Ẇ = f(W̄ ) = 0 (15)

denote with W̄ the solution of (15) and assume that
W̄ ∈ Ω. From the previous subsection it follows that W̄ is
at least marginally stable. At the present time, asymptotic
stability of the resulting dynamics is not proven though
simulations have shown this desirable property in all the
cases. In addition the equilibrium point of the simulations
seems to be the only attractor point in the domain Ω; this
nice property has been found by solving nonlinear system
(15): many initial guesses of the solving procedure have

been chosen randomly in the domain Ω and in all the cases
the convergence point has been the same. Moreover this
point is the equilibrium point of the dynamic simulation
of (9).

3.4 Assignment Properties

Based on the considerations in §3.1 and §3.2, we can
state that the weights dynamics evolves into the domain
Ω for each agent and then each wv,t is surely into the
interval (0, 1]. As a consequence of this, it is possible to
establish a ranking among the weights of each agent. The
largest weight of an agent represents its best-task. Once
the full dynamic has converged, the resulting assignment
is identified by the largest weight of each agent. It is worth
noticing that, contrary to other existing task assignment
procedures (such as the Auctioning, (Ahmed et al. [2005])
for instance), there is not a master agent and the team
self-organizes in order to achieve a correct, and hopefully
optimal, assignment. At present time, simulations have
shown that the final weights configuration is such that
each agent has only one best target, that is, the maximum
weight value is assumed by only one variable.

4. IMPLEMENTATION ISSUES

In this section the physical realization of the dynamic
ranking is analyzed. The first step is to obtain an ap-
propriate discrete dynamics deriving from (8) considering
the intrinsic system delays due to the sampling time T .
Then the discrete dynamics properties are studied in order
to obtain relationship between the continuous and the
discrete system.

4.1 Dynamics Discretization

The main property of (8) is the separation between the
selfish and the cooperative part that can be viewed respec-
tively as internal and external dynamics (with respect to
a single agent). The internal dynamics evolves with the
internal variables only, while the other variables affects
the cooperative part only. This is a very useful property
because, in the view of a real-time implementation, during
the intersampling time the extern variables (14) remain
constant. The realization of (8) during the intersampling
time then becomes:

ẇv(t) = Ac
vwv(t) + Bc

v (16)

where:

wv(t) = [ wv,1 wv,2 . . . wv,m ]
T

(17)

Ac
v = −diag( Bv,1 Bv,2 . . . Bv,m )1

−λvdiag( sv,1 sv,2 . . . sv,m )
(18)

Bc
v = [ Bv,1 Bv,2 . . . Bv,m ]

T
(19)

Bc is a constant vector and the resulting system (16) is
then linear and autonomous. Therefore, in order to obtain
the correct weights values after a sampling time, exact
discretization can be employed obtaining:

wv(k + 1) = Ad
vwv(k) + Bd

v (20)

with:

Ad
v = eAc

v
T (21)
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Bd
v =

T
∫

0

(

eAc

v
T Bc

v

)

dt = (Ac
v)−1

(

eAc

v
T − I

)

Bc
v (22)

The closed form of eAc

v
T is not known, it can however

be evaluated with very high precision using a robust
numerical procedure (see (Moler and Loan [2003]) for
a detailed treatment). Since the discrete dynamics is
obtained by the exact discretization of the continuous time
dynamics then the stability properties presented in §3.2
hold for the discrete system as well.

4.2 Real-Time Issues

In real-time applications each agent may have a different
sample time and, in the general case, there is not synchro-
nization between the agents. In this work it is assumed for
simplicity that each agent has a fixed sample time T and
that all the agents are synchronized. This last hypothesis
is reasonable since, in real applications, the vehicles can
be synchronized by using the GPS clock. The previous
assumptions allow to build the complete weights dynamics
by concatenating (21) and (22) for all the agents. The
complete discrete system then becomes:

w =









w1

w2

...
wn









(23)

Ad = diag
(

Ad
1
, Ad

2
, . . . Ad

n

)

(24)

Bd =











Bd
1

Bd
2

...
Bd

n











(25)

w(k + 1) = Ad(w(k))w(k) + Bd (26)

The system (26) is pseudo-linear since the matrix Ad

depends on the values of w(k). The main property of
(26) is that it directly deals with the common real-time
problems such as computation time, data send and receive,
since the selected sampling time T can be chosen such
that, during the intersampling period each vehicle is able
to perform the requested calculus following (20) then
send the resulting values to the other agents, and finally
receive the data from the other agents. From §4.1 it is
clear that the sample time has no effect on the stability
properties thus a great advantage of the dynamic ranking
is its direct applicability in real-time situations even using
large sampling times. Moreover, though not proven yet,
simulations have shown that using the discrete dynamics
(26) the steady values of the weights are the same of those
obtained from (16). Numerical simulations have also shown
that the steady values of the weights converge to a locally
stable equilibrium point. In fact, let w̄ be the solution of
the following nonlinear system:

w̄ = Ad(w̄)w̄ + Bd (27)

then the resulting matrix Ad(w̄) is such that the greatest
eigenvalue is completely inside the unit circle, thus yielding
the local asymptotic stability. In the remaining of this

section, many consequences of the proposed approach are
presented, focusing on the scenario dynamism and the
hardware limitations.

4.3 Scenario Dynamism

In section §3 the values of the benefits Bi,j are assumed
to be constant. However, since the benefits depend on
the scenario configuration, the values of Bi,j may change
during the mission. In order to correctly deal with the
benefits variation rate it is necessary that the weights
evolution reach the steady values before the benefits can
change. In this section an estimate of the maximum
admissible benefits variation rate is presented.

From section §4.2 the steady state of the discrete system
w̄ equals the steady state of the continuous system, then
a linearization of the complete system can be employed
in the neighborhood of w̄. The resulting linear system
has a time constant τ which is identified by the slowest
eigenvalue δSL as follows:

τ =
1

δSL

(28)

Then, in the neighborhood of w̄ an estimate of the settling
time TS of the entire system is given by the following
relation:

TS = 3τ (29)

In order to let the weights reach their steady state the
benefits must remain unchanged for a time greater than
TS . Since the weights evolve in a discrete-time system,
then the benefits update can be made after the lowest
integer multiple of T that exceeds TS . If the updated
values of the benefits are near to the previous ones then
the linearization is in its range of validity and hence a
quantitative maximum benefits rate can be estimated from
(29).

4.4 Maximum Number of Vehicles and Tasks

In section §4 the main properties of the discrete version
of the dynamic ranking are presented neglecting the real
vehicles capabilities. In this subsection the hardware lim-
itations due to the intra-team communications are con-
sidered. From 4.2 it follows that the sample time T has
no effects on the stability properties of the global proce-
dure. However the value of T affects the transient of the
dynamics before steady state is reached. Simulations have
shown that using very large sampling times (T ≥ 50s) the
resulting behaviour, though still simply stable, presents
steady oscillations about the equilibrium point. However,
using more realistic sampling times (T ≤ 10s) the dynamic
becomes asymptotically stable to the equilibrium point.

Another interesting effect of the sampling time is its
influence on the maximum number allowed of agents
and tasks in the scenario. Let us consider a standard
communication rate of 9600 bit/s (baudrate, BR = 9600),
and suppose that the data to be transmitted among the
vehicles are composed by doubles (7). Each double is
composed by 8 bytes, moreover the transmission of each
double must be preceded and followed by a bit. For this
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reason, the maximum number of doubles that can be
transmitted is given by the following relation:

DR =
BR

10 × 8
=

9600

10 × 8
= 120

doubles

s
(30)

Each vehicle must transmit m doubles and an identification
code which can be identified with a double. Then the total
data to be transmitted by a single vehicle are m + 1. The
resulting total time TT for the transmission of each vehicle
must respect the following relationship

TT ≥
m + 1

DR

(31)

Finally, since all the vehicles must transmit and receive
into each intersampling time, then the following must hold:

⌊

T

TT

⌋

≥ n (32)

From (31) and (32) a relationship between n, m, and T is
found. Some numerical examples are presented in Table 1.

Table 1. Relation between T , n and m

T TT n m

1 .1 10 10

1 0.05 20 5

1 0.025 40 2

1 0.2 5 20

5. EXAMPLES

In this section some examples are presented, to show the
capabilities of the dynamic task ranking (DTR in the
following).

Example 1 The first example is a simple obstacle-free
scenario, which is represented in figure 1.

−4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

Vehicles

Targets

Fig. 1. Scenario Geometry

The three vehicles are near to the three upper targets while
the remaining target is far from the others. Assignment
procedures such as the Auctioning and the Hungarian
Algorithm would produce the assignment shown in figure
2.

Using the DTR, instead, the assignment is shown in
figure 3, while the weights time response of vehicle V1 is
represented in figure 4.

It is clear from figure 3 and from Table 2 that the total
mission completion time is sensibly reduced using the
dynamic task ranking (in Table 2 the results are compared
also with the optimal assignment given by the solution of

−4 −3 −2 −1 0 1 2 3 4 5
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Vehicles

Targets

Fig. 2. Hungarian Algorithm/Auctioning Results
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Fig. 3. Dynamic Task Ranking Assignment
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Fig. 4. Weights time response with static benefits of vehicle
V1

the associated Integer Programming problem). Moreover,
vehicles movement is allowed in order to show the different
response whenever the benefits change. It is assumed
that each vehicle moves toward its best target, which is
identified by its largest weight. The results of the weights
dynamics of the first vehicle are represented in figure 5.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
1

T
2

T
3

T
4

Fig. 5. Weights time response allowing varying benefits of
vehicle V1

From figure 5 it is clear that as the mission evolves, the
largest weight tends to increase while the others tends to
a lower value.
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Jtime Jfuel

Int. Prog. 3 6

Hung. 5 7

Auct. 5 7

DTR 3 6

Table 2. Numerical results of Example 1. Jtime

is the mission completion time; Jfuel is the
team fuel consumption.

Example 2 This example is more complex and it repre-
sents a simplification of the Gulf of La Spezia (Italy) area,
presented in figure 6.
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13

V
1

V
2

Fig. 6. Gulf of La Spezia (Italy) scenario. X = vehicles; O
= Targets; Solid areas = obstacles. Units in km.

There are many concentrated targets, while two targets are
far away from the others. Existing assignment procedure
(such as Hungarian Algorithm and Auctioning) would
produce the assignment shown in figure 7. While the DTR
produces a better assignment as presented in figure 8.
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Fig. 7. Hungarian/Auctioning assignment of the La Spezia
scenario.
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Fig. 8. DTR assignment of the La Spezia scenario.

The weights dynamics of a vehicle is represented in figure
9. In this scenario the benefits are varying, this is why the
best weight has an increasing behavior until the task is
completed. Note that the not-selected tasks decrease their
weights as the best task increases.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 9. Weights time response of vehicle V1

6. CONCLUSIONS AND FUTURE WORKS

Dynamic task ranking is a novel approach to address the
decentralized cooperative task assignment problem. The
procedure requires a low computational cost and is fully
decentralized. Stability properties have been proven for
both the continuous and the discrete time version of the
control law. Simulations have shown the asymptotic sta-
bility to an equilibrium point in all cases. This equilibrium
point can be found also by solving the nonlinear system
associated to the weights dynamics. Though not proven
yet, it appears that the equilibrium point is the only
attractor of the dynamics, starting from any admissible
starting point.
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