
Incremental Regression Function

Construction with Small Landmarks ⋆

Gang Wang ∗ Shiyin Qin∗∗ and Pipei Huang ∗∗

∗ Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong, China. (e-mail:

wanggang@cse.ust.hk).
∗∗ School of Automation Science and Electrical Engineering, Beihang

University, Beijing, China. (e-mail: qsy@buaa.edu.cn,
huangpipei@gmail.com)

Abstract: In automatic control and its related applications, many problems can be formulated
as the regression estimation problem. In this paper, we construct a nonlinear regression model
by using kernels as basis functions in a dictionary and applying the L1 norm as the regularizer.
The regression function obtained from this model possesses the sparseness property where only a
subset of points are used to represent the function. We call this subset of points as landmarks. It
is a convex optimization problem. However, instead of using the standard optimization tools to
solve a convex problem for a particular regularization value, we develop an efficient regularization
path algorithm that can trace all solutions for all possible regularization parameter values. It
overcomes the computational difficulty in model selection. Since the algorithm generally adds
basis functions incrementally to improve the prediction accuracy, the regression function can be
represented concisely with small landmarks.

1. INTRODUCTION

Regression analysis is one of the most fundamental tech-
niques in many areas such as pattern recognition, auto-
matic control, statistics, etc. In a typical regression prob-
lem, we are given a training set of n independent and iden-
tically distributed (i.i.d.) data points {(xi, yi)}

n
i=1 ⊂ R

d ×
R, where xi and yi are the input and output, respectively,
of the ith data point. The goal is to learn a function f(x)
that can predict as accurately as possible the output of
the data points sampled according to the underlying data
distribution.

Many regression models have been studied in the past,
including ridge regression, neural networks, support vector
regression (SVR) [Vapnik, 1995], boosting, etc. Among
these methods, SVR is probably the most popular one
in recent years due to its strong theoretical foundations
as well as excellent empirical successes demonstrated. It
encourages the sparse solutions, thus, offers both represen-
tational and computational advantages. The SVR model
contains two hyperparameters, which are the error param-
eter and the regularization parameter. Typically the values
of these two hyperparameters have to be chosen in advance
by the users. However, there do not exist proper choices
that are good under all circumstances. In practice, users
usually adopt some default values for the hyperparame-
ters even though they are by no means optimal choices.
Extensive exploration of the optimal parameter values is
seldom pursued since this requires re-training the model
many times under different hyperparameter settings.
⋆ This work was supported by hi-tech research and development
(863) program of China (Grant No. 2006AA04Z207) and research
fund for doctorial program of higher education of China (Grant No.
20060006018).

LASSO is another regression model proposed by [Tibshi-
rani, 1996], where the acronym LASSO stands for least
absolute shrinkage and selection operator. LASSO regu-
larizes ordinary least square regression with an L1 regu-
larizer. Compared with SVR, LASSO not only possesses
the sparseness property but also has only one hyperpa-
rameter to set. Having only one hyperparameter in the
model makes parameter tuning much easier to achieve
than if there exist multiple hyperparameters. In this paper,
we apply the dictionary method to construct a nonlinear
representation of the regression function by using kernels
as the basis functions with the L1 norm as the regular-
ization term. Thus, this model can be considered as the
nonlinear LASSO regression model. Instead of applying
convex optimization techniques to obtain one solution for
a single regularization value, we propose a simple and
efficient algorithm to sequentially calculate all solutions
corresponding to all values of the regularization parameter.
Our algorithm belongs to a class of the so-called regular-
ization path algorithms. Given a regularization parameter
value and the optimal solution obtained for that value,
the regularization path algorithm attempts to compute the
next solution as the regularization parameter changes its
value. As a result, the user does not have to choose multiple
regularization parameter values in advance and to solve
the optimization problem multiple times. Our algorithm
traces the regularization path as a function of the regu-
larization parameter, and the computational requirement
is much lower than that of the traditional approach which
requires training the model multiple times.

Rosset and Zhu [2003] firstly investigated the regulariza-
tion paths and found that any model with L1 regulariza-
tion and a quadratic, piecewise quadratic, piecewise linear,
or linear loss function has a piecewise linear regularization

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10075 10.3182/20080706-5-KR-1001.2116

λ = 6 λ = 1 λ = 0.2 λ = 0.04

(a) (b) (c) (d)

Fig. 1. Nonlinear LASSO regression results for different regularization values. The x-axis is the 1-dimensional input
and y-axis is the output. There are 50 data points {(xi, yi)} with yi = sinc(xi) + ei, where ei is a Gaussian noise
with zero mean and a variance 0.1. The black dashed curve is the sinc function and the red curve is the regression
function. The landmarks are shown as small squares. The Gaussian RBF kernel K(xi, xj) = exp(−‖xi − xj‖

2/γ)
with γ = 0.5 is used.

path and hence the entire path can be computed efficiently.
Zhu et al. [2003] proposed an algorithm to compute the
entire regularization path for the L1-norm support vector
classification (SVC) and Hastie et al. [2004] proposed one
for the standard L2-norm SVC. They are again based on
the property that the paths are piecewise linear. Rosset
[2004] proposed a general path following algorithm to
approximate the nonlinear regularization path. Besides the
regularization parameter, Wang et al. [2006] showed that
this approach can also be applied to explore the solution
paths for some other model hyperparameters.

The regression function in our algorithm is formulated as
a linear combination of basis functions, where each basis
function is related to one input point. Since L1 norm
is used, the regression function is represented by a sub-
set of points, which are called landmarks. Our algorithm
finds landmarks incrementally to construct the regression
function. Some results during the algorithm is shown in
Figure 1. The algorithm begins by setting the regulariza-
tion parameter to infinity, leading to an extremely simple
initialization step without landmarks. (It corresponds to
the case in Figure 1(a).) As the regularization parameter
decreases in value, the number of landmarks will gradually
increase and the regression function becomes to fit the
data better. (The landmark number in Figure 1(b)-(d)
is 3, 5 and 8, respectively.) We observe in Figure 1(c)
that when the regression function is fitted well, only a
small number of landmarks are used and it gives a concise
representation of the regression function. Other points can
be discarded since they will never be used for predicting
new point. By estimating the generalization errors of the
regression function during the algorithm, we can determine
the optimal choice of the regularization parameter without
having to train the model multiple times. Moreover, we
may control the number of landmarks used to represent
the function exactly by stopping to add more landmarks
as soon as a certain level of accuracy is reached.

2. PROBLEM FORMULATION

The dictionary method is a general model building ap-
proach which constructs the regression function as a linear
expansion of basis functions, such as the following:

f(x) =

q
∑

i=1

βihi(x) + β0, (1)

where D = {h1(x), . . . , hq(x)} is a dictionary of basis
functions and β = (βi)

q
i=1 and β0 are the coefficients of

the regression function. To extend LASSO for nonlinear
regression, it is natural to consider using kernels for the ba-
sis functions. Kernel methods [Schölkopf and Smola, 2002,
Müller et al., 2001] have demonstrated great successes in
solving many machine learning and pattern recognition
problems. These methods implicitly map data points from
the input space to some feature space where typically a
linear method is applied. The implicit feature mapping
is determined by a kernel function, which allows the inner
product between two points in the feature space to be com-
puted without having to know the explicit mapping from
the input space to the feature space. Rather, it is simply a
function of two points in the input space. Only functions
that satisfy Mercer’s condition are eligible candidates for
such kernel functions. Some basic kernel functions and
kernel construction rules have been proposed. The most
commonly used kernel functions are probably the radial
basis function (RBF) kernel or the polynomial kernel.

Through applying the kernels for the basis functions, the
regression function f(x) admits a representation of the
following form:

f(x) =
n

∑

i=1

βiK(xi,x) + β0, (2)

where K(·, ·) is a kernel function defined on R
d × R

d.
Thus, each basis function K(xi,x) is only related to one
input point. Let y = (yi)

n
i=1 denote the output vector and

K = [K(xi,xj)]
n
i,j=1 the kernel matrix. The regularized

empirical loss L that nonlinear LASSO aims to minimize
is given by

L(β, β0) =
1

2
‖y − Kβ − β01‖

2
2 + λ‖β‖1, (3)

where 1 is a vector of ones and ‖ · ‖2 denotes the L2

norm of a vector. We refer to this nonlinear LASSO
formulation as kernelized LASSO (kLASSO). Note that
f(x) is expressed as an expansion in terms of only a
subset of the data points for which βi is nonzero. Since L1

norm is used, f(x) tends to give a sparse representation.
Apparently, the minimization problem in (3) is a convex
optimization problem and hence it could be solved using
QP optimization techniques. However, for reasons that will
be made clear later, we choose to solve this problem via a
completely different path in the next subsection.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10076

Since β0 only appears in the empirical loss term of L in
equation (3) and the term is defined based on L2 norm, L
is differentiable with respect to β0. By setting ∂L/∂β0 to
zero, we obtain

β0 = (y − Kβ)T 1/n. (4)

Thus, when the optimal value of β is available, β0 can
be calculated directly from β. However, since L1 norm is
used in the regularization term, L is not differentiable with
respect to β at the point β = 0. This calls for a special
method to handle the problem. Following Rosset and Zhu
[2003], we represent β = β+ − β−, where β+ = (β+

i)n
i=1

and β− = (β−

i)n
i=1, with the constraints β+

i , β−

i ≥ 0 for i =
1, . . . , n. The optimization problem based on minimizing
L as defined in equation (3) can thus be rewritten as:

min
β+

,β−

1

2

∥

∥y − K(β+ − β−) − β01
∥

∥

2

2
+ λ

n
∑

i=1

(β+
i + β−

i)

subject to β+
i , β−

i ≥ 0 i = 1, . . . , n.

Introducing Lagrange multipliers µ+ = (µ+
i), µ− = (µ−

i),
i = 1, . . . , n for the inequality constraints above, the
corresponding Lagrangian dual function Ld is expressed
as:

Ld(β
+, β−, µ+, µ−) =

1

2

∥

∥y − K(β+ − β−) − β01
∥

∥

2

2

+λ
n

∑

i=1

(β+
i + β−

i)

−

n
∑

i=1

µ+
i β+

i −

n
∑

i=1

µ−

i β−

i . (5)

Note that Ld is differentiable with respect to both β+ and
β−. Thus we can state the optimality conditions as:

∂Ld

∂β+
i

=
(

−K(y − K(β+ − β−) − β01)
)

i
+ λ − µ+

i = 0,(6)

∂Ld

∂β−

i

=
(

K(y − K(β+ − β−) − β01)
)

i
+ λ − µ−

i = 0. (7)

From the Karush-Kuhn-Tucker (KKT) conditions, we also
have:

µ+
i ≥ 0, µ−

i ≥ 0, (8)

µ+
i β+

i = 0, µ−

i β−

i = 0. (9)

Based on the conditions (6)–(9) above, we know that,

for any fixed regularization value, the optimal solution β̂

(= β̂
+
− β̂

−

) should have the following properties:

• If λ > 0:
* β̂+

i > 0 ⇒
(

K(y − K(β̂
+
− β̂

−

) − β̂01)
)

i
= λ, β−

i = 0

* β̂−

i > 0 ⇒
(

K(y − K(β̂
+
− β̂

−

) − β̂01)
)

i
= −λ, β̂+

i = 0

* β̂+
i = 0, β̂−

i = 0 ⇒

−λ ≤
(

K(y − K(β̂
+
− β̂

−

) − β̂01)
)

i
≤ λ

• If λ = 0:
* K(y−Kβ̂− β̂01) = 0 (non-regularized solution)

For simplicity, we remove the ˆ notation for the optimal
solution in the rest of this paper. Let g = (gi)

n
i=1 be an

n-dimensional vector such that g = K(y − Kβ − β01).
The above properties indicate that, for those nonzero
coefficients βi at the optimal solution, their corresponding
elements gi are equal to λ or −λ whose sign is determined
by the sign of the coefficient. Thus, we have a set of
landmarks, denoted as A = {i ∈ {1, ..., n} : βi 6= 0}, such
that

i ∈ A⇒ gi = sgn(βi) λ, (10)

i /∈ A⇒ |gi| < λ. (11)

Thus, based on the points in A, we can build a linear sys-
tem with which the kLASSO regularization path algorithm
can be devised.

3. REGULARIZATION PATH ALGORITHM

Initialization of the regularization path in kLASSO is quite
straightforward. When λ is set to infinity initially, the
optimal solution corresponds to β = 0 and β0 = yT 1/n.
Thus g = K(y − β01). At this moment, there is no
landmarks and hence the condition (11) holds for all
elements in g. In other words, we have |gi| < λ ∀i. Thus
the regression function is β0 for any input and hence it is
flat.

As λ decreases, β will remain zero until λ reaches a certain
value when one data point has its |gi| value equal to λ. This
data point which is the first to be added to A is 1

j = arg max
i

|gi|. (12)

At this time, the regularization parameter value is λ =
|gj |. From condition (10), we know that the sign of each
coefficient in A is the same as the sign of its corresponding
entry in g. As λ further decreases, the direction of changing
gj is determined as follows:

• βj will increase in the positive direction if gj = λ;
• βj will decrease in the negative direction if gj = −λ.

Thus, we label the sign of the newly added coefficient as

sgn(βj) = sgn(gj) (13)

As λ continues to decrease, the coefficient βj will become
nonzero to make the condition |gj | = λ hold. Generally,
given a regularization parameter value and the optimal
solution obtained for that value, the updating direction of
the next optimal solution can be calculated directly from
condition (10) when A is fixed. However, other indices
may be added to A as λ decreases, and the updating
direction needs to be re-calculated. We say an event occurs
when a new point is added to be a landmark. Let βl,
βl

0, Al, gl and λl denote the optimal solution and the
values of other related parameters right after the lth event
has occurred. Let Al contain m indices represented as an
m-tuple

(

Al(1), ...,Al(m)
)

, such that Al(i) < Al(j) for
i < j. We attempt to trace the regularization path of the
1 If there are more than one point satisfying this condition, all these
points are added to A. In this case, the algorithm can still proceed
without difficulty.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10077

coefficients βAl while other coefficients βĀl remain zero. 2

For λ values such that λl+1 < λ < λl, we have the following
equation:

(

KK(β − βl) + (β0 − βl
0)K1

)

Al

= (λl − λ) sgn(βl
Al) (14)

Let ki be the ith column of the kernel matrix K. Then
KAl = [kAl(1), ...,kAl(m)] is an n × m matrix. Moreover,

H = KK and HAl = [(H)ij]
A

l(m)

i,j=Al(1)
is an m × m

sub-matrix of H. Since the coefficients βĀl are zero,
equation (14) is simplified to

HAl(βAl − βl
Al) + (β0 − βl

0)K
T
Al1

= (λl − λ) sgn(βl
Al). (15)

From equation (4), we also have

1T KAl(βAl − βl
Al)/n + (β0 − βl

0) = 0. (16)

Hence, (15) and (16) constitute m+1 linear equations. We
denote

△βa =

[

β0 − βl
0

βAl − βl
Al

]

, D =

[

1 1T KAl/n
KT

Al1 HAl

]

,

ca =

[

0

sgn(βl
Al)

]

.

The m + 1 linear equations can be represented in matrix
form as:

D△βa = (λl − λ)ca. (17)

If D has full rank, then D−1 exists and the moving rate of
the optimal solution is

ra =

[

r0

rAl

]

= D−1ca. (18)

As λ deceases from λl by a certain distance △λ, the
optimal solution will be updated as:

[

β0

βAl

]

=

[

βl
0

βl
Al

]

+ △λ

[

r0

rAl

]

. (19)

Equation (19) gives the direction to update the landmark
coefficients in A while other coefficients remain zero. It
is clear that the landmark coefficients βi(i ∈ A) proceed
linearly in λ. Given a regularization value and the solution
obtained for that value, the solutions of the neighborhood
regularization values can be calculated directly. However,
the algorithm needs to monitor the occurrence of any of
the following events as λ decreases:

• A point i ∈ Al leaves Al, i.e., βAl(i) = 0;

• A point i ∈ Āl joins Al, i.e., |gi| = λ.

When either of these two events occurs, the optimality
conditions will no longer hold if λ is further decreased.
The landmark set A needs to be updated and the new
direction for the moving rate is calculated. By monitoring
the occurrence of these events, we compute the largest
λ < λl for which an event occurs. This λ value is a
breakpoint and is denoted as λl+1. From equation (19),
it is easy to estimate the largest λ for an event of the
first type where a landmark coefficient reaches zero. To
estimate the largest λ for an event of the second type, we
2 Ā is the complement of A, i.e., Ā = {1, . . . , n}\A.

assume the jth (j ∈ Āl) point is the first point to become
the landmark and this happens when λ has decreased by
a distance dj . Thus we have

(

Ky − H(βl
Al + djrAl) − (β0 + djr0)K1

)

j
=(λl − dj), (20)

or
(

Ky − H(βl
Al + djrAl) − (β0 + djr0)K1

)

j
=−(λl − dj).(21)

Then, the distance dj is computed as

dj = min

{

λl − gl
j

1 − eT
j rAl − r0(K1)j

,
−λl − gl

j

−1 − eT
j rAl − r0(K1)j

}

(22)

where ej =
(

HjAl(i)

)m

i=1
is a vector of size m. The reason

for using +/− instead of sgn(gj) in equations (20) and
(21) is because sgn(gj) for j ∈ Ā may be flipped as λ
decreases. Thus, it is necessary to verify the condition
gi = |λ| for either the positive or the negative possibility.
The algorithm applies equation (22) to all non-landmark
points and chooses a point with the smallest distance,
i.e., d = arg minj∈Ā dj . If this point becomes to be the
landmark earlier than any landmark coefficient being zero,
the parameters are updated as follows:

λl+1 = λl − d, (23)

βl+1
Al = βl

Al + drAl , (24)

βl+1
0 = βl

0 + dr0. (25)

This is the (l+1)st event. We then update A and continue
until the algorithm terminates. Algorithm 1 shows the
pseudocode of our proposed regularization path algorithm
for kLASSO. It requires user to set a stopping criterion in
advance to terminate the algorithm. The stopping criterion
is defined depending on user’s preference, where the land-
mark number, the prediction accuracy, the regularization
value, etc can be used.

Algorithm 1 The path algorithm for kLASSO

Input: data {(xi, yi)}.

set β = 0 and β0 = yT 1/n;
create A through Eqn (12);
repeat

calculate the moving rate through Eqn (18);
find the next breakpoint of regularization value;
update the solution (β, β0) through Eqn (23)-(25) and
update the active set A;

until the stopping criterion

Output: a sequence of solutions and corresponding
breakpoints.

Instead of applying QP optimization multiple times to
verify a limit number of solutions, our proposed algorithm
can sequentially compute all kLASSO solutions for all pos-
sible regularization values. Since the regularization path
proceeds in a piecewise linear fashion, any solution can
be computed from two solutions at the breakpoints it is
between. Hence, it is efficient to explore the regularization
path by monitoring the breakpoints and remembering the
solutions at these breakpoints only. Figure 2 gives an
example of some coefficient curves during the algorithm.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10078

4210.50.2

−0.4

−0.2

0

0.2

0.4

0.6

λ

β

Fig. 2. An example of regularization path in kLASSO. Ev-
ery curve corresponds to a coefficient path for different
regularization values. The vertical lines indicate the
breakpoints in the coefficient paths. The horizontal
axis is in logarithm scale

The algorithm initially sets λ to infinity and all coeffi-
cients are zero. As λ decreases, more points become to
be landmarks and are used to represent the regression
function. It is possible for a point to enter or leave the
landmark set multiple times. However, as λ decreases, less
weight is put on the L1 regularizer and the number of
landmarks tends to increase. Therefore, the algorithm con-
structs the kLASSO regression function through adding
the landmarks incrementally. From experimental results,
we see that the regression function always fits the data
well where only small landmarks are used.

An update is executed whenever the landmark set changes.
Two matrices, K, H, and one vector, K1, are used repeat-
edly in each update of the regularization path algorithm.
As such, it is more cost-effective to calculate them in
advance as a preprocessing step, with time complexity
O(n3) and space complexity O(n2). In each update based
on equation (19), a set of linear equations is solved to
calculate the moving rate, with O(m3) time complexity.
The size of the linear system m is typically much less than
the number of input points n. To find next breakpoint
with the smallest decreasing distance d requires that ev-
ery coefficient be scanned, requiring a time complexity of
O(n). Thus, the computations for all coefficients based on
equation (23) require O(mn) complexity. Since setting λ to
infinity has a simple solution, the path starts from a large
λ value and extends in the direction of decreasing λ. After
the algorithm starts, more points become to be landmarks,
thus, the prediction accuracy of the regression function
increases. As the algorithm proceeds, the regression func-
tion evolves to fit the input points better. However, the
prediction accuracy is not always improved as λ decreases,
since overfitting may occurs for small λ. Therefore, it is not
necessary to explore the entire regularization path. As long
as further decreasing λ cannot give a clear improvement
in the prediction accuracy, the algorithm should be ter-
minated in order to have a concise representation. From
our extensive experiments, we observed that an optimal
solution is always obtained after a very small number of
iterations T , which is much less than n. This suggests that
the overall computational cost is O

(

n3 + T (mn + m3)
)

.

The complexity result in the above is obtained from
the preliminary complexity analysis. However, there are
some optimization techniques which can be incorporated
into the algorithm to accelerate the execution of the
algorithm. For example, it takes O(n3) computational cost
to compute the matrix H. However, the algorithm only
uses a small part of entries in H. In equation (18), HA is
used to calculate the moving rate. To estimate the value
of the next breakpoint for the second type event, those
entries Hij for i = Ā, j = 1, ..., n are needed. Hence it is
not necessary to compute the whole matrix H in advance.
We can compute those required entries in H as long as
the algorithm needs them to proceed and they have not
been computed before. Thus, the time complexity for H
is reduced to O(mn2) from O(n3). Another computational
improvement is from the observation that there is typically
one element difference between Al and Al+1. From the
Sherman-Morrison-Woodbury formula for block matrix
inversion, inverse updating/downdating in equation (18)
can reduce the computations to O(m2).

4. EXPERIMENTAL RESULTS

−3 −2 −1 0 1 2 3

−0.4

0

0.4

0.8

1.2

x

y
data

sinc

γ = 0.05

γ = 1

γ =10

Fig. 3. Based on the kLASSO regularization path algo-
rithm with γ = 0.05, 1, 10, the optimal solution for
each path in terms of the mean square error on the
validation set is plotted.

We randomly generate a set of 100 data points {(xi, yi)}

with xi drawn uniformly from [−3, 3] and yi = sin(πxi)
πxi

+ei,
where ei is a Gaussian noise term with mean zero and
standard deviation 0.1. We randomly partition the dataset
into a training set of 50 points and a validation set of 50
points. The Gaussian RBF kernel K(xi, xj) = exp(‖xi −
xj‖

2/γ) is used with three different γ values, 0.05, 1
and 10. Since input points in this synthetic dataset are
from one dimensional space, we can easily illustrate the
results of the regression function in figures. In Figure 1,
we choose four kLASSO solutions along the regularization
path and plot corresponding regression functions and the
landmarks.

We run the kLASSO regularization path algorithm until
either 50 iterations are executed or λ is less than 5e-
4. Further decreasing λ will make less contribution in
improving the prediction accuracy. For each regularization
path, we compute the mean squared error (MSE) on the
validation set for all solutions at the breakpoints of the
path. The solution that minimizes the MSE is then chosen

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10079

and the corresponding regression function is plotted in
Figure 3. We can see that three kernel values give three
different regression functions: the function overfits the data
when γ = 0.05 but underfits the data when γ = 10. On
the other hand, it fits the data well when γ = 1.

In Figure 4(a), we plot the landmark number |A| as a
function of the number of iterations for different γ values.
When γ = 0.05, the function is very elastic. The landmark
number increases greatly as the algorithm proceeds. Dur-
ing this process, more and more points move into the land-
mark set and then settle down there. The regression func-
tion is thus sensitive to many points, leading to overfitting
of the data. When γ = 10, on the other hand, the number
of landmarks always remains small. Since the function is
not flexible enough, many points are not likely to stay at
the landmark set simultaneously. This leads to underfitting
of the data. It indicates that we could estimate whether a
function fit the data well through observing the change in
the number of landmarks without using the validation set.
Figure 4(b) shows that λ decreases rapidly during the first
few iterations of the regularization path algorithm. After-
wards, the rate of decrease in λ slows down significantly.
There is an inflexion point after which λ has an impercepti-
ble change between two consecutive steps. Then executing
more updating steps of the algorithm slightly changes the
solution. We next examine the relationship between the
MSE and the iteration number in Figure 4(c) and 4(d).
Since setting γ = 10 corresponds to the underfitting case,
the MSEs on both training set and validation set are very
large. When γ = 0.05, the MSE on training can always
decrease, however, the MSE on validation does not show
the same phenomenon. Instead, it slightly increases after
further deceasing λ. Although the MSE on training for
γ = 0.5 is larger than that for γ = 0.05, we can see the

0 10 20 30 40 50
0

5

10

15

20

25

30

iterations

N
u

m
b

e
r

o
f

la
n

d
m

a
rk

s

γ = 0.05

γ = 1

γ = 10

0 10 20 30 40 50

0.0

0.4

0.8

1.2

1.6

2.0

iterations

λ

γ = 0.05

γ = 1

γ = 10

(a) (b)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

iterations

M
S

E
 o

n
 t

ra
in

in
g

γ = 0.05

γ = 1

γ = 10

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

iterations

M
S

E
 o

n
 v

a
lid

a
ti
o

n

γ = 0.05

γ = 1

γ = 10

(c) (d)

Fig. 4. The number of iterations versus the landmark
number, the λ value, MSE on the training dataset
and MSE on the validation dataset for the synthetic
dataset generated from sinc function.

former has better generalization performance. Similar to
Figure 4(b), MSEs decreases rapidly during the first few
steps. The MSE on validation is minimized at around the
position where the inflexion point occurs. At this time,
only a small number of iterations have been executed.
Further executing the regularization path cannot lead
to continued improvement in the generalization ability.
Instead, the resulting regression function becomes more
redundant and is likely to lead to overfitting. Moreover,
it incurs unnecessarily computational cost. Consequently,
it is not necessary to explore the all solutions along the
regularization path. The optimal solution preserving the
sparseness property can be obtained very efficiently.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a nonlinear LASSO formulation
to the regression analysis. This formulation not only gives
solutions with the sparseness property, but also has only
one tuning hyperparameter which alleviates much user’s
efforts for model selection. We also develop a regularization
path algorithm which can efficiently explore a sequence
of solutions with different regularization values. Since the
algorithm adds the landmark to construct the regression
function, the number of landmarks for representing the
regression function can be easily controlled as soon as a
certain level of accuracy is reached. Therefore, it provides
both representational and computational advantages for
many potential applications.

REFERENCES

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire
regularization path for the support vector machine.
Journal of Machine Learning Research, 5:1391–1415,
2004.

K. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf.
An introduction to kernel-based learning algorithms.
IEEE Transaction on Neural Network, 12(2):181–202,
2001.

S. Rosset. Following curved regularized optimization
solution paths. In Advances in Neural Information
Processing Systems 17 (NIPS-04), 2004.

S. Rosset and J. Zhu. Piecewise linear regularized solution
paths. Technical report, Stanford University, 2003.

B. Schölkopf and A.J. Smola. Learning with kernels. MIT
Press, 2002.

R. Tibshirani. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society. Series
B, 58:267–288, 1996.

V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, 1995.

G. Wang, D.Y. Yeung, and F. Lochovsky. Two-
dimensional solution path for support vector regression.
In Proceedings of the 23th International Conference on
Machine Learning (ICML-06), 2006.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-
norm support vector machines. In Advances in Neural
Information Processing Systems 16 (NIPS-03), 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10080

