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Abstract: We apply robust control technics to an adaptive optics system including a dynamic
model of the deformable mirror. The dynamic model of the mirror is a modification of the
usual plate equation. We propose also a state-space approach to model the turbulent phase. A
continuous time control of our model is suggested taking into account the frequential behavior
of the turbulent phase. An H∞ controller is designed in an infinite dimensional setting. Due to
the multivariable nature of the control problem involved in adaptive optics systems, a significant
improvement is obtained with respect to traditional single input single output methods.
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1. INTRODUCTION

The technological developments of the eighties have made
possible the use of adaptive optics (AO) systems to ac-
tively correct the wave front distortions affecting an inci-
dent wavefront propagating through a turbulent medium.
A particularly interesting application of this technique is
in the field of astronomical ground-based imaging. The
idea behind AO systems is to generate a corrected wave-
front as close as possible to the genuine incident plane
wavefront thanks to a deformable mirror. An AO system
is principally based on a wavefront sensor measuring the
resulting distortion of the wavefront after correction by
the deformable mirror. Based on these measured signals, a
control law is computed in order to reshape a deformable
mirror through piezoelectric actuators. The active mirror
system is made of a swing mirror dedicated to the cor-
rection of the tilts (first order modes) of the wavefront in
two dimensions and a deformable mirror that is part of
the control-loop for the correction of higher-order modes
of aberrated wavefront. For additional details on basic
principles of adaptive optics, the interested reader may
have a look at the book Rodier [1999].

This paper is devoted to the design of specific control
laws for an adaptive optics system formed by a bimorph
mirror and a wavefront sensor (see Figure 1). Most often,
the existing adaptive optics systems use static models and
very basic control algorithms based on physical insights.
Here, our goal is to consider the design of an adaptive
optics system from a modern automatic control point of
view as in Raynaud et al. [2006] and Frazier et al. [2004].
This means first that dynamics of the different elements
involved in the control-loop have to be taken into account.
In particular, a specific dynamic model for the deformable
mirror is proposed for control purpose Miller et al. [1999].
Secondly, a state-space model of the turbulent phase, built

from its frequency domain characteristics, is defined Conan
et al. [1995].

Fig. 1. An adaptive optics system

The main contribution concerns the infinite dimension set-
ting introduced in this paper. More precisely, while in the
literature, only finite dimensional models are considered,
a model based on a particular partial differential equation
is used for the deformable mirror.

In reference Lenczner et al. [2006], a thin elastic plate
model of a deformable bimorph mirror is derived. The idea
is then to elaborate a robust control strategy based on
modern control tools developed during the last years and
extended to the control of distributed parameter systems
Van Keulen [1993]. Moreover, in contrast to Paschall
et al. [1993] and Raynaud et al. [2006] we do not need
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to compute any interaction matrix corresponding to the
relation between the input on the piezoelectric patches
attached to the mirror and the output given by the Shack-
Hartmann sensor.

In this article, the control problem is recast in an H∞ con-
trol setting. The first motivation is that H∞ control theory
is now well established in the infinite dimensional case and
H∞ controller provides intrinsic properties of robustness
while optimizing on the worst-case performance. Another
motivation is the multivariable nature of the control prob-
lem involved in adaptive optics system design Frazier
et al. [2004]. Current adaptive optics control systems use
decoupling modal control to rewrite the original problem
as many decoupled single input single output control prob-
lems. Because H∞ control framework may easily handle a
multivariable dynamic model of the bimorph deformable
mirror in the synthesis process, the obtained robust con-
troller outperforms usual static control approaches of the
literature.

2. THE ADAPTIVE OPTICS MODEL

The bimorph mirror is composed of a purely elastic and
reflective plate equipped with piezoelectric actuators (in
order to deform the shape of the mirror) and piezoelectric
sensors (to measure the effective deformation). A Shack-
Hartmann sensor (that divides up the wavefront into sepa-
rate facets, each focused by a micro-lens onto a subarray of
CCD camera pixels - see Rodier [1999]) is used to analyzes
the resulting phase φres of the wavefront, after reflection
in the deformable mirror of the turbulent phase φtur.

Different types of disturbances have to be faced with:
wmod represents unstructured uncertainty (neglected dy-
namics) affecting the model, wpiezo and w

SH
are noise

signals respectively attached to piezoelectric and Shack-
Hartmann sensors. Finally, φtur is the turbulent phase of
the wavefront introduced by the atmospheric perturbation.

e = e(r, θ, t) denotes the transverse displacement of the
circular mirror at point of polar coordinates (r, θ) and time
t while λ is the wavelength of light. The corrected phase
produced by e is then given by φcor = 4π

λ e leading to a
resulting phase:

φres = −
4π

λ
e + φtur (1)

The optic sensor’s output, computed with the Shack-
Hartmann sensor, is given by:

y
SH

= −
4π

λ
e + φtur + cw

SH
(2)

where c is a modelling parameter of the perturbation.

Finally, we note that the control input is the voltage u ap-
plied to the piezoelectric actuators and the corresponding
piezoelectric output is the voltage ype measured with the
piezoelectric inclusions used as sensors (see equations (3)
and (4) below). Indeed, in comparison with many other
devices, where the only information used to compute the
voltage u comes from the wavefront analyzer, the addi-
tional possibility of measuring the deflection of the mirror
through a layer of piezoelectric sensors (see Figure 1) is
considered here.

It is recalled that the goal of the adaptive optics control
system is to minimize the resulting phase of the wavefront
using Shack-Hartmann measurements.

Bimorph mirror model

To obtain the model of a bimorph mirror, we consider
three different layers. One is purely elastic and reflective,
the second one is equipped with piezoelectric inclusions
used as actuators, the third one is equipped with piezo-
electric inclusions used as sensors. The heterogeneities are
periodically distributed. In reference Lenczner et al. [2006],
the authors derive the following dynamical model of the
mirror:

ρ ∂tte + Q1∆
2e + Q2e = d̃31∆u + ρbwmod (3)

with the initial conditions e(r, θ, t = 0) = e0(r, θ) and
∂te(r, θ, t = 0) = e1(r, θ). The voltage ype computed by
the piezoelectric sensors is given by

ype = ẽ31∆e + dwpe. (4)

The following notations are defined:

• (r, θ) are the spatial coordinate of the point of the
disc Ω of radius a and t is the time;

• ∆ is the Laplacian operator and for v(r, θ)

∆v =
∂v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂v

∂θ2
;

• u is the voltage applied to the inclusions of the
actuator layer;

• ρ is the surface density, ν is the Poisson ratio of the
mirror’s material, Q1 is the stiffness coefficient and
Q2 is a correction coefficient;

• ẽ31 and d̃31 are proportional to the piezoelectric
tensor coefficient d31;

• b and d are linear applications on L2(Ω);
• wmod and wpe are unknown perturbations modelling

the model errors of the plate equation and the mea-
surement noise of the piezoelectric output.

The boundary conditions are those of the free edges
case (VLT and the experimental device SESAME, see
Subsection 44.2):

∂2e

∂r2
+ ν

(
1

r

∂e

∂r
+

1

r2

∂2e

∂θ2

)∣∣∣∣
r=a

= 0

∂

∂r
(∆e) +

1

r
(1 − ν)

∂

∂r

(
1

r

∂e

∂θ

)∣∣∣∣
r=a

= 0

(5)

Turbulent phase model

In order to complete our adaptive optics system model, we
need to develop a model of the turbulence phase.

A usual representation of atmospheric phase distortion
is made through the orthogonal basis of Zernike polyno-
mials because the first Zernike modes correspond to the
main optical aberrations. An infinite number of Zernike
functions is required to characterize the wavefront, but
a truncated basis is used in general for implementation
purpose. Note that a 14-th order approximation contains
92% of the phase information, without taking into account
the piston mode which represents the average phase dis-
tortion Paschall et al. [1993]. The tip/tilt modes are not
part of our modelling of the turbulent phase because of
their correction by a dedicated mirror. We will therefore
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work with the 12 first modes of Zernike given in reference
Noll [1976] excluding the three first ones.

The turbulent phase φtur is approximated as follows:

φtur(r, θ, t) ≈

NZ∑

i=3

φi(t)Zi(r, θ)

where NZ ≥ 14. Zi is the i-th Zernike function and for all
i, φi(t) is a random time-varying coefficient corresponding
to the projection of φtur on Zi.

To build a state-space representation of the turbulent
phase, φtur is modelled as the output of a linear shaping
filter of the form :

φ̇ = Fφ + Gw (6)

where φ = (φ3, · · · , φNZ
), w = (w3, · · · , wNZ

), F and
G are two time-invariant square matrices of (NZ − 2)-
dimension and w is a stationary zero-mean white gaussian
noise. φtur is therefore a stationary process.

In order to compute F and G, the results presented in
Conan et al. [1995] and based on the Kolmogorov theory
of turbulence and associated approximations in the fre-
quency domain are used here. They confirm similar results
proposed in Hogge et al. [1976] and complete the study
of frequency domain behavior for each Zernike coefficient.
Each Zernike function’s spectrum are characterized by a
cut-off frequency whose heuristic expression is given by:

fci
= 0.3(ni + 1)

V

D
(7)

where ni is the radial order of the Zernike number i, V is
the average wind-speed and D the diameter of the circular
aperture.

w =




w1(jω)
...

wNZ
(jω)







φ1(jω)
...

φNZ
(jω)


 = φ

H(jw)

Fig. 2. Shaping filter generating φ
The random process φ is supposed to be composed of NZ−
2 decoupled first-order Markov processes. For i = 3 · · ·NZ ,
we have:

Hi(P ) =
φi(p)

ωi(p)
=

1

1 + τip
with τi =

1

2πfci

(8)

In other words, F = diagi(−
1
τi

).

The matrix G is obtained from the steady-state Lyapunov
equation verified by the correlation matrix Pφ(∞):

GG′ = −(FPφ(∞) + Pφ(∞)F ′) (9)

A closed-form expression for the spatial covariance matrix
is given in Noll [1976].

Pφ(∞) = cov(φi, φj) = E(φiφj)

= 7.19 × 10−3 × (−1)(ni+nj−mi−mj)/2

(
D

r0

) 5

3

×
√

(ni + 1)(nj + 1)π
8

3

×
Γ
(14

3

)
Γ
(ni + nj −

5
3

2

)

Γ
(ni − nj + 17

3

2

)
Γ
(nj − ni + 17

3

2

)
Γ
(ni + nj + 23

3

2

)

where Γ is the Gamma function and r0 is the Fried
parameter Rodier [1999]. Table 1 shows the non zero
entries of the matrices F and G for V = 9 m.s−1 and
D
r0

= 8 (as in Raynaud et al. [2006]).

i j Fi,j Gi,j i j Fi,j Gi,j

1 1 -4.24 11.02 7 7 -8.48 1.73
1 6 0 -0.45 7 14 0 -0.40
1 13 0 0.02 8 3 0 -0.50
2 2 -4.24 9.72 8 8 -10.60 1.19
2 7 0 -0.45 9 9 -8.48 1.83
2 14 0 0.02 10 10 -8.48 1.83
3 3 -6.36 3.03 11 4 0 -0.50
3 8 0 -0.50 11 11 -10.60 1.19
4 4 -6.36 3.03 12 5 0 -0.50
4 11 0 -0.50 12 12 -10.60 1.19
5 5 -6.36 3.03 13 1 0 0.02
5 12 0 -0.50 13 6 0 -0.40
6 1 0 -0.45 13 13 -12.72 0.90
6 6 -8.487 1.73 14 2 0 0.02
6 13 0 -0.40 14 7 0 -0.40
7 2 0 -0.45 14 14 -12.72 0.90

Table 1. Atmospheric phase distortion state-
space model

3. ROBUST CONTROL RESULTS

The point of this section is to prove that the new model we
propose for AO systems is valid for an H∞-control study.
One of the difficulty comes from the infinite dimensional
setting. For a survey of the H∞-control theory for the
infinite-dimensional case, the interested reader may have a
look at Curtain et al. [1993] for the state-feedback case and
Van Keulen [1993] for the output-feedback case. The main
results are a generalization of results finite-dimensional
regular H∞-control problems (see for instance Doyle et al.
[1996]). In particular, the solution will be given in terms
of the solvability of two coupled Riccati equations.

The linear infinite-dimensional model derived from the
partial differential equations presented in Section 2 has to
fit in the following standard formalism of measurement-
feedback control




x′ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w

(P)

where x is the state of the system, u is the control input,
w is the disturbance input, y is the measured output and
z is the controlled output.

Therefore, we introduce the following notations. The state
vector is x = (e, ∂te, φtur)

T where e is the transverse dis-
placement of the plate and φtur is the projection of the tur-
bulent phase on the Nz first Zernike modes. The exogenous
disturbance inputs vector is w = (wmod, w

SH
, wtur, wpe)

T

gathers the different perturbations The control vector u
is defined as the voltage applied to piezoelectric patches.
The measurement vector y = (ype, ySH

) is composed with
the piezoelectric and the wavefront analyzer measured out-
puts. The controlled outputs vector z = (φres, u) contains
the resulting phase (see (1)) and the control input vector u.

The aim is to find a dynamic measurement-feedback con-
troller K that exponentially stabilizes this system and
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ensures that the influence of w on z is smaller than some
specific bound. The controller is assume to have the fol-
lowing form: {

p′ = Mp + Ny
u = Lp + Ry

(K)

where M is the infinitesimal generator of a C0-semigroup
on a real separable Hilbert space and N , L and R are
bounded linear operators. With this controller, the closed-
loop system can easily be derived and defines a bounded
linear map SK such that z(t) = (SKw)(t). Its bound is
denoted ||SK ||∞.

+

+

+
+

+

+
+

Model

Model

Turbulent Phase

Mirror

Mirror

φtur

wtur

wmod

z2

P

u
ype

ySH

d
wpe

wSH

I

z1

φres

φcor

(
e
e′

)

[ẽ31∆ 0]

[
4π
λ 0

]

[
0

d̃31∆

]

K

G

[
0
b

]

Fig. 3. Standard model for adaptive optics system control
loop

The control loop defining the adaptive optics system is
sketched in Figure 3. If we gather the different equations
describing the system, we get:

∂tte + Q1∆
2e + Q2e = d̃31∆u + bρwmod

φres = φtur −
4π

λ
e

ype = ẽ31∆e + dwpe

y
SH

= φtur −
4π

λ
e + cw

SH

(10)

In order to have a unified infinite dimensional modelling of
the adaptive optics system’s state, the following equation
∂tφtur = Fφtur + Gwtur is added to (10).

Thus, the operators defining the standard form P are built
from (10)

A =




0 I 0

−
Q1

ρ
∆2 −

Q2

ρ
I 0 0

0 0 F


 , B1 =

(
0 0 0 0
b 0 0 0
0 0 G 0

)
,

B2 =




0

d̃31

ρ
∆

0


 , C1 =

(
−

4π

λ
I 0 I

0 0 0

)
, D12 =

(
0
I

)
,

C2 =

(
ẽ31∆ 0 0

−
4π

λ
I 0 I

)
, D21 =

(
0 0 0 d

0 c 0 0

)
.

The appropriate functional spaces associated to the
infinite-dimensional model are now precisely defined. With
the boundary condition (5), we consider the state space
(the mirror Ω is a disc of radius a)

X = H2
bc(Ω) × L2(Ω) × L2(Ω)

=
{
e ∈ H2(Ω), e satisfying (5)

}
×
(
L2(Ω)

)2

the input spaces U = H2(Ω) ∩ H1
0 (Ω) and W =

(
L2(Ω)

)4

and the output spaces Y = Z =
(
L2(Ω)

)2
, where L2 is the

Hilbert space of square integrable functions and H1
0 and

H2 are the Sobolev spaces

H1
0 (Ω) = {f ∈ L2(Ω)/ ∀i = 1, 2, ∂if ∈ L2(Ω), f |∂Ω = 0}

H2(Ω) = {f ∈ L2(Ω)/ ∀i, j = 1, 2, ∂if, ∂i∂jf ∈ L2(Ω)}

This model satisfies all the assumptions of the main
theorem of reference Van Keulen [1993]. We give here
a simplified version of this result:

Theorem 1. Van Keulen [1993] Let γ > 0. There exists
an exponentially stabilizing dynamic output-feedback con-
troller of the form (K) with ‖SK‖∞ < γ if and only if there
exist two nonnegative definite operators P , Q ∈ L(X)
satisfying the three conditions

(i) ∀x ∈ D(A), Px ∈ D(A∗),
(
A∗P+PA+P (γ−2B1B

∗
1−B2B

∗
2)P+C∗

1C1

)
x = 0

and A + (γ−2B1B
∗
1 − B2B

∗
2)P generates an

exponentially stable semigroup,
(ii) ∀x ∈ D(A∗), Px ∈ D(A),
(
AQ+QA∗+Q(γ−2C∗

1C1−C∗
2C2)Q+B1B

∗
1

)
x = 0

and A∗ + (γ−2C∗
1C1 − C∗

2C2)Q generates an
exponentially stable semigroup,
(iii)

rσ(PQ) < γ2,

where rσ(PQ) stands for the spectral radius of PQ.
In this case, the controller K given by (K) and

M = A + (γ−2B1B
∗
1 − B2B

∗
2)P

−Q(I − γ−2PQ)−1C∗
2C2

N = −Q(I − γ−2PQ)−1C∗
2

L = B∗
2P

R = 0

(11)

is exponentially stabilizing and guarantees that we have
‖SK‖∞ < γ, ie

‖φres‖L2(Ω) + ‖u‖L2(Ω) ≤ γ‖w‖(L2(Ω))4 .

Finally, if the solutions to the Riccati equations exists,
then they are unique.

Upon additional assumptions that are not detailed here, it
is necessary to prove that A is the infinitesimal generator
of a C0-semigroup on the real separable Hilbert space X.
Actually, if we consider the unbounded linear operator

A1 : D(A1) → X(
e0

e1

e2

)
7→

(
0 I 0

−∆2 0 0
0 0 0

)(
e0

e1

e2

)
=

(
e1

−∆2e0

0

)

where

D(A1) =
{
e0 ∈ H4(Ω), e0 st (5)

}
× H2(Ω) × L2(Ω),

then one can prove that A1 is dissipative on X. Indeed,
we prove that for all x ∈ X,

〈A1x, x〉X ≤ 0

using the following scalar product on H2
bc(Ω) in cartesian

coordinates (x1, x2) ∈ Ω, as suggested in Lions et al.
[1972]:
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< u, v >H2

bc
(Ω)=

∫

Ω

∆u∆v − (1 − ν)

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)

+2(1 − ν)

(
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dΩ.

Moreover, one can easily check that A1 is also self-adjoint
and onto. Therefore, from Lumer-Phillips’ Theorem (see
Pazy [1983], p. 15), A1 generates a continuous semigroup
of linear contractions acting on X. And finally, since A is
the sum of A1 and of a linear operator bounded on X (as
F is assumed to be bounded, like F ), the proof is complete
(see Luo et al. [1999], p. 40).

Of course, from a numerical point of view, we need to get
an appropriate finite dimensional model.

4. A TRUNCATED MODEL FOR PRACTICAL
DESIGN

4.1 Truncation

The corresponding finite dimensional model can be pre-
sented as :




x′
N = ANxN + B1NwN + B2NuN

zN = C1NxN + D12NuN

yN = C2NxN + D21NwN

(12)

where the operators of system (P) have been replaced
by real-valued matrices computed on truncated hermitian
basis. We denote by NB the number of eigenfunctions of
operator ∆2 we consider and by NZ the number of Zernike
modes used to describe φtur. Then, xN ∈ R

2NB+NZ

is the state vector, wN ∈ R
2NB+2NZ is the exogenous

perturbation vector, uN ∈ R
NB is the control vector,

zN ∈ R
NB+NZ is the controlled output vector and yN ∈

R
NB+NZ is the measured output vector. The matrices AN ,

B1N , B2N , C1N , D12N , C2N and D21N are of appropriate
dimensions.

In order to compute these objects, we still consider the
case of a circular bimorph mirror which is free at all the
boundary (this is also the case of the mirror considered in
Section 4.2 below). The eigenvectors of operator

−
Q1

ρ
∆2 −

Q2

ρ
I

are given by, for all (k, j) ∈ N
2,

Lkj(r, θ) = akj

(
Jk

(
λkjr

a

)
+ ckjIk

(
λkjr

a

))
cos(kθ)

Mkj(r, θ) = akj

(
Jk

(
λkjr

a

)
+ ckjIk

(
λkjr

a

))
sin(kθ)

where (r, θ) are the polar coordinates of x ∈ Ω, Jk and Ik

are, respectively, ordinary and modified Bessel function

of first kind and order k, and −Q1

ρ

(
λkj

a

)4

− Q2

ρ the

corresponding eigenvalues. The family{
Lkj ,Mkj , (k, j) ∈ N

2
}

is an Hilbertian basis of H2
bc(Ω). The dimensionless coef-

ficients λkj and ckj depend on the boundary conditions
while akj is computed using a normalization condition on
the eigenvectors (see Amabili et al. [1995] for further

details). In what follows, we consider the case of Poisson
ratio ν = 0.2 corresponding to the material the mirror is
made of. Once a maximal azimuthal order is given (here
kmax = 5) the modes are classified according to increasing
λkj and one has:

i j k λkj ckj akj

1 0 2 2.37805 0.18773 3.6157
2 1 0 2.96173 -0.092478 2.1984
3 0 3 3.60924 0.075982 4.4749
4 1 1 4.51025 -0.019949 3.8317
5 0 4 4.76934 0.034281 5.2453
6 0 5 5.89565 0.016333 5.9506
7 1 2 5.94302 -0.0056226 4.4178
8 0 2 6.18269 0.0032602 3.1394
9 1 3 7.30051 -0.0018233 4.9425
10 2 1 7.72338 0.0007269 4.9616

The sequence of functions Lkj and Mkj need to be re-
ordered. They are now denoted by Bn and follow the
increasing values of λkj , alternating cosine and sine and
eliminating the null eigenvectors M0j . Therefore,

∀x ∈ X, x =
∑

n∈N, i≥1

αiBi(r, θ)

where (αn)n≥1 is a sequence of real numbers satisfying∑
n∈N, n≥1 α2

n < ∞.

In reference Blevins [1979], one can find that this basis
(Bn)n∈N with free boundary conditions is not orthogonal
in L2(Ω). However, numerically, we can prove that this
basis is nearly orthogonal, indeed lots of scalar products
in L2(Ω) are null and the others are small (10−6) in
comparison with unity. So, for more numerical facilities,
we will use the scalar product in L2(Ω) rather than in
H2

bc(Ω).

Given NB and NZ ∈ N, we compute AN , B1N , B2N , C1N ,
C2N , D12N and D21N using the ”Bessel” truncated basis
{B0, B1, . . . , BNB

} and the Zernike one {Z0, Z1, . . . , ZNZ
}.

We make analogous assumptions for b, c and d, i.e.
b = diagi(bi), c = diagi(ci) and d = diagi(di) where
(bi)i∈N, i≥1, (ci)i∈N, i≥1 and (di)i∈N, i≥1 are sequences of
real numbers. Futhermore φres is expressed on Besssel
functions, so we need to estimate a projection matrix
to define φtur with Bessel spatial coordinates. We note
Q this projection NB × NZ-dimension matrix. Thus, the
computed equation becomes:

φres,i = −
4π

λ
ei +

NZ−2∑

j=1

Qijφj+2

We denote by 0 each null matrix with the appropriate
dimensions so that each following matrix makes sense. We
get

AN =

[
0 1NB

0

−ω2
i 1NB

0 0

0 0 F

]
B1N =

[
0 0 0 0

b 0 0 0

0 0 G 0

]

B2N =




0

blockij

(
d̃31

ρ
〈∆φi, φj〉

)

0


 C1N =

[
−

4π

λ
1NB

0 Q

0 0 0

]

C2N =

[
blockij (ẽ31 〈∆φi, φj〉) 0 0

−
4π

λ
1NB

0 Q

]

D12N =

[
0

1NB

]
D21N =

[
0 0 0 d

0 c 0 0

]
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where ω2
i =

Q1

ρ

(
λi

a

)4

+
Q2

ρ
and 〈·, ·〉 is the usual scalar

product in L2(Ω).

4.2 Numerical results

To get more realistic results to our numerical simua-
tions, the physical background of the experimental device
SESAME of the Observatoire de Paris is considered. This
experimentation uses a bimorph mirror with a distribution
of 31 piezoelectric actuators. The piezoelectric inclusions
are PZT patches. We use the following physical constants:

• radius of the mirror: a = 25 × 10−3 m.

• stiffness coefficients:
Q1 = 84 Nm
Q2 = 11.25 × 108 Nm−3 .

• surfacic density: ρ = 16.3 kg.m−2.
• piezoelectric modulus: d̃31 = −0.0044 NV−1.
• wave length: λ = 550 nm.
• piezoelectric coefficient ẽ31 = −5.60 × 103Vm.

The performance of the control system is evaluated by
considering the spatial norm ‖φres‖L2(Ω) compared to:

‖φtur‖L2(Ω) =

Nz∑

i=3

φi(t)
2

For identical random initial conditions and tuning param-
eters chosen as bi = 0.001, ci = 0.002 and di = 0.003, ∀i,
the Figure 4 depicts our results.
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Fig. 4. ‖φtur‖L2(Ω) (-) and ‖φres‖L2(Ω) (–)

Using Monte Carlo simulations, the ratio between tempo-
ral average of ‖φtur‖L2(Ω) and ‖φres‖L2(Ω) is computing as
1.91 which represents a phase distortion attenuation of the
reflected wavefront of 48%. These results are of the same
order of magnitude as those presented in Paschall et al.
[1993].

5. CONCLUSION

In this paper, a new framework to deal with the problem
of adaptive optics is proposed. It is mainly based on an
infinite-dimensional model of the deformable mirror as-
sociated with the definition of a standard model on which
robust control techniques may be applied. The preliminary
numerical experiments show a performance level compara-
ble with the results of reference Paschall et al. [1993]. The
main advantage of the approach suggested in this paper
is that no interaction matrix is required to control the

system. The authors are planing to take into account a
model for the Shack-Hartmann wavefront sensor including
a time delay associated with processing measurements.
This will be covered in a next study.
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