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Abstract: We develop a recursive estimator that systematically arrives at sparse parameter es-
timates. The algorithm is computationally feasible for moderate parameter estimation problems
and leverages the Gaussian sum filter to provide both sparse parameter estimates and credible
Bayesian intervals for non-zero parameters in a recursive fashion. Simulations show extremely
promising accuracy, as well as a robustness not enjoyed by other sparse estimators.

1. INTRODUCTION

It is common to encounter parameter estimation problems
with a large number of candidate parameters being equal
to zero. This corresponds to a sparse solution of the
estimation problem and is of significant interest as a high
degree of sparsity corresponds to simpler models. The
solution to the sparse estimation problem has recently
been the subject of much interest given the results of
Candès, Tao and Romberg (a good survey of the results
is given in Candès [2006] and Donoho and Tanner [2005]).
This work, colloquially termed ’`1 -Magic’, has provided
significant insight into a methodology which has been
widely known as the LASSO (Tibshirani [1996]) in the
statistical domain. Using the LASSO requires all of the
data to be obtained before the solution to the parameter
estimation problem can be determined. While the solution
is sparse there is little information provided about the
accuracy of the non-zero parameters and this too would
be beneficial when parameters are estimated. In this work
we seek to provide an algorithm that can be implemented
recursively, like the Kalman filter, while systematically
producing appropriately sparse parameter estimates.

2. PRELIMINARIES

2.1 Distributions

We will make extensive use of the multivariate Gaussian
or normal distribution throughout this paper and we give
the following standard definition.
Definition 1. Given a mean µ ∈ Rn and a covariance
B ∈ Rn×n with B > 0, we say that a random variable
X is normally distributed and denote X ∼ N (µ,B) if it
has the following probability density function (pdf) for all
x ∈ Rn

N (x;µ,B) =
1

(2π)N/2|B|1/2
exp

(
−1

2
‖B−1/2(x− µ)‖2

2

)
(1)

where |B| = det(B).

We also introduce the Laplace, or double exponential,
distribution.
Definition 2. Given a mean µ ∈ R and a scale parameter
τ > 0, we say that a random variable X has the Laplace or
double exponential distribution and denote X ∼ L(µ, τ) if
it has the following pdf for all x ∈ R

L(x;µ, τ) =
1
2τ

exp
(
−|x− µ|

τ

)
(2)

In this paper we only consider Laplace distributions
with zero mean, and thus abbreviate our notation as
L(τ) ∼ L(0, τ) and L(x; τ) = L(x; 0, τ).

2.2 Regression

We consider the following parameter estimation problem.
Given X ∈ RN×q, the rows of which are independent
explanatory variables, and dependent response variables,
or observations y ∈ RN , we assume that the observations
are generated as

y = Xθ + ε, (3)
where the noise may be considered normally distributed
as ε ∼ N (0, R), for some R ∈ RN×N , R > 0. Typically
the noise will be considered independent, and we then have
R = σ2

εI for some σε > 0. We then seek to estimate the
underlying parameters θ ∈ Rq.

The standard solution to this problem is the (ordinary)
least squares (OLS) estimator, obtained by solving

θ∗OLS = arg min
θ̂

‖y − ŷ‖2
2 (4)

where ŷ = Xθ̂ gives the fitted values. This has the
following closed-form solution
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θ∗OLS = (XTX)−1XT y. (5)

Shrinkage Since the least squares estimator only con-
siders the goodness-of-fit, it tends to overfit the data.
Shrinking the parameter, such as, by penalizing its size,
typically performs better on out-of-sample data. A general
way to achieve this is to enforce such a penalty as

θ∗ = arg min
θ̂

‖y − ŷ‖2
2 + λ‖θ̂‖pp (6)

for some parameter λ ≥ 0 and some norm p ≥ 1. When
we consider this estimator with p = 2, it becomes what
is known in statistics as ridge regression (RR), and in
some other fields as regularized least squares or Tikhonov
regularization (Tikhonov [1963]). Its popularity is due in
large part to the fact that it too can be solved in closed-
form, as

θ∗RR =
(
XTX + λI

)−1
XT y. (7)

In addition to improving out-of-sample performance, this
estimator has often been used to ensure that the inverse
exists for possibly ill-posed problems, which cannot be
guaranteed for the ordinary least squares estimator (5).
This estimator also has a Bayesian interpretation; namely,
that (7) arises as the maximum a posteriori (MAP) esti-
mate if the parameters have independent prior distribu-
tions of θi ∼ N (0, σ2

ε/λ). Note that as the prior variance
goes to infinity, we recover the least squares estimate (5).

If we instead solve (6) for p = 1, that estimator is known
as the LASSO (Tibshirani [1996]). While a closed-form
solution does not exist in general, solving for θ∗ is still
a convex optimization problem and readily solved.This
estimator also has a Bayesian interpretation; namely, that
it arises as the MAP estimate if the parameters have
independent prior distributions of θi ∼ L(2σ2

ε/λ).

This estimator has some attractive properties that will be
discussed in the next section.

2.3 Sparse Estimators

Often the number of parameters q we are considering is
greater than the number necessary to explain the data,
and it is thus desirable to use an estimator that will
systematically produce sparse estimates. The best way to
summarize the myriad reasons why sparse estimates are
often desirable, is that there are typically costs associated
with the cardinality of the parameter which are not ex-
plicitly stated in the objective.

The classical way to achieve sparse estimates is known as
subset selection, where for a desired parameter cardinality
of q̃, the least squares estimator is found for all possible

(
q
q̃

)
models, and then the best is chosen among them. This
obviously scales terribly in the number of parameters,
and still requires other means of determining the level of
sparsity.

Of the estimators described in the previous section, only
the LASSO gives sparse estimates. As the parameter λ
is increased, the resulting estimate becomes increasingly
sparse. More intuition behind the relationship between λ
and the resulting sparsity is provided in Section 5.

The fact that it yields sparse estimates systematically,
combined with the fact that the estimates can be obtained
via convex optimization in polynomial time, has made
the LASSO a very popular option since its introduction.
This can now be considered as a special case of what is
often referred to as ’`1 -Magic’; that is, the tendency of
`1 minimization or penalisation to produce parsimonious
results in problems where enforcing that directly would
yield computational intractability. The conditions and
reasons for which this occur have become much better
understood in recent years (see the references cited in
Section 1).

2.4 Gaussian Mixtures

This section discusses the idea of exactly expressing a
non-Gaussian distribution as an infinite mix of Gaussians,
and approximating a non-Gaussian distribution as a finite
sum of Gaussians. In particular, our goal will be to
represent the double exponential distribution in a form
amenable to recursive propagation, which will be discussed
in subsequent sections; however, most of the discussion is
more general.

In Griffin and Brown [2005] it was shown how to represent
several priors, all known to induce sparse MAP estimates,
as mixtures of Gaussian distributions in one dimension in
the following form:

f(θ) =
∫ ∞

ψ=0

g(ψ) N (θ; 0, ψ) dψ (8)

For a double exponential θ ∼ L(τ) in particular, we have:

g(ψ; τ) =
1

2τ2
exp

(
− ψ

2τ2

)
(9)

in other words, the hyperprior has an exponential distri-
bution.

It is worth noting that it was shown in Sorenson and
Alspach [1971] that any probability density fdes(θ) can
be approximated as closely as desired in the space `1(Rn)
by a fine enough Gaussian sum mixture:

f(θ) =
M∑
i=1

αi N (θ;µi, Bi) (10)

where M is the number of Gaussians, αi ∈ R+ with∑M
i αi = 1 are the weights, µi ∈ RN are the means,

and Bi ∈ RN×N are the covariances. The closeness of
approximation corresponds to:∫

Rn

|fdes(θ)− f(θ)| dθ (11)

being arbitrarily small for a large enough number of
Gaussians M .

Given a distribution which can be represented as an
infinite Gaussian mixture (8), we can then approximate
the distribution as a Gaussian sum (10) by selecting
a range of variances ψi which are as representative as
possible, and then choosing the associated weights as

αi ∝ g(ψi), (12)

of course scaling them to ensure that
∑M
i=1 αi = 1.
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3. RECURSIVE PARAMETER ESTIMATION

It is often desirable to obtain a parameter estimate in a
recursive or iterative fashion. This may be because the
number of observations N is very large and it would not be
possible to process them all at once, or it may be because
on-line estimates are needed as the data becomes available.

If we have a parameter θ that follows a (prior) pdf of f0(θ),
and we observe a set of measurements Y with conditional
density h(Y |θ), we then have the posterior pdf given by:

f(θ|Y ) =
h(Y |θ)f0(θ)∫
h(Y |θ)f0(θ)dθ

(13)

and the MAP estimate is then given as

θ∗MAP = arg max
θ̂
f(θ̂|Y ) (14)

Now let Yk = [y1, . . . , yk] represent all of the measurements
up to and including k. If we can express the posterior given
these measurements in terms of the posterior given the
previous set of measurements as

fk(θ|Yk) =
h(yk|θ)fk−1(θ|Yk−1)∫
h(yk|θ)fk−1(θ|Yk−1)dθ

(15)

that is, if we can use the previous posterior as the new
prior, then in theory, we can perform recursive estimation.
This equivalence holds if the measurements are condition-
ally independent.

To perform recursive estimation in practice, we also need
for each subsequent distribution fk to have the same form,
parametrizable with a constant number of variables, so
that we can just update those with each measurement. If
for example the prior has a Gaussian distribution, then
each subsequent posterior distribution is also Gaussian,
and thus it is possible to encapsulate all of the previous
information in two parameters, mean and covariance. This
is precisely what is achieved by the best known recursive
estimator, the Kalman filter.

The LASSO, however, has no such recursive estimator, as
a double exponential prior distribution yields a posterior
which is not a double exponential nor any other easily
characterizable distribution. The same is true for the other
priors (Griffin and Brown [2005]) known to induce sparse
MAP estimates. The objective of this work is thus to
systematically achieve sparse estimates, as we could with
the LASSO, but in a recursive fashion, as we could with
the Kalman filter.

3.1 Recursive Parameter Estimation using the Gaussian
Sum Filter

An extension of the simple Kalman filter is the Gaussian
sum filter that allows non-Gaussian filtering to leverage the
effectiveness of the Kalman filter. The Gaussian sum filter
was outlined in Sorenson and Alspach [1971] and Alspach
and Sorenson [1972] and further detailed in Anderson and
Moore [2005]. The primary motivation for the use of this
filter is its ability to use non-Gaussian measurement noise
and parameter estimate priors, significantly extending the
usefulness of the basic Kalman filter. We will outline the
form of the filter below and our development is based upon
a more general version in Anderson and Moore [2005].

Similarly to the Kalman filter, the Gaussian sum filter is
typically used for state estimation of a dynamic system;
however, it is possible to use it for parameter estimation or
system identification, and this can be considered a special
case. This is achieved by assuming that there are no in-
ternal system dynamics and thus the parameter estimates
can only change when a new measurement is obtained. It
is worth noting throughout this section that if we chose
the number of Gaussians as M = 1, we would recover the
Kalman filter, and if we did so for the special case of
parameter estimation, we would recover ridge regression.
The Gaussian sum filter can be considered as a weighted
bank of Kalman filters operating in parallel, where the
weights change after each measurement is processed.

We will be assuming a linear measurement process and
from this standpoint we have a measurement model:

yk = Xkθ + εk (16)
where we have a Gaussian measurement noise process
(εk ∼ N (0, Rk)) and a prior distribution of θ given by:

θ ∼
M∑
i=1

αi N (µi, Bi) (17)

where µi and Bi are the N -dimensional mean vector and
N ×N covariance matrix respectively.

Let us now assume that at a given point we receive a new
measurement yk, along with its corresponding explanatory
variable Xk, and that the distribution of the parameter
given all of the previous measurements is given as:

θ|Yk−1 ∼
M∑
i=1

αi,k−1 N (µi,k−1, Bi,k−1) (18)

where Yk = [y1, . . . , yk] again represents all of the mea-
surements up to and including k. The distribution of the
parameter given all of the measurements including the new
one is then given by:

θ|Yk ∼
M∑
i=1

αi,k N (µi,k, Bi,k) (19)

where the updated weights αi,k, means µi,k, and covari-
ances Bi,k are given by:

Ωi,k = XT
k Bi,k−1Xk +Rk

Ki,k = Bi,k−1XkΩ−1
i,k

Bi,k = Bi,k−1 −Bi,k−1XkΩ−1
ik X

T
k B

T
i,k−1

ŷi,k = Xkµi,k−1

µi,k = µi,k−1 +Ki,k(yk − ŷi,k)

αi,k =
αi,k−1 N (yk; ŷi,k, Ωi,k)∑M
j=1 αj,k−1 N (yk; ŷj,k, Ωj,k)

(20)

If we have a Gaussian mixture for our prior distribution
given as (17), we can then set the initial weights as
αi,0 = αi, the initial means as µi,0 = µi, and the initial
covariances as Bi,0 = Bi for all i ∈ {1, . . . ,M}, run the
above iteration for each new measurement received, and
then arrive at the posterior distribution as

θ|YN ∼
M∑
i=1

αi,N N (µi,N , Bi,N ). (21)
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Finding the MAP estimate of θ then requires finding the
mode of this posterior Gaussian mixture. Two algorithms
for finding such modes are given in Carreira-Perpinán
[2000], and we utilise what the authors call the gradient-
quadratic search methodology.

4. RECURSIVE `1 PENALIZED REGRESSION

We are now ready to show how to approximate the prior
which yields the LASSO estimate as its MAP estimate.
In this way we can find the posterior distribution, and
thus, the MAP estimate, in a recursive fashion with each
new measurement. As mentioned in the preliminaries,
the LASSO estimate can be interpreted as the MAP
estimate when the parameters have independent Laplace
prior distributions. Thus we express the prior as follows:

f0(θ) =
q∏
j=1

L(θj ; τ)

=
q∏
j=1

∫ ∞

ψj=0

g(ψj ; τ) N (θj ; 0, ψj) dψj

≈
q∏
j=1

M∑
ij=1

αij N (θj ; 0, ψij )

=
M∑
i1=1

· · ·
M∑
iq=1

 q∏
j=1

αij N (θj ; 0, ψij )


=

M∑
i1=1

· · ·
M∑
iq=1

 q∏
j=1

αij

q∏
j=1

N (θj ; 0, ψij )


=

M∑
i1=1

· · ·
M∑
iq=1

αi1,...,iq N (θ; 0, Bi1,...,iq )

(22)
where the multivariate weightings are given as

αi1,...,iq =
q∏
j=1

αij (23)

and the multivariate covariances as

Bi1,...,iq = diag(ψi1 , . . . , ψiq ). (24)
This shows how to approximate the prior distribution for
the LASSO as a sum of Gaussian distributions. Thus
we can utilise Section 3.1 to recursively estimate the
parameter with each new observation, which is not possible
with the original distribution.

We unfortunately see that if we have q parameters to
estimate and approximate each univariate double expo-
nential with M Gaussians, then we end up using Mq

total Gaussians in the final mixture. However, we will
see evidence in the next section that this number can be
greatly reduced.

5. NUMERICAL SIMULATIONS

We are now able to implement the recursive sparse esti-
mator developed in this paper in MATLAB, and compare
its performance with that of well-known aforementioned
estimators using simulated data. In Section 5.1, we first
test the algorithm with q = 2 parameters to estimate. This

allows us to graphically present the posterior distributions,
and also allows us to compare results for different values
of the approximation fineness M . We surprisingly see that
we can proceed with M = 2, and then move on to consider
higher-dimensional problems in Section 5.3.

5.1 Sparse Two Parameter Estimates

We first test our algorithm with q = 2 parameters. We will
compare it to the least squares estimator, ridge regression,
and of course, the LASSO. We test what happens for
the three possible levels of sparsity by considering true
coefficients of [0 0], [0 1], and [1 1]. In these examples
we simulated fifty data sets where we have N = 30
data points, and the double exponential distribution is
approximated by M = 20 initial variances, varying lin-
early between σ2

min = 1× 10−4 and σ2
max = 1, correspond-

ing to 400 Gaussian distributions in the Gaussian sum
filter. The regressor matrix is composed of random values
drawn from the uniform distribution on the unit interval
(that is, Xij ∼ U [0, 1], generated using the MATLAB rand
command), the measurement noise is generated (using
the MATLAB randn command) as εk ∼ N (0, σ2

ε) with
σ2
ε = 0.5, and the measurements are then generated as
yk = Xkθ + εk.

As in previous sections, λ is the penalty term for the one
norm of the parameters in the LASSO and, equivalently,
determines the shape of the double exponential prior dis-
tribution of the parameters being estimated. A comparison
of the exact double exponential distribution and the Gaus-
sian sum approximation in one dimension (for λ = 0.8) can
be seen in Figure 1. The equivalence is very good except
for very small absolute values of the parameter, where
the approximation deviates mostly due to the smallest
variance used in the Gaussian sum approximation. The
peak of this deviation rises to a value of approximately 4
and could be seen as providing additional prior probability
that the resulting parameter will be sparse.

Fig. 1. Prior probability density function (pdf) of each
parameter prior to estimation commencing.

For the following analyses we choose the penalty term (λ)
for the LASSO and the ridge regression using two-fold
cross validation. We take 75 percent of the data set, vary λ,
and for each value of λ, compute the coefficients (the
model). The optimal λ is chosen as the λ that corresponds
to the model which yields the lowest mean squared error
between the measurements and the fitted values in the
remaining (out-of-sample) data. Utilising this method we
obtain λ = 2.5, 0.8, 0.01 as the penalty parameter for
the LASSO, when the true underlying coefficients are
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0-0, 0-1, and 1-1, respectively, and we similarly obtain
λ = 500, 0.05, 0.05 as the penalty terms for the ridge
regression. For our recursive algorithm, we use the same
λ as those chosen for the LASSO. It could be seen
as a significant disadvantage not to tune the parameter
specifically for our algorithm, but we will see throughout
this section that the algorithm enjoys great robustness
with respect to its tuning parameters.

The LASSO is implemented using code from Schmidt
[2005], and computation of the other estimators is straight-
forward. The comparison of the results from using this
algorithm with different parameter combinations can be
seen in Tables 1, 2 and 3. For each choice of parameters
and regression algorithm we have computed the median
mean squared error (MSE) of the coefficient estimates,
percentage of correct zeros (where appropriate) and the
percentage of incorrect zeros (also where appropriate) of
the estimated parameters. Due to the computational na-
ture of these algorithms, and the small but non-zero value
of σmin we define zero to be set at a threshold equal to
10σmin, thus provided the parameter estimates are below
this threshold they are considered to be zero. This is
appropriate because as σmin 6= 0 we are only certain of the
value of the parameter to the accuracy of the Gaussian
distribution defined by σmin.

Method Median Perc. True
MSE Zero Coeffs.

OLS 0.002 0%
Ridge 0.000 0%

LASSO 0.000 65%
RS 0.000 91%

Table 1. Results when the true coefficients
are [0 0]. We compare least squares (OLS),
ridge regression, LASSO, and recursive

sparse (RS) estimates.

It is worth noting that in all of the examples shown the
recursive sparse parameter estimation algorithm signifi-
cantly outperforms the other algorithms in choosing the
correct sparse model. In Table 1 it is seen that the recur-
sive sparse (RS) algorithm correctly identifies that both
parameters are zero over 90 percent of the time. These
examples nicely illustrate the dependence of the LASSO
on its parameter λ. The LASSO estimator, defined as
penalized least squares (6) with norm p = 1, is equivalent
to finding the least squares estimate subject to a constraint
of the form ‖θ̂‖1 ≤ t, where the constrained and penalised
forms are equivalent but the relationship between t and λ is
not known apriori. In fact, the LASSO was first introduced
in this form of constrained least squares in Tibshirani
[1996]. The much lower percentage of zeros identified by
the LASSO in Table 1 represent that while the penalty
term is sufficient to constrain one of the parameters to
zero it is impossible for both parameters to be set to zero
unless the penalty term approaches infinity.

In Figure 2 we show the resultant posterior distribution
after a typical run of the recursive algorithm with a true
underlying coefficient of [0 0]. We can see a large spike
at the origin as the algorithm identifies this as the best
estimate, and we see the contours from other Gaussians in
the original mixture with severely diminished weights.

Fig. 2. The posterior probability distribution obtained
using the proposed algorithm when both parameters
being estimated are equal to zero.

When the parameters are different and we have one zero
parameter and one non-zero parameter we also obtain the
correct sparse estimate substantially more often using the
recursive approach to sparse parameter estimation. In this
case the LASSO struggles to accurately identify the zero
parameter. This is somewhat surprising given that cross
validation was used to obtain an appropriate penalty term
for this particular level of sparsity. One noteworthy point
that can be seen in Table 2 is that the recursive sparse
algorithm incorrectly identifies a zero on just one occasion
in the fifty data sets analysed.

Method Median Perc. True Perc. False
MSE Zero Coeffs. Zero Coeffs.

OLS 0.005 0% 0%
Ridge 0.004 2% 0%

LASSO 0.002 28% 0%
RS 0.002 90% 2%

Table 2. Results when the true coefficients
are [0 1]. We compare least squares (OLS),
ridge regression, LASSO, and recursive

sparse (RS) estimates.

Choosing a representative result from the analysed data
another important aspect of this algorithm can be ob-
served. In the posterior distribution in Figure 3 we can
observe essentially a one dimensional Gaussian distribu-
tion embedded in the resultant distribution. This occurs
because the zero parameter has correctly been identified
as being zero and thus has a small resultant covariance
associated with it. The non-zero parameter has a complete
posterior distribution providing credible Bayesian intervals
for this particular parameter. The LASSO only provides
the MAP point estimate of a parameter value and so
cannot provide confidence intervals for the non-zero pa-
rameters thus making it hard to ascertain the accuracy of
those estimates. The potential of this algorithm to not only
operate recursively, but to simultaneously identify zero
parameters and provide statistical quantities about the
non-zero parameters, could be a major advantage going
forward.

In the final scenario both parameters are non-zero, and
we present the results in Table 3. Our algorithm is seen
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Fig. 3. The posterior probability distribution obtained
using the proposed algorithm when one parameter
equals zero and the other equals one.

to occasionally falsely estimate a zero, and the results are
otherwise very similar for the non-sparse scenario.

We again display the posterior distribution from a repre-
sentative run of the algorithm in Figure 4. In this case,
the algorithm has correctly identified both parameters as
non-zero, and a typical multivariate Gaussian distribution
is the result. This distribution could then provide error
estimates similar to those of a standard regression.

The flexibility of this algorithm in performing parameter
selection and parameter estimation is nicely observed
through the changing shape of the posterior distributions
across these three scenarios.

Method Median Perc. False
MSE Zero Coeffs.

OLS 0.003 0%
Ridge 0.005 0%

LASSO 0.005 0%
RS 0.004 3%

Table 3. Results when the true coefficients
are [1 1]. We compare least squares (OLS),
ridge regression, LASSO, and recursive

sparse (RS) estimates.

Fig. 4. The posterior probability distribution obtained
using the proposed algorithm when both parameters
are equal to one.

5.2 Number of Gaussians

Having achieved a very promising proof-of-concept in 2 di-
mensions, we now consider the real objective of recursively
estimating sparse parameters in higher dimensions. If we
estimate q parameters, and use M = 20 Gaussians for
each parameter as in the previous section, we will have
20q Gaussians in our algorithm, which will not be tractable
for much larger values of q. However, while about that
many Gaussians are necessary to approximate the Laplace
distribution well in the prior distribution, it may be pos-
sible to achieve a similar posterior distribution with far
fewer, which is what we ultimately care about. In fact,
studying the behaviour of the algorithm shows that a zero
estimate arises from the weight on the Gaussian with the
smallest variance (and thus biggest peak at zero) growing
while the others diminish, and that for non-zero estimates,
the Gaussians with non-trivial weights at the end coalesce
around a similar estimate. This implies that we may be
able to achieve similar results using only 2 Gaussians for
each parameter, one with a very small variance corre-
sponding to a prior probability of the coefficient being
zero, and one with a larger variance, corresponding to a
typical ridge regression if it is not. We now compare results
for the same three scenarios as before using both M = 20
Gaussians for each parameter and M = 2.

True M Median Perc. True Perc. False
Parameters MSE Zero Coeffs. Zero Coeffs.

0-0 20 0.000 91% NA
0-0 2 0.000 98% NA

0-1 20 0.002 90% 2%
0-1 2 0.001 94% 8%

1-1 20 0.004 NA 3%
1-1 2 0.052 NA 29%

Table 4. Comparison of the recursive
sparse (RS) estimates for q = 2 parameters
with M = 20 and M = 2 variances for each

Gaussian mixture.

Table 4 has the results of this comparison and it can be
seen that the ability of the algorithm to correctly identify
the zero parameters is comparable even with many fewer
Gaussians. The general effect of moving to 2 Gaussians
and losing those with intermediate variances seems be that
zeros are estimated a bit more often. The performance is
thus a little better for the case where the true parameter
is 0− 0, worse where it is 1− 1, and similar for the 0− 1
case with more zero estimates overall.

While the original motivation for the Gaussian sum was
to approximate the prior distribution which corresponded
to that of the LASSO, we see that we can achieve our end
goal of systematically and accurately estimating sparse
parameters perhaps just as well using a bi-Gaussian filter.
This leads to 2q total Gaussians in the algorithm, and
while it still scales exponentially, it allows us to move up
to at least 10 dimensions without a problem.

5.3 Sparse Higher Dimensional Estimates

Having shown that it is possible to use only two Gaussians
for each parameter, we now illustrate the effectiveness of
this method in higher dimensions by performing sparse
parameter estimation on a parameter vector with q = 10
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components. For comparison we also compute the LASSO
and other parameter estimates for this problem. For this
simulation we used N = 30 data points and the measure-
ment noise had a variance of σ2

ε = 0.5. The probability
of each parameter being equal to zero was 0.5. The non-
zero parameters were then chosen from a uniform distribu-
tion on the interval [0, 5]. The penalty parameter for the
LASSO (λ = 0.5) was chosen by cross validation for the
case where five of the parameters were equal to zero. The
two variances chosen for the recursive Bayesian algorithm
were again chosen to be σ2

min = 1× 10−4 and σ2
max = 1.

Method Median Perc. True Perc. False
MSE Zero Coeffs. Zero Coeffs.

OLS 0.078 0% 0%
Ridge 0.090 0% 0%

LASSO 0.035 22% 1%
RS 0.026 99% 14%

Table 5. Results for q = 10 where we have
an average of five zero parameters. We com-
pare the least squares (OLS), ridge regression,
LASSO, and recursive sparse (RS) estimates.

The results for this simulation are shown in Table 5. It
is encouraging to realise the high accuracy with which
the algorithm is able to select zero parameters recursively,
finding nearly every one over all 50 runs. As noted previ-
ously, the algorithm again occasionally finds false zeros.
It is possible that this can be reduced with a better
understanding of how to tune σmin and σmax, and the
authors hope to more fully characterise this relationship
in future work.

It can be seen that the LASSO has difficulty extracting
the correct sparse model. This is a demonstration of the
high reliance of the LASSO on the penalty parameter (λ)
chosen. In this example the average number of zero pa-
rameters is five, and the LASSO was tuned for this value,
but in each of the fifty data sets the actual number of
zeros varies. This variation reduces the LASSO’s ability to
correctly identify the sparsity, something not observed in
the recursive algorithm, which appears much more robust
to its choice of tuning parameters.

To give further intuition into these estimators we provide
the coefficient estimates for one typical sample run in
Table 6. We can see the recursive algorithm correctly
selects all of the zeros, while the LASSO selects most but
not all of them.

Actual OLS Ridge LASSO RS

0 -1.785 -1.538 -0.632 0.000
3.541 3.810 3.673 3.570 3.407

0 1.042 0.958 0.404 0.000
2.351 2.422 2.305 1.998 1.940

0 -0.471 -0.377 0 0.000
0 0.645 0.463 0 0.000
0 -0.074 -0.007 0 0.000
0 -0.159 -0.119 0 0.000

2.215 3.394 3.252 2.749 2.623
0 -0.697 -0.504 0 0.000

Table 6. Parameter estimates for q = 10 where
we have the actual values, along with the least
squares (OLS), ridge regression, LASSO, and

recursive sparse (RS) estimates.

6. CONCLUSION AND FUTURE WORK

This paper provides an algorithm for a recursive estimator
that systematically arrives at sparse parameter estimates.
In simulation, the algorithm performed extremely well,
correctly identifying zero and non-zero parameters, while
further providing accurate estimates of the non-zero pa-
rameters. While our main objective was to develop an al-
gorithm that would, in a recursive fashion like the Kalman
filter, arrive at a sparse estimate similar to that of the
LASSO, we saw an important additional bonus; namely,
that the performance of our estimator seems to be much
more robust to its parameters.

The algorithm is recursive and thus does not scale with
the amount of data points N , but does scale as 2q in the
number of parameters being estimated; however, as the
algorithm eliminates and selects parameters as it runs, it
no longer needs to be exponential in those parameters.
There are thus several possible methods of exploiting this
to extend this algorithm to much larger problems, and
developing these is the most important area of future work.

Other areas of future work include the characterisation
of the algorithm’s performance with respect to σmin

and σmax. Utilising this algorithm with real data will also
be an important step for validating its utility, and extend-
ing it to dynamical systems should be straightforward.
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