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Abstract: This paper presents a method that ensures persistency of excitation for subspace
predictive control. This control method is characterized by the combination of a predictive
control law with a subspace predictor. The subspace predictor is continuously being adapted
to the controlled system by using input-output data from this system. For this purpose the
input-output data should be persistently exciting. In this paper a method is proposed to ensure
persistency of excitation by adding a term to the cost function used by the predictive control
law. This term is designed such that only the least excited directions of the input space are
additionally excited. An advantage of the method is that the optimization problem that needs
to be solved for the predictive controller can still be solved by using quadratic programming.
The proposed excitation method is evaluated in simulation on a detailed nonlinear model of a
transport aircraft. The simulation results clearly show the usefulness of the proposed method.

1. INTRODUCTION

Subspace predictive control (SPC) is a control method
that is characterized by the combination of a predictive
control law and a subspace predictor. The concept of SPC
was first described by Favoreel and De Moor [1999], after
which it was used by several other researchers [Woodley
et al., 2001, Kadali et al., 2003] . The subspace predictor is
derived according to subspace identification theory using
input-output data of the controlled system. This theory
has gained much interest in the last two decades [Van
Overschee and De Moor, 1996, Verhaegen and Dewilde,
1992] because of its efficient way of identifying state-space
models for high order, multiple input, multiple output,
linear time-invariant systems. The predictive control law
that is used for SPC as described by Favoreel and De Moor
[1999], is a standard generalized predictive control law
[Maciejowski, 2002]. The main advantage of SPC is that
it is capable of adapting to the controlled system because
the subspace predictor is continuously updated by new
input-output data. This advantage makes SPC very useful
for fault-tolerant control (FTC) [Hallouzi and Verhaegen,
2007], for which it is required that the controller can adapt
to post-fault conditions.

An important requirement for obtaining a subspace pre-
dictor that can accurately predict the system outputs, is
that the available input-output data contains sufficient
information on the system. This requirement can be met
by ensuring that the input signals are persistently exciting
the system. In this paper, the notion of persistency of
excitation (PE) is directly linked to non-singularity of
a data matrix that contains input signals stacked in a
particular order. This matrix will be explained later in
the paper. The requirement for PE can conflict with the
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control objective, e.g. in the steady-state case. In such a
case the control objective can be met by using constant in-
put signals, which are not persistently exciting the system.
If the input-output data in this case is used to update the
subspace predictor, this can lead to a drastic degradation
of the performance of the predictor. Therefore, in order
to ensure PE, even in the steady-state case, the system
should be excited more than strictly necessary for control.
Instead of using a randomly generated excitation signal,
such additional excitation can be derived by minimizing
some control-oriented measure of model mismatch, as is
done for example by Bombois et al. [2006] and Forssell
and Ljung [2000] for prediction error identification.

In the framework of simultaneous predictive control and
system identification, methods for excitation have been
proposed by formulating additional constraints to the
optimization problem related to the predictive control law
[Aggelogiannaki and Sarimveis, 2006, Shouche et al., 1998].
The drawback of these methods is that the additional
constraints are non-convex. The result of this is that a non-
convex optimization problem should be solved each time
step to compute the control input. Standard constrained
generalized predictive control problems require solving
a quadratic program, which is a convex optimization
problem [Maciejowski, 2002]. Since solving non-convex
problems is significantly more involved than solving convex
problems, the additional non-convex constraints are not
desirable.

The contribution of this paper is that an excitation method
is proposed that allows the required optimization problem
to remain convex and quadratic. This excitation method
only considers the input directions that are least excited.
These directions are then additionally excited. In this
aspect the proposed excitation method is related to the
methods described by Bombois et al. [2006], Forssell and
Ljung [2000]. The excitation method is integrated with
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SPC by adding an extra term to the cost function of
the predictive control problem. The additional term al-
lows the optimization problem to remain quadratic. This
problem can therefore still be solved by using quadratic
programming, which makes it possible to use the SPC
algorithm with excitation for on-line applications. The
SPC algorithm with excitation is evaluated in simulation
on a detailed nonlinear model of a transport aircraft.

The organization of this paper is as follows. In Section
2, SPC theory is described briefly. Next, in Section 3 the
proposed method for ensuring PE is explained. Section
4 contains the simulation results. Finally, concluding re-
marks are provided in Section 5.

2. SUBSPACE PREDICTIVE CONTROL

The SPC algorithm proposed by Favoreel and De Moor
[1999] elegantly combines two theories, namely subspace
identification and generalized predictive control. This com-
bination results in a controller that does not require a
model of the system in advance. Instead, based on input-
output data, a subspace predictor can be identified that
is used by the predictive controller. Because SPC does
not require an explicit model of the system, it can be
referred to as a “model-free” control method [Favoreel
et al., 1999]. However, this name is arguable because the
subspace predictor can be considered to be a kind of model
[Woodley et al., 2001]. In this section, first the subspace
predictor is derived. Next, this predictor is integrated with
a predictive controller.

2.1 Subspace predictor

The general problem considered in linear subspace identi-
fication is to find system matrices A, B, C, and D, given
measurements of the inputs uk ∈ R

m and outputs yk ∈ R
l

of a linear time-invariant state-space system described by

xk+1 =Axk +Buk, (1)

yk =Cxk +Duk, (2)

where xk ∈ R
n is the state of the system. Matrix input-

output relations are commonly used in subspace identi-
fication. These relations can be obtained by a recursive
substitution of (1)-(2) and they are given by

Yp = ΓjXp +HjUp, (3)

Yf = ΓjXf +HjUf . (4)

Let the measurements of the inputs and outputs uk and
yk be given for k ∈ {0, 1, . . . , 2M + j−2}, then the Hankel
matrices for the output are constructed as

Yp =







y0 y1 · · · yj−1

y1 y2 · · · yj

...
...

. . .
...

yM−1 yM · · · yM+j−2






,

Yf =







yM yM+1 · · · yM+j−1

yM+1 yM+2 · · · yM+j

...
...

. . .
...

y2M−1 y2M · · · y2M+j−2






, (5)

and the Hankel matrices for the input (Up and Uf ) are
constructed in a similar manner. The subscripts p and f
denote “past” and “future”, respectively. The matrices Xp

and Xf are defined as

Xp = [x0 x1 · · · xj−1] , (6)

Xf = [xM xM+1 · · · xM+j−1] . (7)

The parameterM , which denotes the number of block rows
of the Hankel matrices is typically chosen much smaller
than the number of columns j. The observability matrix
Γj and the block Toeplitz matrix Hj are given by

Γj =







C
CA
...

CAj−1






, Hj =







D 0 . . . 0
CB D . . . 0
...

...
. . .

...
CAj−2B CAj−3B . . . D






.

(8)
A relation between Xf , Xp, and Up can be formulated as

Xf = AjXp + ∆jUp, (9)

where ∆j = [Aj−1B Aj−2B · · · B]. The objective of
the subspace predictor is to provide a prediction of future
outputs (i.e. Yf ) given the past inputs and outputs (i.e. Yp

and Up) and a future control input sequence (i.e. Uf ). Such
a prediction can be obtained by manipulation of the matrix
relations (3), (4), and (9). This manipulation results in the
following relation for M, j → ∞

Yf = Γj

[

AjΓ†
j ∆j −AjΓ†

j

] [
Yp

Up

]

+HjUf ,

=LwWp + LuUf , (10)

where Wp = [Y T
p UT

p ]T and Lw and Lu are the predictor
matrices. These predictor matrices can be computed ap-
proximately by solving the following least-squares problem

min
Lw,Lu

∥
∥
∥
∥
Yf − [Lw Lu]

[
Wp

Uf

]∥
∥
∥
∥

2

F

. (11)

This problem can be solved efficiently by computing the
RQ-decomposition

[
Wp

Uf

Yf

]

=

[
R11 0 0
R21 R22 0
R31 R32 R33

] 



QT
1

QT
2

QT
3



 , (12)

and subsequently computing

L = [R31 R32]

[
R11 0
R21 R22

]−1

= [Lw Lu], (13)

where Lw ∈ R
Ml×(m+l)M and Lu ∈ R

Ml×Mm.

Each sample time new input-output data becomes avail-
able. This new data should be used to update the predictor
matrices Lw and Lu. Computing a new RQ-decomposition,
similar to (12), at each sample time would make the control
algorithm computationally demanding and could prohibit
its on-line implementation. Therefore, the update of the
predictor matrices can be done more efficiently, e.g. by
using Cholesky updates [Woodley et al., 2001] or by using
Givens rotations [Hallouzi and Verhaegen, 2007].

2.2 Integration of subspace predictor with predictive control

Once the predictor matrices Lw and Lu are known, they
are used in the following optimization problem to compute
the control input:
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min
uf ,∆uf

(ŷf − rf )TQa(ŷf − rf ) + uT
f Rauf + ∆uT

f R
∆
a ∆uf ,

s.t. ∆Umin ≤ ∆uf ≤ ∆Umax,

Umin ≤ uf ≤ Umax, (14)

Ymin ≤ ŷf ≤ Ymax,

where uf = [uT
t+1 uT

t+2 · · · uT
t+M ]T , rf is a similarly

defined vector containing the future reference signals, and
t denotes the current time step. The matrices Lw and Lu

are used to compute ŷf as ŷf = Lwwp + Luuf , where wp

denotes [yT
p uT

p ]T with yp = [yT
t−M+1 yT

t−M+2 · · · yT
t ]T

and up = [uT
t−M+1 uT

t−M+2 · · · uT
t ]T . Qa, Ra, and

R∆
a are weighting matrices that can be used for tuning

the predictive controller. The vectors Umin, Umax, Ymin,
and Umax contain the limit values of the corresponding
variables. In order to convert (14) to a problem with only
∆uf as an optimization variable, the relation

uf = Ut +







Im 0 . . . 0
Im Im . . . 0
...

...
. . .

...
Im Im . . . Im







∆uf = Ut + E∆uf , (15)

is used, where Ut = [uT
t uT

t · · · uT
t ]T . This relation leads

to the following expression for ŷf :

ŷf = Yt + Linc
w ∆wp + Linc

u ∆uf , (16)

where Yt = [yT
t yT

t · · · yT
t ]T and Linc

w can be obtained as
follows:

Lw =








L(1)
w

L(2)
w
...

L(M)
w







, Linc

w =











L(1)
w

L(1)
w + L(2)

w
...

M∑

i=1

L(i)
w











, (17)

where L
(i)
w ∈ R

l×(m+l)M . The term Linc
u can be computed

as follows

Linc
u = Lu







Im 0 . . . 0
Im Im . . . 0
...

...
. . .

...
Im Im . . . Im






. (18)

Next, the optimization problem can be formulated as a
standard quadratic programming problem

min
∆uf

1

2
∆uT

f H∆uf + cT ∆uf ,

s.t. Aineq∆uf ≤ bineq, (19)

with

H = 2
(
(Linc

u )TQaL
inc
u + ETRaE +R∆

a

)
, (20)

cT = 2
( (
Yt + Linc

w ∆wp − rf
)T
QaL

inc
u

+ UT
t RaE

)

, (21)

Aineq =
[
− I − ET − (Linc

u )T I ET (Linc
u )T

]T
, (22)

bineq =
[
− (bmin

1 )T − (bmin
2 )T − (bmin

3 )T

(bmax
1 )T (bmax

2 )T (bmax
3 )T

]T
, (23)

where bmin
1 = ∆Umin, b

max
1 = ∆Umax, b

min
2 = Umin −

Ut, b
max
2 = Umax − Ut, b

min
3 = Ymin − (Yt + Linc

w ∆wp) and

bmax
3 = Ymax − (Yt + Linc

w ∆wp). The interested reader is
referred to the work by Hallouzi and Verhaegen [2007] for
a more elaborate explanation of the derivations made in
this section.

3. PERSISTENCY OF EXCITATION

The control law defined in (19) can result in a constant
control signal (i.e. ∆uf = 0), e.g. in a steady-state case.
The result of this is that the matrix to be inverted in (13)
becomes singular. Therefore, a method is proposed that
prevents this. This method is focused on the part of the R
matrix computed in (12) that can be directly manipulated.
Since Uf is the data matrix that is directly manipulated
by the SPC algorithm, its corresponding part in the R-
matrix, i.e. [R21 R22], can also be directly manipulated.
Note that by directly manipulating [R21 R22], matrix R11

is also (indirectly) manipulated. Now that it is determined
that [R21 R22] is the part of the R matrix that should
be manipulated, it should be determined how it should
be manipulated. A sensible approach to do this, is to
additionally excite the least excited directions of Uf , i.e.
those directions in the input space that actually need to
be excited. The least excited directions can be determined
by performing a singular value decomposition (SVD) on
[R21 R22]. Computing an SVD of [R21 R22] is equivalent
to computing an SVD of Uf , but it can be done more
efficiently. The SVD of [R21 R22] has the following form:

[R21 R22] = [c1 c2 · · · cMm−1 cMm] ·











s1 0 0 . . . 0 0 . . . 0

0 s2
. . .

. . .
... 0 . . . 0

0
. . .

. . .
. . . 0 0 . . . 0

...
. . .

. . . sMm−1 0 0 . . . 0
0 . . . 0 0 sMm 0 . . . 0

























v1
v2
...

vMm−1

vMm

...
vj














T

, (24)

where ck ∈ R
Mm and vk ∈ R

1×j . The least excited
direction of [R21 R22] (and hence Uf ) is cMm and the
second least excited direction is cMm−1, etc.

3.1 Computing the SVD using inverse iterations

Computing the complete SVD of matrix [R21 R22] be-
comes a computationally burdensome task if the dimen-
sions of this matrix are large. The need to compute such
an SVD at each sample time of the control algorithm would
make it unsuitable for on-line implementation. Moreover,
the complete SVD is not required since only the least
excited directions are desired. Therefore, only these least
excited directions are computed efficiently by using the
inverse iteration algorithm [Chan, 1984] that only com-
putes that part of an SVD that corresponds to the smallest
singular value. The inverse iteration algorithm is described
as follows. Let csv and vsv be vectors from the SVD of a
matrix Φ that correspond to the smallest singular value
σsv. In the case of (24), this would mean that csv = cMm,
vsv = vT

Mm and σsv = sMm. The inverse iteration al-
gorithm starts with an initial guess for csv at k = 0,
followed by an iteration that should be performed until
convergence:
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(1) Φṽsv(k + 1) = csv(k).
(2) vsv(k + 1) = ṽsv(k + 1)/‖ṽsv(k + 1)‖2.
(3) ΦT c̃sv(k + 1) = vsv(k + 1).
(4) csv(k + 1) = c̃sv(k + 1)/‖c̃sv(k + 1)‖2.

After convergence of the iteration, the smallest singular
value can be computed as σsv = 1/‖ṽsv‖2. In order to
run the inverse iteration algorithm the pseudo-inverse of
matrix Φ, denoted by Φ†, should be computed since it
is required in steps 1 and 3. For example, step 1 of the
iteration is solved by ṽsv(k + 1) = Φ†csv(k). It suffices
to compute the pseudo-inverse only once, since (ΦT )† =
(Φ†)T .

The described inverse iteration sequence computes only
one direction that is least excited. It can be desirable to
compute more than one direction. This can also be done
very efficiently using inverse iterations. For this purpose
the influence of the least excited direction is removed to
compute the second least excited direction. Since not Φ
itself, but Φ†, is used in the inverse iteration algorithm, the
influence of the least excited direction is removed directly
from Φ† in the following way:

Φ̃† = Φ† − vsvc
T
sv/σsv. (25)

Next, the second least excited direction can be computed
by applying the inverse iteration algorithm using Φ̃†. This
second sequence of iterations would then result in cMm−1,
vMm−1, and sMm−1 from (24). The same procedure can
be repeated several times to obtain more directions that
are non-persistently excited.

3.2 Integration into cost function

Once one or more non-persistently excited directions are
obtained, the cost function used in the optimization prob-
lem defined in (19) should be modified such that the sys-
tem is additionally excited in the non-persistently excited
directions. For this problem the following optimization is
introduced:

min
uf

∥
∥
∥
∥
∥
∥
∥
∥

ρ







cMm

cMm−1

...
cMm−NPE+1






−







I
I
...
I






uf

∥
∥
∥
∥
∥
∥
∥
∥

2

2

, (26)

where ρ denotes the excitation level and NPE denotes the
number of least excited excited directions that should be
additionally excited. Since by definition of the SVD, the
directions ci are normalized vectors, the norm of vector
[(cTMm cTMm−1 · · · cTMm−NPE+1]

T , which is
√
NPE,

might be too small to persistently excite the system.
Therefore, the parameter ρ is introduced. The higher ρ
is chosen, the higher the excitation level. The objective
of the optimization problem posed in (26) is to get uf as
close to the non-persistently excited directions as possible.

The optimization variable considered in (19) is ∆uf .
Therefore the optimization variable in (26) should be con-
verted from uf to ∆uf . This can be done by substituting
(15) into (26), which results in

min
∆uf

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

P
︷ ︸︸ ︷

ρ







cMm

cMm−1

...
cMm−NPE+1






−







I
I
...
I






Ut −

I
︷ ︸︸ ︷






I
I
...
I






E∆uf

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

. (27)

Evaluation of the cost function in the above optimization
problem results in

Jexc(∆uf ) = (∆uf )TITI∆uf − 2PTI∆uf . (28)

This function can then be added to the cost function
from (19). Before this is done, a multiplication factor τ
is introduced that weights Jexc(∆uf ) before it is added.
This factor τ allows τJexc(∆uf ) to be in the same order of
magnitude as the other terms in the cost function. It can be
considered to be the same kind of tuning parameter as Qa,
Ra, and R∆

a , relative to which it should be chosen. After
addition of τJexc(∆uf ), the modified H and c matrices
(defined in (20) and (21)) become

Hexc = 2
(

(Linc
u )TQaL

inc
u + ETRaE

+R∆
a + τITI

)

, (29)

cTexc = 2
( (
Yt + Linc

w ∆wp − rf
)T
QaL

inc
u

+ UT
t RaE − τPTI

)

, (30)

and Aineq and bineq remain unaltered. It is apparent that
the resulting optimization problem can still be solved by
quadratic programming.

4. SIMULATION RESULTS

The proposed method for ensuring PE is evaluated on a
detailed nonlinear model of a large transport aircraft. This
model is used as a benchmark model in Action Group
16 (AG16) of the European GARTEUR project, which
focuses on fault-tolerant control. This model has been
originally developed for aircraft simulation and analysis
by van der Linden [1998] and has since then been adapted
and used by various researchers [Smaili et al., 2006].

In this paper a controller is developed for this model
using SPC as described in Section 2. Although the model
has a total of 30 different inputs, only 4 of them are
used. These 4 inputs allow 3 elementary maneuvers to be
performed, which are: descend/ascend, turn, and change
speed. Furthermore, 7 output signals of the aircraft are
used for the SPC algorithm. An overview of the inputs and
outputs used by the SPC algorithm is given in Table 1. It

Table 1. Input and output signals used by the
SPC algorithm

Outputs Inputs

roll angle φ [deg] Ailerons δa [deg]
pitch angle θ [deg] Elevators δe [deg]
yaw angle ψ [deg] Rudders δr [deg]

true airspeed VTAS [m/s] Engine Pressure Ratio (EPR) [-]
angle of attack α [deg]
sideslip angle β [deg]

altitude h [m]
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should be noted that the 4 input signals all drive more than
one actuator. For example, δa drives all 4 aileron surfaces
and EPR drives all 4 engines on the transport aircraft.

The simulation scenario consists of an initial phase of
straight flight with h = 980 m, VTAS = 92.6 m/s, and
ψ = 180 deg. The parameters h and ψ are controlled by
manipulating θ and φ, respectively. After the initial phase,
a turn is made to ψ = 300 deg starting at T = 70 s. The
last maneuver is a descent to h = 100 m, which is initiated
at T = 150 s. This scenario is simulated for the cases with
and without additional excitation. In the case of additional
excitation, the three least excited directions are computed
and additionally excited. Tuning of the parameters ρ and
τ is performed empirically and is very much dependent on
the parameters of the controlled system. The parameter ρ
is chosen such that the vector containing the least excited
directions and the vector containing the input signals (see
(26)) have a norm that is in the same order of magnitude.
The parameter τ is chosen such that the term responsible
for the additional excitation is weighted properly relative
to the other terms of the predictive control cost function.

The simulation results for the scenario performed with
SPC without additional excitation are depicted in Figures
1 and 2. The simulation results obtained with SPC with
additional excitation are depicted in Figures 3 and 4. An
important observation that can be made concerns the be-
havior just after a maneuver change (i.e. just after T = 70 s
and T = 150 s) for the two cases. It can be observed that
for the case without additional excitation, the controller
requires some time to adapt to the new situation. This is
evident from the degraded control performance just after
a maneuver due to uncontrolled excitation. In the case of
SPC with additional excitation this phenomenon is not
recognizable. The reason for this is that the controller can
cope with more conditions, including the maneuvers, as a
result of the controlled additional excitation. Another im-
portant observation that can be made is that in the steady-
state cases the control performance of the controller with
additional excitation is slightly worse than the controller
without additional excitation. This is an inherent result of
the additional excitation. Therefore, a trade-off should be
made between controller performance and excitation level.

In order to evaluate how the proposed method affects the
excitation of the system, the reciprocal condition number
of [R21 R22] is analyzed. For the two cases, this condition
number is depicted in Figure 5. A low reciprocal condition
number indicates a (nearly) singular matrix and therefore
a low excitation level. In Figure 5 it can be clearly seen that
in the steady-state cases the condition number for the case
without additional excitation becomes very small, while
the condition number of the case with excitation remains
at an acceptable level. Only in the time intervals in which
the controller without excitation requires adaptation to a
new condition, i.e. after a maneuver change, the condition
number of the case without excitation becomes larger.
Moreover, it can be seen in Figure 5 that just after the
descent is initiated at T = 150 s, the condition number
decreases for both cases. The reason for this is the EPR
input. Since during a descent the aircraft picks up speed
the engines should not be producing thrust in order to
keep an appropriate airspeed. This means that the EPR
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Fig. 1. SPC input signals for the scenario without addi-
tional excitation.
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Fig. 2. Response of the controlled system variables for the
scenario without additional excitation.

input is held at its minimum limit by the controller. So, in
this case control performance has priority over excitation.

5. CONCLUSIONS

A method has been proposed to ensure persistency of exci-
tation in subspace predictive control. This control method
combines a predictive control law with a subspace pre-
dictor. The predictor that is identified from input-output
data of the system requires that this data is persistently
exciting. The notion of persistency of excitation is related
to non-singularity of a Hankel matrix containing input
signals. In order to ensure persistency of excitation an
additional term is added to the cost function used by
the subspace predictive controller. This additional term
ensures that the system is excited in the least excited
directions of the input space. A big advantage of the
proposed method is that the optimization problem that
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Fig. 3. SPC input signals for the scenario with additional
excitation.
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Fig. 4. Response of the controlled system variables for the
scenario with additional excitation.

is required to be solved each time step can be solved by
using quadratic programming. This is in contrast to meth-
ods proposed earlier that require a non-convex problem
to be solved. The proposed method has been evaluated
using a control problem of a detailed nonlinear model of
a transport aircraft. It is shown that this system can be
excited in closed loop such that the input data is persis-
tently exciting. Although persistency of excitation comes
at the cost of a slightly degraded control performance, it is
shown that a satisfactory trade-off can be made between
persistency of excitation and control performance.
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