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Abstract: The problem of output regulation for nonlinear control systems with guaranteed
transient performances in the presence of uncertainties is discussed, where the nonlinear systems
are nonaffine in the control. The fast dynamical controller with the highest output derivative
in feedback loop is used, where the controller is proper and can be implemented without ideal
differentiation. Two-time-scale motions are induced in the closed-loop system and the method of
singular perturbations is used to analyze the closed-loop system properties. Stability conditions
imposed on the fast and slow modes and sufficiently large mode separation rate can ensure that
the full-order closed-loop system achieves the desired properties in such a way that the output
transient performances are desired and insensitive to external disturbances and variations of
nonlinear system parameters. The problem of absolute stability analysis of the fast-motion
subsystem for nonaffine systems with two-time-scale motions is considered in the presence of a
sector-like condition in the control.

1. INTRODUCTION

The importance of output regulation problem for non-
linear time-varying control systems arises from various
applications, such as aircraft control, robotics, mechatron-
ics, chemical industry, electrical and electro-mechanical
systems. Variations and uncertainties of parameters and
disturbances are inherent property of many real-time con-
trol plants. Moreover, the control systems must maintain
desired transient performances in the presence of uncer-
tainties.

Various methodologies are available for controller design of
affine-in-control systems, where the system that is affine
in the control is assumed to have the following form

Ẋ = f(X,w) +G(X,w)u,

y = h(X,w),
(1)

where X(t) is the state vector of the system; y(t) is
the output of the systems; w(t) is the vector of external
disturbances or varying parameters; u(t) is the input of
the system.

In contrast to the system given by (1), the nonaffine
systems in the control may have the following form

Ẋ = f(X,w, u),

y = h(X,w),
(2)

where an explicit inversion of the function z = f(X,w, u)
with respect to control variable u(t) is impossible for given
z(t), X(t), w(t).

? This work was supported in part by RFBR (grant 08-08-00982)
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The need of nonaffine-in-control systems investigations
rises in various important practical applications, for in-
stance, magnetic servo levitation control system discussed
by Gutierrez and Ro (2005), controller design for a
nonaffine UAV model reported by Unnikrishnan and Bal-
akrishnan (2006), pendulum control systems presented
by Shiriaev et al. (1999), Shiriaev and Fradkov (2000)
and Young et al. (2006), controller design for chemical
reactions discussed by Ge et al. (1998), etc.

The dynamic inversion control methodology for nonaffine-
in-control systems in the presence of uncertainties reported
by Lavretsky and Hovakimyan (2005) based on implemen-
tation of the radial basis function neural network (RBF
NN) approximation of the unknown nonlinearity, state pre-
dictor, and the adaptive law for RBF NN weights. Hence,
the whole closed-loop system is too complicated one, where
the order of the closed-loop system depends on the number
of RBF’s. The other feature of this design methodology
is that the method of singular perturbations is used to
analyze the closed-loop system properties. The method of
singular perturbations was reported by Tikhonov (1952);
Klimushchev and Krasovskii (1962); Kokotović et al.
(1976); Kokotović (1984); Kokotović et al. (1999); Naidu
(2002) and many others researchers.

In contrast to the control methodology discussed by
Lavretsky and Hovakimyan (2005); Hovakimyan et al.
(2006), the approach reported by Yurkevich (1993, 2004)
allows to get the controller of the same order as the
relative degree of the uncertain system (2), where the pro-
posed design methodology guarantees the desired output
transient performances in presence of unknown external
disturbances and variations of parameters of the system.
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There are two points of novelty in the paper. First, it
has been shown that the design methodology reported by
Yurkevich (2004) can be extended for nonaffine in control
systems. Second, the fast transients analysis is treated in
the paper based on application of absolute stability criteria
discussed by Yakubovich (1962, 1963); Kalman (1963);
Aizerman and Gantmakher (1964); Popov (1962); Gelig
(1965). This paper is the further development of the results
discussed by Yurkevich (2008).

2. CONTROL PROBLEM STATEMENT

Consider a SISO nonaffine-in-control continuous-time sys-
tem

x(n) = f(X,w, u), X(0) = X0, (3)

where X = {x, x(1), . . . , x(n−1)}T is the state vector,
it is assumed that components x(1), . . . , x(n−1) are not
measurable, but the component x(t) is the measurable
output (controlled variable) of the system, x ∈ R; X(0) =
X0 is the initial state, X0 ∈ ΩX ; ΩX is a compact set,
ΩX ⊂ R

n; w is the vector of external disturbances or
varying parameters, which are not measurable, w ∈ Ωw,
Ωw is a compact set; u(t) is the input of the system, u ∈ R.
The nonlinear scalar function f(X,w, u) is continuous one
for all its arguments (X,w, u) ∈ ΩX,w,u = ΩX ×Ωw ×Ωu,
and f(X,w, u) is unknown function as well. The other
conditions imposed on the properties of f(X,w, u) are
defined below.

A control system is being designed so that

lim
t→∞

e(t) = 0, (4)

where e(t) is an error of the reference input realization,

e(t) , r(t) − x(t), and r(t) is the reference input.

3. INSENSITIVITY CONDITION

Consider the reference model of the desired output behav-
ior for (3) in the following form x(s) = Gd(s)r(s), where

Gd(s) =
Bd(s)

Ad(s)

=
T−n[ad

ρT
ρsρ + ad

ρ−1T
ρ−1sρ−1 + · · · + ad

1Ts+ 1]

sn + ad
n−1T

−1sn−1 + · · · + ad
1T

1−ns+ T−n
. (5)

Let the polynomial Ad(s) be stable, the parameters of
Ad(s) are selected in accordance with the desired transient
performances for x(t), as well as ρ is selected in accordance
with the desired system type of the reference model, ρ < n.
From Gd(s), the reference model of the desired behavior
for x(t) in the form of the n-th order stable differential
equation

x(n) = −a
d
n−1

T
x(n−1) − · · · − ad

1

T n−1
x(1) − 1

T n
x

+
ad

ρ

T n−ρ
r(ρ) · · · + ad

1

T n−1
r(1) +

1

T n
r (6)

results. Let us rewrite the equation (6), for short, as

x(n) = F (X,R), (7)

where R = {r, r(1), . . . , r(ρ)}T and x(t) exponentially
converges to r if r = const.

Denote eF , F (X,R) − x(n), where eF is the realization
error of the desired behavior assigned by (7) and x(n) is
defined by (3). Accordingly, if the condition

eF = 0 (8)

holds, then the behavior of x(n) with prescribed dynamics
of (7) is fulfilled, that is the same as x(s) = Gd(s)r(s).
Accordingly, e(s) = [1 − Gd(s)]r(s), thus e(t) → 0
exponentially as t→ ∞ for r = const.

Hence, the output regulation problem given by (4) has
been reformulated as the requirement (8). Expression (8)
is called as the insensitivity condition for the behavior of
the output x(t) with respect to the external disturbances
and varying parameters of the system (3). In accordance
with (3), the condition (8) can be rewritten as

F (X,R) − f(X,w, u) = 0. (9)

Assumption 1. Let an isolated root of (9) exists, which can
be denoted as the control function

uid(t) = f−1(X(t), w(t), F (X(t), r(t))) (10)

in some neighbourhood of the point (X,R,w), where uid(t)
is not available explicitly as well as uid(t) may be non-
unique solution, in general.

The control function uid(t) is called as the nonlinear
inverse dynamics solution and one corresponds to the
desired output behavior of (3) prescribed by (7).

Remark 1. From the properties of (5) it follows, if the
condition (8) holds in the system (3), then we get

(i) robust zero steady-state error of the reference input
realization;

(ii) desired output performance specifications such as
overshoot, settling time, and system type;

(iii) insensitivity of the output transient behavior with
respect to smoothly varying parameters of the system
(3) and unknown external disturbances.

4. MAIN RESULTS

4.1 Control law

In order to keep hold of (8), that is (9), under the condition
of unknown external disturbances and varying parameters,
as well as unknown nonlinear function f(X,w, u) of the
system (3), let us consider the feedback control law given
by the following differential equation:

µqu(q) + dq−1µ
q−1u(q−1) + · · · + d1µu

(1) + d0u

= k0{F (X,R) − x(n)}, (11)

where the n-th derivative of x(t) is used in feedback loop,
µ is a small positive parameter, U = {u, u(1), . . . , u(q−1)}T ,
U ∈ ΩU ⊂ R

q , and U(0) ∈ Ω0
U ⊂ ΩU .

Remark 2. If q ≥ n and n > ρ, then the controller (11)
is proper and one can be rewritten as the system of state
space differential equations given by

U̇ = AcU + Bcx+Ecr,

u = CcU +Dcx.
(12)

An example of control law given by (11) for q = n = 2 and
ρ = 0 in the form (12) has been shown below in Section 5.
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4.2 Two-time-scale motions in the closed-loop system

In accordance with (3) and (11), the closed-loop system is
given by

x(n) = f(X,w, u), (13a)

µqu(q) + dq−1µ
q−1u(q−1) + · · · + d1µu

(1) + d0u

= k0{F (X,R) − x(n)}. (13b)

Theorem 1. If d0 = 0 and µ → 0, then two-time-scale
motions are induced in the closed-loop system (13) such
that the slow-motion subsystem (SMS) is the same as the
reference model equation (7), as well as the fast-motion
subsystem (FMS) is given by

µ
d

dt
uj = uj+1, j = 1, . . . , q − 1,

µ
d

dt
uq =−k0f(X,w, u1) − d1u2 · · · − dq−1uq (14)

+k0F (X,R),

where X and w are treated as the constant values during
the transients in (14).

Proof. Substitution of (13a) into (13b) yields

x(n) = f(X,w, u), (15a)

µqu(q) + · · · + d1µu
(1) + d0u+ k0f(X,w, u)

= k0F (X,R). (15b)

Let us rewrite the closed-loop system equations (15) as

d

dt
xi = xi+1, i = 1, . . . , n− 1,

d

dt
xn = f(X,w, u1),

µ
d

dt
uj = uj+1, j = 1, . . . , q − 1, (16)

µ
d

dt
uq =−d0u1 − k0f(X,w, u1) · · · − dq−1uq

+k0F (X,R),

where U1 = {u1, u2, . . . , uq}T and

uj = µj−1u(j−1), ∀ j = 1, . . . , q.

Since µ is a small parameter, the above equations are
the singularly perturbed differential equations. If µ → 0,
then fast and slow modes are forced in the closed-loop
system and the time-scale separation between these modes
depends on the parameter µ.

Let us introduce the new fast time scale t0 = t/µ. Hence,
from (16), we get

d

dt0
xi = µxi+1, i = 1, . . . , n− 1,

d

dt0
xn = µf(X,w, u1),

d

dt0
uj = uj+1, j = 1, . . . , q − 1,

d

dt0
uq =−d0u1 − k0f(X,w, u1) − d1u2 · · · − dq−1uq

+k0F (X,R),

as the closed-loop system equations in the new time scale
t0. It is easy to see that as µ → 0, we get the FMS
equations in the new time scale t0, that is

d

dt0
uj = uj+1, j = 1, . . . , q − 1,

d

dt0
uq =−d0u1 − k0f(X,w, u1) − d1u2 · · · − dq−1uq

+k0F (X,R).

Take d0 = 0 in order to include an integral action into
the control loop and, accordingly, provide the robust zero
steady-state error. Then, returning to the primary time
scale t = µt0, we obtain the FMS given by (14).

Next, take µ = 0, then from (14) the condition (9) results.
Hence, by (10), U1 = U id

1 is the equilibrium point of the
FMS (14), where U id

1 = {uid
1 , 0, . . . , 0}T and uid

1 = uid.
Substitution of d0 = 0 and µ = 0 into (16) yields the
so-called reduced system (that is the SMS of (16))

d

dt
xi = xi+1, i = 1, . . . , n− 1, (17)

d

dt
xn = F (X,R), X(0) = X0,

which is the same as the reference model equation (7) that
is the exponentially stable linear system.

Assumption 2. Let U id
1 be the exponentially stable equi-

librium point uniformly in (X,R,w) of the FMS given
by the equation (14) and ΩU1

= {U1 ∈ R
q | ‖U1 −

U id
1 ‖2 ≤ δ, δ > 0} is a subset of the region of attraction

for U id
1 .

Remark 3. Assumption 2 validity can be maintained by
proper selection of controller parameters as shown below.

Denote Xref = {xref
1 , xref

2 , . . . , xref
n }T , where Xref (t) is

a solution of (17) on [0,∞) for initial conditions given by
Xref (0) = X(0) ∈ ΩX . Denote Xµ = {xµ

1 , x
µ
2 , . . . , x

µ
n}T ,

Uµ
1 = {uµ

1 , u
µ
2 , . . . , u

µ
q }T , where Xµ(t) and Uµ

1 (t) are
solutions of (16) on [0,∞) for initial conditions given by
Xµ(0) = X(0) ∈ ΩX , Uµ

1 (0) = U1(0) ∈ ΩU1
.

Corollary 1. From the exponential stability of (14) and
(17), in accordance with the basic theorem on singular per-
turbations (see, for instance, Klimushchev and Krasovskii
(1962); Hoppensteadt (1966); Khalil (2002)) there exists
a positive constant µ? such that for all t ≥ 0, X0 ∈ ΩX ,
U1 ∈ ΩU1

, and 0 < µ < µ?, the unique solution of (16)
exists on [0,∞) and the condition

Xµ −Xref = O(µ) (18)

holds uniformly for t ∈ [0,∞).

Remark 4. Assumption 2 implies that the condition (18)
holds despite that f(X,w, u) is unknown function. So, if
a sufficient time-scale separation between the fast and
slow modes in the closed-loop system and exponential
convergence of FMS transients to equilibrium are pro-
vided, then after the damping of fast transients the desired
output behavior prescribed by (7) is fulfilled. Thus, the
output transient performance indices are insensitive to
parameter variations of the nonlinear system and external
disturbances, by that the solution of the discussed control
problem (4) is maintained.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13135



4.3 FMS stability analysis via linearization

Let us consider the FMS equations (14), where X = const,
w = const, and U id

1 is its equilibrium point. Denote

Ũ1 , U1 − U id
1 , (19)

where Ũ1 = {ũ1, ũ2, . . . , ũq}T and ũ1 = u1 − uid
1 .

Assumption 3. Let ∂f(X,w, u1)/∂u1 exists for all (X,w) ∈
ΩX × Ωw, and u1 ∈ Ωu1

, where Ωu1
= {u1 ∈ R | |u1 −

uid
1 | ≤ δu, δu > 0}.

Due to Assumption 3, the expanding of f(X,w, u1) into
Taylor series around (X,w, uid

1 ) yields

f(X,w, u1) = f(X,w, uid
1 )+g(X,w, uid

1 )ũ1 +O(ũ2
1), (20)

where

g(X,w, uid
1 ) =

∂f(X,w, u1)

∂u1

∣

∣

∣

∣

u1=uid
1

. (21)

Assumption 4. Let the condition

0 < gmin ≤ g(X,w, u1) ≤ gmax <∞ (22)

holds for all (X,w, u1) ∈ ΩX,w,u1
= ΩX × Ωw × Ωu1

.

From (14), by neglecting higher-order terms of (20), the
linearized FMS equations about the equilibrium U id

1

µ
d

dt
ũj = ũj+1, j = 1, . . . , q − 1, (23)

µ
d

dt
ũq =−k0g(X,w, u

id
1 )ũ1 − d1ũ2 · · · − dq−1ũq

result, where g(X,w, uid
1 ) is treated as an unknown fixed

parameter during the transients in (23) and the condition
(22) holds.

The FMS equations (23) may be rewritten as

µqũ(q)+dq−1µ
q−1ũ(q−1)+· · · +d1µũ

(1)+k0gũ = 0 (24)

where ũ = ũ1 and the characteristic polynomial of the
FMS is as

Dfms(µs) = µqsq+dq−1µ
q−1sq−1+· · ·+d1µs+k0g. (25)

Remark 5. The parameter µ has not an influence on
stability of Dfms(µs), but one affects the rate of FMS
transients. Thus µ should be selected to maintain the
desired degree of time-scale separation between fast and
slow motions in the closed-loop system (16). Usually, the
degree of time-scale separation η can be estimated by
the ratio of SMS time constant to the maximum value
of the FMS time constant, that is η = Tsms/Tfms, where
Tsms = T , and Tfms = µ/ q

√
k0gmin. Therefore, from the

above, η ≥ ηmin if the following condition is satisfied:
0 < µ ≤ µ1 = T q

√
k0gmin/ηmin.

Theorem 2. Let

(i) Assumptions 3 and 4 hold;
(ii) The parameters d1, · · · , dq−1 are selected such that

Dfms(µs) is Hurwitz polynomial for all g ∈ [gmin, gmax].

Then there exists a positive constant δ such that Assump-
tion 2 holds, where ΩU1

is the subset of the region of
attraction for U id

1 .

Proof. The proof follows directly from the exponential
stability of the origin for the linearized FMS (24).

4.4 Absolute stability analysis of FMS

Assumption 5. Let f(X,w, u1) be an unknown continuous
function of X(t), w(t), and u1(t), where the following
sector-like condition in control variable

0 < k1 ≤ f(X,w, u1) − f(X,w, û1)

u1 − û1
≤ k2 <∞ (26)

holds for all (X,w) ∈ ΩX,w, u1 ∈ Ωu, and û1 ∈ Ωu, where

Ωu = {u1 ∈ R | |u1 − uid
1 | ≤ δû, δû > 0}.

Denote

ψ(X,w, uid
1 , ũ1) , f(X,w, ũ1 + uid

1 ) − f(X,w, uid
1 ). (27)

From (26), we get the following sector condition

0 < k1 ≤ ψ(X,w, uid
1 , ũ1)

ũ1
≤ k2 <∞.

Hence, from (14), (19), and (27), the FMS equations

µ
d

dt
ũj = ũj+1, j = 1, . . . , q − 1, (28)

µ
d

dt
ũq =−k0ψ(X,w, uid

1 , ũ1) − d1ũ2 · · · − dq−1ũq

follow, where Ũ1 = 0 is the equilibrium point of (28).

Then, the FMS equations (28) may be rewritten as

µqũ(q) + dq−1µ
q−1ũ(q−1) + · · · + d1µũ

(1)

+k0ψ(X,w, uid, ũ) = 0 (29)

where X , w, and uid are treated as unknown constant
values during the transients in (29).

Let us rewrite (29) such as

µqũ(q) + dq−1µ
q−1ũ(q−1) + · · · + d1µũ

(1)

+k0k1ũ+ k0h(X,w, u
id, ũ) = 0, (30)

where

h(X,w, uid, ũ) = ψ(X,w, uid, ũ) − k1ũ

and the following sector condition

0 <
h(X,w, uid, ũ)

ũ
≤ k2 − k1

holds on the specified compact set ΩX,w,u. Denote

D̃fms(µs) = µqsq + dq−1µ
q−1sq−1 + · · · + d1µs+ k0k1.

Assumption 6. Let the parameters µ, d1, . . . , dq−1, and

k0 of the polynomial D̃fms(µs) are selected such that
this polynomial is stable and the degree of time-scale
separation between fast and slow modes is large enough.

Remark 6. In order to provide the requirement η ≥ ηmin

the condition

0 < µ ≤ µ2 = T q
√

k0k1/ηmin (31)

can be used for selection of the parameter µ.

Theorem 3. Let

(i) Assumptions 5 and 6 hold;
(ii) The condition

Re

[

k0

D̃(jµω)

]

> − 1

k2 − k1
, ∀ ω ∈ (−∞,∞) (32)

is satisfied.
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Then, there exists a positive constant δû such that the
origin of (30) is uniformly asymptotically stable for any
nonlinearity in the given sector (that is, the FMS (30) is
absolutely stable with a finite domain Ωu).

Proof. The proof follows directly from a straightforward
application of the circle criterion (see, for example, Gelig
(1965); Cho and Narendra (1968); Khalil (2002)).

Theorem 4. Let

(i) Assumptions 5 and 6 hold;
(ii) There exists a positive number γ such that the

condition

Re

[

(1 + jγω)
k0

D̃(jµω)

]

+
1

k2 − k1
> 0, ∀ ω ∈ (−∞,∞)

(33)
is satisfied.

Then, there exists a positive constant δû such that the
origin of (30) is uniformly asymptotically stable for any
nonlinearity in the given sector with the finite domain Ωu.

Proof. The proof follows directly from a straightfor-
ward application of Popov’s criterion (see, for example,
Popov (1962); Aizerman and Gantmakher (1964); Khalil
(2002)).

Theorem 5. Let

(i) Assumptions 5 and 6 hold;
(ii) The parameters d1, · · · , dq−1 are selected such that

the polynomial D̃fms(µs) has q repeated left-half
plane roots.

Then, there exists a positive constant δû such that the
origin of (30) is uniformly asymptotically stable for any
nonlinearity in the given sector with the finite domain Ωu.

Proof. The proof follows directly from the results reported
by Fannin and Rushing (1974).

5. EXAMPLE

The differential equation of a plant model is given by

x(2) = x+ x|x(1)| + w(t) + u+ 0.9 sin(u). (34)

The reference model for x(t) is chosen as x(2) = −2x(1) −
x+r. Hence, F (x(1), x, r) = −2x(1)−x+r and s2+2s+1 is
the characteristic polynomial of the reference model with
the time constant T = 1 s. Take q = n = 2. In accordance
with the presented design methodology the control law
structure can be chosen as

µ2u(2) + d1µu
(1) + d0u = k0[F (x(1), x, r) − x(2)],

that is

µ2u(2) + d1µu
(1) + d0u = k0[−x(2) − 2x(1) − x+ r]. (35)

From (34), we get that the condition k1 = 0.1 ≤ ∂f/∂u ≤
k2 = 1.9 holds. Take, for instance, k0k1 = 1, that is k0 = 10
and ηmin = 20. From (31), we get µ2 = 0.05 s. Take

µ = 0.05 s, d1 = 2 and d0 = 0. Then D̃fms(µs) = (0.05s+
1)2. It is clear that the condition (33) holds due to q = 2.

Control law implementation. The discussed control law
(35) can be rewritten in the form given by

u(2) +
d1

µ
u(1) +

d0

µ2
u

= − k0

µ2
x(2) − k0a

d
1

µ2T
x(1) − k0

µ2T 2
x+

k0

µ2T 2
r.

From the above, we get

u(2) + a1u
(1) + a0u = b2x

(2) + b1x
(1) + b0x+ c0r (36)

where

a1 =
d1

µ
, a0 =

d0

µ2
, c0 =

k0

µ2T 2
,

b2 = − k0

µ2
, b1 = −k0a

d
1

µ2T
, b0 = − k0

µ2T 2
.

Then, from (36), we may get the equations of the controller
in the state space form (12), that are

u̇1 =−a1u1 + u2 + (b1 − a1b2)x,

u̇2 =−a0u1 + (b0 − a0b2)x + c0r, (37)

u= u1 + b2x.

The simulation results of the closed-loop system given by
(34) and (37) are shown in Figs. 1–2.

Fig. 1. Plots of r(t) and x(t) in the closed-loop system.

6. CONCLUSION

In accordance with the presented above approach the fast
motions occur in the closed-loop system such that after
fast ending of the fast-motion transients, the behavior
of the overall singularly perturbed closed-loop system
approaches that of the SMS, which is the same as the
reference model. Hence, the desired output performance
specifications are provided, as well as insensitivity of the
output transient behavior with respect to unknown ex-
ternal disturbances and varying parameters of the system.
The discussed design methodology may be used for a broad
class of nonaffine systems. The main advantage of the
application of the methods for absolute stability analysis
of the fast motions is that the class of nonlinear systems to
which the results of two-time-scale motion control design
methodology is applicable is significantly enlarged.
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Fig. 2. Plots of u(t) and w(t) in the closed-loop system.

The presented control system design methodology allows
to guarantee the desired output transient performances
in the presence of plant parameter variations, unknown
external disturbances, and uncertain nonlinearities with
sector-like condition in control loop. The other advantage,
caused by two-time-scale technique for closed-loop system
analysis, is that analytical expressions for selection of
the controller parameters can be found, where controller
parameters depend explicitly on the specifications of the
desired output behavior. The presented design method-
ology may be useful for real-time control system design
under uncertainties.
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