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Abstract: In this paper, aircraft with control surface impairment faults is modelled as a set
of affine parameter-dependent nonlinear systems with polynomial vector fields. Based on the
Lyapunov stability theorem, sufficient conditions to test the stability of the closed-loop system
are presented. The synthesis problem of stabilizing feedback controllers to enlarge the region of
attraction is converted to an optimization problem based on sum-of-squares polynomial. Design
and simulation results for the longitudinal model of an F-8 aircraft are presented to illustrate
the effectiveness of proposed approach.

1. INTRODUCTION

The stability analysis and feedback controller design for
nonlinear systems have received considerable attention
over the decades and many important advances in non-
linear design have been made [1, 8]. However, a general
methodology for the construction of stabilizing nonlinear
control laws remains a challenging task. The main diffi-
culty lies in that the construction of Lyapunov functions
and the test for non-negativeness of Lyapunov stability
conditions is in fact a NP-hard problem [2]. However, a
new computationally tractable nonlinear analysis method-
ology based on the sum of squares decomposition and
semidefinite programming was proposed recently [2]. The
advantage of this methodology is that it provides a com-
putational relaxation: instead of checking for the nonneg-
ativeness of a polynomial, the polynomial is only required
to satisfy the condition that it is a sum of squares of
polynomials.

The sum of squares based methodology has been success-
fully applied to several control theory problems. These
problems include stability analysis for nonlinear systems,
time-delay systems, switched and hybrid systems [13, 10,
11], and robust stability analysis [2, 13, 7]. In [3] regions
of attraction and attractive invariant sets for nonlinear
systems with polynomial vector fields was estimated. In [6]
state feedback design for linear parameter-varying (LPV)
systems was proposed. Moreover the nonlinear synthesis
was also discussed in [5, 12, 14].

The application of sum of squares based method to the
aircraft flight control was also proposed in [9], where sum
of squares programming approach was used to analyze the
stability and robustness properties of the controlled pitch
axis of a nonlinear model of an A/C.

In this paper, parameter-dependent nonlinear systems
with polynomial vector fields are used to model an F-8 air-
craft with control surface impairment faults. The stability
analysis and state feedback controller design problem is
considered based on the Lyapunov stability results and
sufficient conditions for the stability of the closed-loop
system are presented. A fixed state feedback polynomial
controller is synthesized to realize the system’s stability
and enlarge the region of attraction for the nonlinear
aircraft model at the same time. Robust stability can
be guaranteed for the nonlinear aircraft model in normal
operation and in the event of control surface faults. In
order to reduce the conservativeness involved in the con-
troller design, a parameter-dependent Lyapunov function
(instead of a fixed one) is used. Finally, the proposed sta-
bility analysis and feedback controller synthesis problem is
converted to a sum-of-squares based optimization problem,
which can be solved via semidefinite programming with the
new software SOSTOOLS [13].

The remainder of the paper is organized as follows: Section
2 provides preliminary material on multivariate polyno-
mial and some related mathematical concepts. Section 3
gives the F-8 aircraft longitudinal flight dynamics with
control surface fault. In Section 4, the state feedback
design approach based on the sum of squares decompo-
sition and semidefinite programming are presented. Flight
control example is provided in Section 5. Finally, the
concluding remarks are given in Section 6.

2. PRELIMINARIES

Let R denote the set of the real numbers, R+ := [0,∞) ⊂
R. Rn is the n-dimensional real space. Z+ denotes the set
of nonnegative integers.
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2.1 Polynomial Definitions

We define Rn to be the set of all polynomials in n
variables with real coefficients. A polynomial vector field
f : Rn → Rn, f(x) = [f1(x), . . . , fn(x)]T is a vector
field with fi ∈ Rn, i.e., the entries of the vector field
are polynomial functions in x ∈ Rn, and is denoted as
f(x) ∈ Rn

n.

Definition 1 (Sum of Squares Polynomial):A poly-
nomial p(x) in n variables is a sum of squares (SOS)
polynomial if there exist polynomials fi(x), i = 1, . . . , m
such that

p(x) =
m∑

i=1

f2
i (x) (1)

We define Σn to be the set of sum of squares polynomials
in n variables, which is a very important subset of the
set of all polynomials Rn. Obviously if p ∈ Σn, then
p(x) ≥ 0 ∀x ∈ Rn.

Another subset of Rn is the set of positive definite poly-
nomials.

Pn := {p ∈ Rn|p(x) > 0,∀x ∈ Rn\{0}} (2)

It should be noted that there are positive definite poly-
nomials that are not sum of squares polynomials, i.e.,
Pn � Σn [2].

2.2 The Positivstellensatz

A central theorem from real algebraic geometry, the Pos-
itivstellensatz, is a powerful theorem which generalizes
many known results, for example, the S-procedure [2].

Definition 2: Given {g1, . . . , gt} ∈ Rn, the Multiplica-
tive Monoid generated by gj ’s is the set of all finite
products of gj ’s, including the empty product, which is
defined to be 1. It is denoted as M(g1, . . . , gt).

Definition 3: Given {f1, . . . , fs} ∈ Rn, the Cone gener-
ated by fi’s is

P(f1, . . . , fs) :=

{s0 +
∑

sibi|si ∈ Σn, bi ∈ M(f1, . . . , fs)} (3)

Definition 4: Given {h1, . . . , hu} ∈ Rn. the Ideal gener-
ated by hk’s is

I(h1, . . . , hu) := {
∑

hkpk | pk ∈ Rn } (4)

With these elements, the Positivstellensatz for the reals
can be formulated.

Theorem 1 (Positivstellensatz) [4]: Let (fi)i=1,...,s,
(gj)j=1,...,t, and (hk)k=1,...,u be finite families of polynomi-
als in Rn. Denote by P(f1, . . . , fs) the cone generated by
(fi)i=1,...,s, M(g1, . . . , gt) the multiplicative monoid gener-
ated by (gj)j=1,...,t, and I(h1, . . . , hu) the ideal generated
by (hk)k=1,...,u. Then the following are equivalent:

1. The set

{
x ∈ Rn

∣∣∣∣∣
fi(x) ≥ 0, i = 1, . . . , s,
gj(x) �= 0, j = 1, . . . , t,
hk(x) = 0, k = 1, . . . , u

}
(5)

is empty,

2. There exist polynomials f ∈ P(f1, . . . , fs), g ∈ M(g1

, . . . , gt), h ∈ I(h1, . . . , hu) such that

f + g2 + h = 0 (6)

3. THE F-8 AIRCRAFT DYNAMICAL MODEL

The candidate nonlinear aircraft model for this study is the
F-8 aircraft longitudinal flight dynamics which consists of
both phugoid and short period modes. Ignoring drag, the
basic nonlinear equations describing the longitudinal flight
dynamics are used [15]

u̇ = −uq tanα − g sin θ +
Lw

m
sin α +

Lt

m
sin αt (7)

α̇ = q +
g

u
cos α cos(α − θ) − Lw

um
cos α

− Lt

um
cos α cos(α − αt) (8)

θ̇ = q (9)

q̇ = (Mw + lLw cos α − ltLt cos αt − cq)/Iy (10)
where

αt = (1 − aε)α + δe

Lw = CL(α)q̄S

Lt = CLt
(αt, δe)q̄St

q̄ =
ρu2

2 cos2 α
Cubic approximation is used for the lift coefficient cruves

CL(α) = (C1
Lα − C2

Lα3)

CLt(αt, δe) = (C1
Lαt − C2

Lα3
t + aeδe)

Consider an altitude of 30, 000ft (i.e., with ρ = 0.00089
slug/ft3 and a speed of sound of 994.85 ft/s), and a
level unaccelerated flight at Mach = 0.85. The system
coefficients for the aircraft model in normal operation are
taken as follows:

C1
L = 4.0, C2

L = 12, ae = 0.1, aε = 0.75,

S = 375ft2, St = 93.4ft2, m = 667.7slugs,

Iy = 96800slug ft2, l = 0.189ft, lt = 16.7ft,

Mw = 0 lb ft, c = 38332.8 lb ft s, g = 32.2ft/s2

With C1
L and C2

L given as above, the stall angle of attack
at the wing and at the tail can be calculated easily to be
about 19.1 deg (1/3 rad). An elevator defection limit of 25
deg and elevator rate limit of 100 deg/s are applied.

Control surface faults are commonly seen in fighter air-
craft. The usual control surface fault is the control surface
impairment which will change the aerodynamic character-
istics of the aircraft. Control surface impairment can be
characterized by the percentage loss of the total control
surface area.
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With the system coefficients, the trim conditions for the
aircraft models in normal operation and in the operation
with 25% loss of control surface can be calculated as
follows respectively:

Table 1. Operating points

Nominal 25% loss

utrim(ft/s) 845 845

qtrim(rad/s) 0 0

αtrim(rad) 0.044786190 0.044786176

θtrim(rad) 0.044311 0.044318

δetrim (rad) -0.0089519 -0.0082947

Substituting the new variables x1 = α − αtrim, x2 = θ −
θtrim, x3 = q as the states, uc = δe − δetrim as the control
input and airspeed u = const into (7)-(10), and using the
system coefficients, we obtain the following shot period
aircraft models in normal operation and in operation with
25% loss of control surface:

Aircraft model in normal operation:

[
ẋ1

ẋ2

ẋ3

]
=

⎡
⎣−0.878x1 + x3 − x2

1x3 − 0.0896x1x3

x3

−4.209x1 − 0.396x3 − 0.408x2
1

−0.019x2
2 + 0.473x2

1 + 3.813x3
1

+0
−2.137x3

1

⎤
⎦ +

[ −0.216
0

−20.991

]
uc

� f1(x) + g1(x)uc (11)

Aircraft model with 25% loss of control surface:

[
ẋ1

ẋ2

ẋ3

]
=

⎡
⎣−0.865x1 + x3 − x2

1x3 − 0.0896x1x3

x3

−2.929x1 − 0.396x3 − 0.409x2
1

−0.019x2
2 + 0.473x2

1 + 3.81x3
1

+0
−2.417x3

1

⎤
⎦ +

[ −0.162
0

−15.742

]
uc

� f2(x) + g2(x)uc (12)

For loss of control surface between 0% and 25%, interpo-
lation of the above f1(x) and f2(x), and g1(x) and g2(x)
can be used

f(x; ϑ) = f1(x)ϑ1 + f2(x)ϑ2 (13)

g(x; ϑ) = g1(x)ϑ1 + g2(x)ϑ2 (14)

where f1(x), f2(x) ∈ R3
3 and g1(x), g2(x) ∈ R3×1

3 are as in
(11) and (12), with f1(0) = 0 and f2(0) = 0, which rep-
resent the vertices of possible control surface impairment
for aircraft model. The parameter ϑ = [ϑ1 ϑ2]T ∈ R2,
which provides the interpolation between the two vertices,
is constant and satisfies

ϑ ∈ Θ � {ϑ ∈ R2 : ϑ1 � 0, ϑ2 � 0 and ϑ1 + ϑ2 = 1}(15)

Then, we have the following nonlinear polytopic model for
aircraft with control surface impairment faults between 0%
and 25%.

ẋ = f(x; ϑ) + g(x; ϑ)uc (16)

If we allow the control input to be generated by a polyno-
mial state feedback controller

uc = k(x) ∈ R1
3 with k(0) = 0 (17)

the corresponding closed-loop system is described by the
following stat-space equations

ẋ = f(x; ϑ) + g(x; ϑ)k(x) (18)

4. STABILITY ANALYSIS AND STATE FEEDBACK
CONTROLLER DESIGN

In order to reduce the conservativeness the following
affine parameter-dependent Lyapunov function (instead of
a fixed Lyapunov function) is adopted.

V (x; ϑ) = V1(x)ϑ1 + V2(x)ϑ2, ϑ ∈ Θ (19)
Stabilization Problem[5]: Define two regions for a given
parameter-dependent system of the form (18).

Oβ := {x ∈ Rn|p(x) ≤ β} (20)
where β > 0 is the “radius” of Oβ , and p(x) ∈ Pn is known
positive definite polynomial, independent of ϑ.

Ω := {x ∈ Rn|V (x; ϑ) ≤ 1,∀ϑ ∈ Θ} (21)
with V (x; ϑ) being an unknown Lyapunov function of the
form (19).

Our objective is to search for a parameter-dependent
Lyapunov function (19) and a polynomial state feedback
controller (17) to maximize β such that,

V (x; ϑ) > 0,∀ x ∈ Rn\{0} and V (0) = 0,∀ϑ ∈ Θ (22)

Oβ ⊆ Ω (23)

Ω\{0} ⊆ {x ∈ Rn|V̇ (x; ϑ) < 0,∀ϑ ∈ Θ} (24)
From the Lyapunov argument in [5], for each fixed ϑ̄ ∈ Θ,
the region Ωϑ̄ := {x ∈ Rn|V (x; ϑ̄) ≤ 1} is an invariant set
and also a subset of region of attraction for the system (18)
with that particular ϑ̄. Hence Ω :=

⋂
ϑ̄∈Θ Ωϑ̄ is a subset

of region of attraction for all ϑ ∈ Θ, and every point in the
region Oβ converges asymptotically to the origin point.

Lemma 1[5] Consider a parameter-dependent system (18)
and a fixed positive definite function p(x) ∈ Pn. If there
exist positive definite polynomials Vi(x) ∈ Pn with Vi(0) =
0 for i = 1, 2, and k(x) ∈ Rm

n with k(0) = 0 such that

Vi(x) > 0,∀ x ∈ Rn\{0} and Vi(0) = 0 (25)

{x ∈ Rn|p(x) ≤ β} ⊆ {x ∈ Rn|Vi(x) ≤ 1} (26)

{x ∈ Rn|Vi(x) ≤ 1}\{0} ⊆ {x ∈ Rn|M1 < 0} (27)

{x ∈ Rn|Vi(x) ≤ 1}\{0} ⊆ {x ∈ Rn|M2 < 0} (28)

{x ∈ Rn|Vi(x) ≤ 1}\{0} ⊆ {x ∈ Rn|M3 < 0} (29)
where

M1 = ∇V1 [f1 + g1k] (30)

M2 = ∇V2 [f2 + g2k] (31)

M3 = ∇V1 [f2 + g2k] + ∇V2 [f1 + g1k] (32)
Then, the conditions (22)-(24) are satisfied. Hence, for all
ϑ ∈ Θ, the region Ω is a subset of region of attraction for
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the system (18), and system (18) is asymptotically stable
about the origin.

The proof of Lemma 1 can be referred to [5], it is omitted
here.

With the Positivstellensatz and following the simplifying
procedure given in [5], the stabilization problem can be
formulated as the following optimization problem which
can be solved via the semidefinite programming.

Sum of Squares (SOS) Problem [5]:

max β over k(x) ∈ Rn, V1(x), V2(x) ∈ Pn

and V1(0) = V2(0) = 0, si(x) ∈ Σn

subject to

V1 − l1 is SOS (33)

V2 − l2 is SOS (34)

− [s1(β − p) + (V1 − 1)] is SOS (35)

− [s2(β − p) + (V2 − 1)] is SOS (36)

− [s3(1 − V1) + s9M1 + l3] is SOS (37)

− [s4(1 − V1) + s10M2 + l4] is SOS (38)

− [s5(1 − V1) + s11M3 + l5] is SOS (39)

− [s6(1 − V2) + s12M1 + l6] is SOS (40)

− [s7(1 − V2) + s13M2 + l7] is SOS (41)

− [s8(1 − V2) + s14M3 + l8] is SOS (42)
where M1, M2 and M3 are as in (30)-(32), lj(x) ∈ Pn

⋂
Σn

(i.e., positive definite in SOS form), j = 1, . . . , 8, lj(0) = 0
and si(x) ∈ Σn, i = 1, . . . , 14.

5. AIRCRAFT APPLICATION EXAMPLE

In this section, a design example for nonlinear F-8 aircraft
model in Section 3 is presented to demonstrate the pro-
posed controller design approach.

Finding the Lyapunov functions V1(x), V2(x) and state
feedback controller k(x) that satisfy (33)-(42) is a non-
convex problem because of the nonlinear conditions in the
constraints. An iterative algorithm [5] is used to solve the
nonconvex problem. The stability constraints (33)-(42) are
checked by SOS programming.

We supply feasible initial Lyapunov functions V1(x), V2(x)
and controller k(x) in (43)-(45) over which the iterative
algorithm improves the value of β to find optimal solutions.

V1(x) = 0.14x2
1 + 0.3286x2

2 + 0.0016x2
3 − 0.1538x1x2

−0.0022x1x3 + 0.0048x2x3 (43)

V2(x) = 0.14x2
1 + 0.3286x2

2 + 0.0016x2
3 − 0.1538x1x2

−0.0022x1x3 + 0.0048x2x3 (44)

k(x) = 1.7042x1 + 7.4162x2 + 7.4365x3 (45)
The regions of attraction are estimated by the variable
sized region Oβ := {x ∈ R2|p(x) ≤ β}, where p(x) =
xT Px, P = [4, − 0.1, 0.03;−0.1, 0.59, 0; 0.03, 0, 0.05].
The fixed positive definite polynomials {lj(x)}8

j=1 are
chosen in the following form of εΣ3

i=1xi
d with some small

constant ε > 0 and d is the maximum degree of the
corresponding polynomials lj(x).

By solving the SOS optimization problem, the maximum
size of the region Oβ is determined with the value of
β1 = 1.7662. The state feedback controller that guarantees
the local stability with optimized ROA is

knl1(x) = −0.60357x1 + 0.51918x2 + 2.6414x3 + 1.1853x2
1

−0.0039012x2
2 + 0.15242x2

3 − 0.2542x1x2 − 0.58084x1x3

+0.15914x2x3 + 8.0966x3
1 + 0.07795x3

2 + 0.25808x3
3

−1.9417x2
1x2 − 4.2947x2

1x3 + 0.5879x1x
2
2 + 0.34048x1x

2
3

+0.077199x2
2x3 − 0.13242x2x

2
3 + 0.69357x1x2x3 (46)

and the corresponding Lyapunov functions are

Vnl1(x) = 2.2536x2
1 + 0.26504x2

2 + 0.01307x2
3

−0.058304x1x2 + 0.02543x1x3 + 0.01389x2x3 (47)

Vnl2(x) = 2.2456x2
1 + 0.28935x2

2 + 0.017715x2
3

−0.16074x1x2 + 0.059581x1x3 + 0.021701x2x3 (48)
The estimated regions of attraction {x ∈ R2|V (x; ϑ) ≤ 1}
for various ϑ as computed using SOS optimization are
shown in Fig. 1. Note that {x ∈ R2|p(x) � β} is contained
in these regions of attraction.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2.5
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−0.5
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0.5

1

1.5

2

2.5

x1

x2

Regions of Attraction

ROAs of different parameters 

p = 1.7662 

Fig. 1. Regions of attraction of the closed-loop systems
with nonlinear feedback controller (46)

A plot of the response of the closed-loop F-8 aircraft model
(18) with initial condition x(0) = [0.5, 0.5, 0.5]T , which
is within the estimated stability region, is shown in Fig.
2. In the simulation the uncertain parameter vector ϑ
is assumed to be fixed as [0.5, 0.5]T . In order to test
the validity of the computed attraction regions, we also
initialize the states of the nonlinear closed-loop F-8 aircraft
model outside the estimated region of attraction. The
simulation result is shown in Fig. 3. The initial conditions
are simultaneously perturbed in all states. From Figs. 2
and 3, we can see that the nonlinear feedback controller
(46) can stabilize the nonlinear aircraft model, even when
the initial states are outside the estimated region of
attraction by SOS optimization. Similar simulation results
are obtained when the uncertain parameter vector ϑ is
fixed as other values. The apparent conservativeness of
the estimated region of attraction is due to the fact that
Lemma 1 is only a sufficient condition, and that we are
fitting a predetermined shape p(x) to the ROA.
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Fig. 2. Response of closed-loop system with states ini-
tialized within the estimated stability region, ϑ =
[0.5, 0.5]T
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Fig. 3. Response of closed-loop system with states ini-
tialized outside the estimated stability region, ϑ =
[0.5, 0.5]T

The closed-loop system responses of the nonlinear con-
troller (46) derived from SOS optimization are compared
with that of the third order controller in [16]. The re-
sponses of the states α, θ and q are shown in Fig. 4
for the third order controller in [16], and in Fig. 5-6 for
the proposed nonlinear controller (46). Here the initial
conditions for angle of attack are set to the largest value
that stabilization can be achieved, while pitch angle and
pitch rate are fixed as zero. The largest deviation in angle
of attack that the third order controller in [16] can sustain
is about 0.4727 rad (27.1 degree). While, the proposed
nonlinear controller (46) can sustain larger deviations in
angle of attack at about 0.721 rad (41.3 degree) and 0.7131
rad (40.8 degree) with parameter ϑ fixed as [1, 0]T and
[0, 1]T respectively. In summary, it can be clearly seen
that the proposed nonlinear controller (46) performs better
than the third order controller in [16] in bringing the
aircraft back to trim conditions.

To verify the robustness of our nonlinear stabilizing feed-
back control law derived from SOS optimization, simu-
lations using the original nonlinear aircraft dynamics in
(7)-(10) are performed, and the results are analyzed. Sim-
ulations are carried out for both small and large initial
conditions in the angle of attack, which represent small
and large deviations from the trim conditions due to dis-
turbances. For nonlinear F-8 aircraft models in operation
with 25% loss of control surface, the initial conditions for
α(0) are selected as 7.6deg (5 deg above its operation point
value) and 25.7deg (corresponding to the positive largest
deviation that can be stabilized). The responses of the
states α, θ, q and elevator δe are shown in Fig. 7-8, where
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Fig. 4. Response of closed-loop system with the third order
controller in [16]
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Fig. 5. Response of closed-loop system with proposed
nonlinear controller (46), ϑ = [1, 0]T
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Fig. 6. Response of closed-loop system with proposed
nonlinear controller (46), ϑ = [0, 1]T

input saturations are also considered. It is noticed that in
the 3rd order nonlinear simulation (Fig. 6), the designed
nonlinear controller (46) can sustain the deviation in angle
of attack up to 0.7131 rad (40.8 deg). However, in the
robustness simulation (Fig. 8) using the original nonlinear
model (7)-(10), the largest deviation is only arrived at 25.7
deg. The main reason for this discrepancy is the fact that
the proposed stabilizing controller is derived based on the
simplified (3rd order) aircraft models in (11) and (12).

6. CONCLUSION

This paper studies the stability analysis and state feedback
control design for polytopic parameter-dependent nonlin-
ear systems with polynomial vector fields, which models
aircraft dynamics with control surface impairment. Suffi-
cient conditions to test and design for the stability of the
closed-loop systems are presented based on the classical
Lyapunov stability results. The feedback controller design
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Fig. 7. State trajectories and elevator deflection, initial
condition α(0) = 7.6deg
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Fig. 8. State trajectories and elevator deflection, initial
condition α(0) = 25.7deg

method are applied to the longitudinal model of an F-
8 aircraft. Robust stability can be guaranteed for the
nonlinear aircraft model in normal operation and in the
event of control surface faults. Simulation results show the
effectiveness of the proposed method.

REFERENCES

[1] A. Isidori. Nonlinear Control Systems. Springer
Verlag, New York, 1995.

[2] P. A. Parrilo. Structured Semidefinite Programs and
Semialgebraic Geometry Methods in Robustness and
Optimization. California Institute of Technology,
PhD thesis, 2000.

[3] W. H. Tan and A. Packard. Stability Region Analysis
using Sum of Squares Programming. In Proceedings
of the American Control Conferrence, Minneapolis,
Minnesota, USA, 2006, pages 2297-2302.

[4] J. Bochnak, M. Coste and M.-F. Roy. Real Algebraic
Geometry. Springer, 1998.

[5] Dan Zhao, Jian Liang Wang and Eng Kee Poh. Stabil-
ity Analysis and Controller Synthesis for Parameter-
Dependent Polynomial Nonlinear Systems. In Pro-
ceedings of the American Control Conferrence, New
York, USA, 2007.

[6] C. Ebenbauer and T. Raff and F. Allgöwer. A
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