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Abstract: The mainstream for the analysis and synthesis of nonlinear control systems is the
so-called state space approach. The Laplace transform of a nonlinear differential equation is
non tracktable and any transfer function approach was not developed until recently. Herein,
we show that one may use such mathematical tools to recast and solve the model matching
problem. Note that the latter was originaly stated for linear time invariant systems, in terms of
equality of the transfer function of both the model and the compensated system.
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1. INTRODUCTION

The model matching problem was solved within the state
space approach by various authors, using problem state-
ments which are slighlty different from one contribution
to the other (Benedetto and Isidori (1984); Benedetto
(1990); Huijberts (1992); Conte et al. (2007)). In the model
matching problem presented in this paper we study the
problem of designing a compensator for a nonlinear control
system under which the input-output map of the compen-
sated system becomes transfer equivalent to a prespecified
model. By transfer equivalence one means that the sys-
tems admit the same irreducible input-output differential
equation (Conte et al. (2007)). In general, the model is
also assumed to be nonlinear.
The model matching problem is a typical design problem
in the sense that it plays a role in various other problems
like the input-output linearization and the (disturbance)
decoupling. In the linear case, one requires the equality of
the transfer functions of the model and of the compensated
system. However, the transfer function formalism was re-
cently developed also for nonlinear systems, see Zheng
and Cao (1995); Halás and Huba (2006); Halás (2008).
Such a formalism generalizes well known results valid
for linear time invariant systems and was, for instance,
already employed in Perdon et al. (2007) to investigate
some structural properties of nonlinear systems. Transfer
function approach to the model matching problem, of
course, represents a very natural tool.
The nonlinear model matching problem has been studied
earlier (Benedetto and Isidori (1984); Benedetto (1990);
Huijberts (1992); Conte et al. (2007)) in the state-space
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setting. Our problem statement and solution consider,
however, a more general case, since neither the control sys-
tem itself, nor the model and the compensator are required
to be realizable in the state-space form. In particular,
this gives us a chance to find realizable compensators for
nonlinear systems not having the state-space realization.
The paper studies both feedforward and feedback com-
pensators. In case of a feedforward compensator we show
that, in contrast to what happens in linear case, a class
of nonlinear systems for which the solution exists is quite
restricted. In case of a feedback compensator the approach
presented here has contact points with that of Rudolph
(1994) and of Glad (1990) where the input-output be-
haviour of the nonlinear system and a model are described
by the differential polynomials and differential algebraic
tools, particularly Ritt’s remainder algorithm have been
employed to find the controller equations.

2. TRANSFER FUNCTIONS OF NONLINEAR
SYSTEMS

We will use the algebraic formalism of Halás and Huba
(2006); Halás (2008) which introduce transfer functions of
nonlinear systems.

Consider the SISO nonlinear system defined by an input-
output equation of the form

y(n) = ϕ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(m)) (1)
where ϕ is assumed to be an element of the field of
meromorphic functions K.
Remark 1. Even if one starts with a state-space represen-
tation it is always possible to eliminate the state variables
to get an input-output equation of the form (1), see Conte
et al. (2007).
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The left skew polynomial ring K[s] of polynomials in s over
K with the usual addition, and the (non-commutative)
multiplication given by the commutation rule

sa = as + ȧ (2)

where a ∈ K, represents the ring of linear ordinary
differential operators that act over vector space of one-
forms E = spanK{dξ; ξ ∈ K} in the following way(

k∑
i=0

ais
i

)
v =

k∑
i=0

aiv
(i)

for any v ∈ E .
The commutation rule (2) actually represents the rule for
differentiating.
Lemma 2. (Ore condition). For all non-zero a, b ∈ K[s],
there exist non-zero a1, b1 ∈ K[s] such that a1b = b1a.

Thus, the ring K[s] can be embedded to the non-
commutative quotient field K〈s〉 by defining quotients
(Halás and Huba (2006); Halás (2008)) as

a

b
= b−1 · a

The addition and multiplication in K〈s〉 are defined as

a1

b1
+

a2

b2
=

β2a1 + β1a2

β2b1

where β2b1 = β1b2 by Ore condition and

a1

b1
· a2

b2
=

α1a2

β2b1
(3)

where β2a1 = α1b2 again by Ore condition.
Due to the non-commutative multiplication (2) they, of
course, differ from the usual rules. In particular, in case
of the multiplication (3) we, in general, cannot simply
multiply numerators and denominators, nor cancel them
in a usual manner. We neither can commute them as the
multiplication in K〈s〉 is non-commutative as well.
Example 3. Consider two quotients

1
s − y

,
1
s

Then
1

s − y
+

1
s

=
2s − y − 2ẏ/y

s2 − (y + ẏ/y)s
and

1
s − y

· 1
s

=
1

s2 − ys − ẏ
6= 1

s
· 1
s − y

=
1

s2 − ys

Once the fraction of two skew polynomials is defined we
can introduce the transfer function of the nonlinear system
(1) as an element F (s) ∈ K〈s〉 such that dy = F (s)du.

After differentiating (1) we get

dy(n) −
n−1∑
i=1

∂ϕ

∂y(i)
dy(i) =

m∑
i=0

∂ϕ

∂u(i)
du(i)

or alternatively
a(s)dy = b(s)du

where a(s) = sn −
∑n−1

i=1
∂ϕ

∂y(i) s
i, b(s) =

∑m
i=0

∂ϕ
∂u(i) s

i and
a(s), b(s) ∈ K[s]. Then

F (s) =
b(s)
a(s)

Example 4. Consider the system
ẏ = yu

After differentiating

dẏ = udy + ydu

(s − u)dy = ydu

and the transfer function is
F (s) =

y

s − u
Remark 5. The transfer function is defined by employing
the standard algebraic formalism of differential forms, fol-
lowing the lines in Conte et al. (2007) which introduces the
notion of a one-form in a formal and abstract way. Hence,
it is not necessary to deal here with the linearization
of the system along a trajectory using the Kähler-type
differential which leads to a time-varying linear system.

In the linear case to each proper rational function an
input-output differential equation of a control system
can be associated. However, things are different in the
nonlinear case. Though one can always associate to a
proper rational function F (s) = b(s)

a(s) a corresponding
input-output differential form, ω = a(s)dy − b(s)du,
this one-form is not necessarily integrable. If the input-
output differential form is integrable, or can be made
integrable, then there exists an input-output differential
equation of the form (1) such that the transfer function
of this input-output equation is F (s). In other words, not
every quotient of skew polynomials necessarily represents
a control system. Of course, this will play a crucial role in
designing compensators.

Transfer functions of nonlinear systems satisfy many prop-
erties we expect from transfer functions (Halás (2008)):

• They characterize a nonlinear system uniquely; that
is, each nonlinear system has a unique transfer func-
tion, no matter what state-space realization one starts
with.

• They characterize only accessible and observable sub-
system.

• They provide an input-output description.
• They allow us to use transfer function algebra when

combining systems in series, parallel or feedback
connection.

Some additional structural properties of transfer functions
of nonlinear systems are discussed in Perdon et al. (2007).
In terms of the model matching problem we remark that

• Two nonlinear systems are locally transfer equivalent
(admit the same irreducible input-output differential
equation) if and only if they have the same transfer
function.

It is now easy to conclude that in the nonlinear model
matching problem one, as in linear case, requires the
equality of the transfer functions of the model and that
of the compensated system.

3. FEEDFORWARD COMPENSATOR

One of the basic tasks in solving the model matching
problem is to be interested in finding solution in terms
of a feedforward compensator.
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R(s) F (s)- --
u yv

︷ ︸︸ ︷G(s)

Fig. 1. Compensated system

Problem statement. Consider a nonlinear system F and
a model G described by the transfer functions

F (s) =
bF (s)
aF (s)

G(s) =
bG(s)
aG(s)

respectively. Find a (proper) feedforward compensator R
(not necessarily state-space realizable), described by the
transfer function

R(s) =
bR(s)
aR(s)

such that the transfer function of the compensated system
coincides with that of the model G

G(s) = F (s) · R(s)
The situation is depicted in Fig. 1.
Theorem 6. Given F (s) 6= 0 and G(s), there exists a
feedforward compensator R(s) which solves the model
matching problem if aR(s)du−bR(s)dv is integrable, where
bR(s)
aR(s) = F−1(s) · G(s).

Proof. By the transfer function algebra (Halás (2008)) we
get

G(s) = F (s) · R(s)
Hence, the compensator

R(s) = F−1(s) · G(s) (4)

Clearly, the existence of such a compensator is deter-
mined by the integrability of the compensator’s equation
aR(s)du = bR(s)dv. 2

If one is interested in finding a solution in a class of proper
compensators, it is necessary to restrict the relative degree
of the model.
Proposition 7. R(s) is proper (causal) if and only if

rel deg G(s) ≥ rel deg F (s)

Proof. Sufficiency: Assume rel deg G(s) ≥ rel deg F (s).
Since

rel deg G(s) = deg aG(s) − deg bG(s)
rel deg F (s) = deg aF (s) − deg bF (s)

we have
deg aG(s) − deg bG(s) ≥ deg aF (s) − deg bF (s)

Now, as deg aG(s) = deg aF (s)+deg aR(s) and deg bG(s) =
deg bF (s) + deg bR(s) we get

deg aR(s) ≥ deg bR(s)
which means a proper R(s).
Necessity: Assume a proper R(s), deg aR(s) ≥ deg bR(s).
Since all previous steps can be done in reverse order,
rel deg G(s) ≥ rel deg F (s). 2

Example 8. Given the system F

ẏ = u̇ + u2

with the transfer function

F (s) =
s + 2u

s
Consider the following three models

G(s) =
1
s

G′(s) =
1

s + 1

G′′(s) =
1

s + 2y

By (4) and (3) we get the following transfer functions of
the compensators

R(s) =
s

s + 2u
· 1
s

=
1

s + 2u

R′(s) =
s

s + 2u
· 1
s + 1

=
s

(s + 1)(s + 2u)

R′′(s) =
s

s + 2u
· 1
s + 2y

=
s − ẏ/y

(s + 2y − ẏ/y)(s + 2u)

While R(s) and R′(s) result in the integrable compen-
sators

R : u̇ + u2 = v
R′ : ü + 2uu̇ + u̇ + u2 = v̇

R′′(s) does not. We can also easily check, see Conte et al.
(2007), that both R and R′ are state-space realizable.
Finally, note that in multiplying transfer functions one
always has to follow the rule (3) which, in general, yields
a different result from the usual multiplication, as can be
seen for instance in the case of R′′(s).
Example 9. Consider the system from Example 4

F (s) =
y

s − u

Let the desired dynamics be given by the transfer function

G(s) =
1

s2 + 2s + 1
The compensator reads

R(s) = F−1(s) · G(s) =
s − u

y
· 1
s2 + 2s + 1

which after rearrangement yields a non-integrable compen-
sator’s equation.

So, in contrast to what happens in the linear time-invariant
or time-varying systems (Marinescu and Bourlès (2003)),
a class of nonlinear systems for which the solution in
terms of a feedforward compensator exists is, due to
the integrability condition, quite restricted. Hence, it is
natural to be interested in finding a solution in a (more
general) class of feedback compensators.

4. FEEDBACK COMPENSATOR

Problem statement. Consider a nonlinear system F and
a model G described by the transfer functions
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R(s) F (s)- --
-

u yv

︷ ︸︸ ︷G(s)

Fig. 2. Compensated system

F (s) =
bF (s)
aF (s)

(5)

G(s) =
bG(s)
aG(s)

(6)

respectively. Find a (proper) feedback compensator R
(not necessarily state-space realizable), described by the
transfer functions

Rv(s) =
bRv(s)
aR(s)

(7)

Ry(s) =
bRy(s)
aR(s)

(8)

with
du = Rv(s)dv + Ry(s)dy

such that the transfer function of the compensated system
coincides with that of the model G

G(s) =
F (s)Rv(s)

1 − F (s)Ry(s)
The situation is depicted in Fig. 2.
Theorem 10. Given F (s) 6= 0 and G(s), there exists
a feedback compensator R(s) which solves the model
matching problem.

Proof. By the transfer function algebra (Halás (2008)) we
get

G(s) =
F (s)Rv(s)

1 − F (s)Ry(s)
When considering (5), (7) and (8)

G(s) =
bF (s)
aF (s) ·

bRv(s)
aR(s)

1 − bF (s)
aF (s) ·

bRy(s)
aR(s)

=
bRv(s)

aR(s) · aF (s)
bF (s) − bRy(s)

After matching the latter to (6) we can set

bG(s) = bRv(s)

aG(s) = aR(s) · aF (s)
bF (s)

− bRy(s)

If aR(s) is chosen to be q(s)bF (s) then
aG(s) = q(s)aF (s) − bRy(s)

Assume, without loss of generality, that deg aG(s) ≥
deg aF (s). Then one can think of q(s) as a right skew
polynomial quotient and of −bRy(s) as a skew polynomial
remainder of skew polynomials aG(s) and aF (s).
So, from given aG(s) and aF (s) one can, by Euclidean
division algorithm, determine the compensator

du = Rv(s)dv + Ry(s)dy

aR(s)du = bRv(s)dv + bRy(s)dy (9)
with

aG(s) = q(s)aF (s) − bRy(s)

aR(s) = q(s)bF (s)

bRv(s) = bG(s)
In comparison to what happens in case of a feedforward
model matching problem, now such a compensator is
always integrable. Equation (9) can be restated as

q(s)bF (s)du = (q(s)aF (s) − aG(s))dy + bG(s)dv

q(s)(bF (s)du − aF (s)dy) = bG(s)dv − aG(s)dy

One-forms bF (s)du − aF (s)dy, bG(s)dv − aG(s)dy are
clearly exact and applying q(s) to an exact one-form
results in an exact one-form as well. 2
Remark 11. Assumption deg aG(s) ≥ deg aF (s) in the
proof is clearly necessary to get a reasonable solution to
Euclidean division algorithm of aG(s) and aF (s). However,
it is not restrictive, for if we have a model

G(s) =
bG(s)
aG(s)

with deg aG(s) < deg aF (s) then we can, without loss of
generality, use the model

G′(s) =
skbG(s)
skaG(s)

such that deg skaG(s) ≥ deg aF (s). Clearly, the model
G′(s) is transfer equivalent to the model G(s).
Roughly speaking, in the sense of transfer equivalence
there always exists a feedback compensator which solves
the model matching problem.

In case one is interested in finding a solution in a class of
proper compensators, the situation is the same as in case
of a feedforward compensator.
Proposition 12. R(s) is proper (causal) if and only if

rel deg G(s) ≥ rel deg F (s)

Proof. Sufficiency: Assume rel deg G(s) ≥ rel deg F (s).
Since

rel deg G(s) = deg aG(s) − deg bG(s)
rel deg F (s) = deg aF (s) − deg bF (s)

we have
deg aG(s) − deg bG(s) ≥ deg aF (s) − deg bF (s)

Now, as aG(s) = q(s)aF (s) − bRy(s) we get

deg q(s) + deg aF (s) − deg bG(s)≥ deg aF (s) − deg bF (s)

deg q(s) + deg bF (s)≥ deg bG(s)
Or, by taking into account that aR(s) = q(s)bF (s) and
bG(s) = bRv(s)

deg aR(s) ≥ deg bRv(s)
which means a proper R(s).
Necessity: Assume a proper R(s), deg aR(s) ≥ deg bRv(s).
Since all previous steps can be done in reverse order,
rel deg G(s) ≥ rel deg F (s). 2
Example 13. Consider the system and the model from
Example 9 where we were not able to find a solution in
terms of a feedforward compensator.

F (s) =
y

s − u
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G(s) =
1

s2 + 2s + 1
Now, we have bF (s) = y, aF (s) = s − u, bG(s) = 1,
aG(s) = s2 + 2s + 1. From Euclidean division algorithm
we get

q(s) = s + 2 + u

bRy(s) =−1 − u̇ − 2u − u2

such that aG(s) = q(s)aF (s)− bRy(s). The compensator is
determined by

bRv(s) = bG(s) = 1

bRy(s) =−1 − u̇ − 2u − u2

aR(s) = q(s)bF (s) = ys + ẏ + 2y + uy

that is
aR(s)du = bRv(s)dv + bRy(s)dy

ydu̇ + ẏdu +2ydu + uydu = dv − dy −u̇dy − 2udy −u2dy

Note that ẏ is not independent, ẏ = yu, and after
substituting, the last equation represents the differential
of

yu̇ + 2yu + y + u2y = v

The compensator has the following state-space realization

ξ̇ =−2ξ − 1 − ξ2 +
v

y

u = ξ

Example 14. Consider the system and the models from
Example 8

F (s) =
s + 2u

s

G(s) =
1
s

G′(s) =
1

s + 1

G′′(s) =
1

s + 2y

We get now the following compensators

R : u̇ + u2 = v
R′ : u̇ + u2 = v − y
R′′ : u̇ + u2 = v − y2

all of them state-space realizable. Note also that while R
does not differ from its feedforward counterpart R′ does.

5. MODEL MATCHING PROBLEM FOR
NONREALIZABLE SYSTEMS

The input-output approach to the model matching prob-
lem, as presented here, has one strong point. It is, in fact,
more general in that sense that it is applicable to nonlinear
systems not having the state-space realization. We do not
require this from the original system equations neither
from compensator equations. So there is a chance to find
realizable compensators for nonrealizable systems in both
feedforward and feedback cases, as demonstrated by the
following example.

Example 15. Consider the system
ÿ = −y + u̇2 + u

which has, according to Conte et al. (2007), no state-space
realization. The transfer function is

F (s) =
2u̇s + 1
s2 + 1

Let the desired dynamics be given by the transfer function

G(s) =
1
s2

To find a feedforward compensator we compute

R(s) = F−1(s) · G(s) =
s2 + 1
2u̇s + 1

· 1
s2

=
s2 + 1

s2(2u̇s + 1)
The compensator’s equation is integrable

2ü2 + 2u̇u(3) + ü = v̈ + v

and has the following state-space realization

ξ̇1 =
√

ξ2 − ξ1 + v

ξ̇2 = ξ3

ξ̇3 = v

u = ξ1

In case we are interested in finding a feedback compensator
we get

q(s) = 1

bRy(s) = 1

bRv(s) = bG(s) = 1

aR(s) = q(s)bF (s) = 2u̇s + 1
and finally

(2u̇s + 1)du = dv + dy

u̇2 + u = v + y

This time, the compensator has the state-space realization

ξ̇ =
√

v + y − ξ

u = ξ

6. CONCLUSIONS

In this paper the transfer function formalism was em-
ployed to recast and solve the model matching problem
of single-input single-output nonlinear control systems.
This resulted in designing compensators, both feedfor-
ward and feedback, under which the input-output map
of the compensated system becomes transfer equivalent to
a prespecified model. It was shown that the existence of
a feedforward compensator requires a restrictive integra-
bility condition. A feedback compensator exists whenever
the system is nontrivial, that is F (s) 6= 0. Obviously,
the properness of the compensator requires the standard
inequality on the relative degrees of the system and that of
the model. It is argued that the transfer function approach
is the most natural one, in comparison with the state
space approaches. In addition, it may be applied also to
nonrealizable nonlinear systems where it is possible to find
realizable compensators.
Results of this paper may be extended from a several
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points of view. Obviously, when following Halás and Kotta
(2007) this approach carries over quite easily to the non-
linear discrete-time systems. Another natural extension
consists in applying ideas of this work to the case of non-
linear time-delay systems. For the corresponding transfer
function formalism, see Halás (2007). One of the future
tasks is to apply the transfer function approach to solve
the model matching problem for square multi-input multi-
output system using inverses of transfer function matrices.
Another topic is the model matching problem with stabil-
ity. Clearly, to get a stable solution to the model matching
problem the assumption that the set of the unstable zeros
of the system is included in the set of the unstable zeros of
the model, in both feedforward and feedback case, has to
be met. In addition, in case of a feedforward compensator,
one has to assume that the system is stable itself, for the
solution is, in fact, based on the zero-pole cancellation.
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