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Abstract: Energy scarcity is one of the most critical problems that occur in wireless sensor
networks compared to traditional networks. However, by using spatial correlation, which is
a characteristic of wireless sensor networks due to close field sampling, we could explore the
problem further and address practical solutions. Based on a new cost criterion, two algorithms
for power optimization amongst hierarchy networks are presented. Their implementation and
implications are discussed in detail.
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1. INTRODUCTION

Wireless sensor networks have attracted enormous re-
search attention recently because of their wide range of
applications and new criteria compared to traditional net-
works. Limited power supply for sensor nodes is one of
their typical characteristics. It generates an urgent require-
ment to optimize the useful life span of a sensor network
under a tight power constraints as well as quality of ser-
vice in wireless sensor networks. Energy aware technolo-
gies and strategies in hardware and software aspects are
well researched and developed e.g.,Tsiatsis [2001],Akyildiz
[2002],Howitt [2004].

Another typical characteristic brought by wireless sensor
network is that the sensors measure a spatially dependent
quantity in a high density network. This spatial correlation
can be interpreted as information redundancy, which can
be exploited to reduce data transmission requirements,
and hence assist in maximizing the operational life of
sensor nodes as suggested by Slepian-Wolf theory (Slepian
[1973]).

By considering two characteristics above, a recent research
approach is to combine network combinatorics with infor-
mation theoretic ideas, joining the traditionally separate
functions of coding and routing e.g., Scaglione [2002] and
Cristescu [2005]. Especially for correlated sources, Slepian-
Wolf theory (lossless coding) and rate-distortion theory
(lossy coding) have stated that different source coding
schemes will result in different routing loads through the
rate allocation algorithm. Furthermore, the energy con-
sumption in each sensor node is directly related to the
data rate, hence an energy-aware rate allocation strategy
strongly influences the network life span.

An attempt to optimize the life span for the overall net-
work as well as have a best possible quality of service
is approached by addressing the issue of network lifetime
balance. When all the sensors exhaust their local energy
supply at the same time, it is considered as the network
lifetime is balanced. In Wen [2007], we developed a new
cost criterion based on the idea of network lifetime balance
and the energy efficiency for each sensor as well as their
best possible quality of service. Under the implementa-
tion of star network topologies, it achieves better lifetime
balance, longer network lifetime and more efficient energy
usage compared to the minimum energy route. Here we
further apply the new cost criterion into hierarchy net-
works. In hierarchy networks, the sensors have to consider
the passing through traffic from their descendent sensors
as well as their own sensing information. This leads to a
much more complex optimization than is the case for star
networks. We identify sufficient rate constraints and de-
velop two algorithms to solve the sufficient rate allocation
bounds for hierarchy network optimization. Their imple-
mentation and the implications of which are discussed in
the context of a hierarchy network.

2. MODEL DESCRIPTION

2.1 General Model Statement

A wireless sensor network is considered as a directed graph
G(V,E) with a single sink, where V is the set of all nodes
and E is the set of all directed links (i, j) where i, j ∈ V .

Suppose that V0 is the single sink, the total number of
sensors in the network is |V | = N + 1. The sensor V k

ij

represents Sensor i in the kth layer linking to its parent
Sensor j in the (k − 1)th layer. S is a subset of V , where
S ⊂ V, S 6= Ø, V0 ∈ Sc. In order to analyze hierarchy
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networks, we divide the tree topology network into three
layers: the sink, the intermediate layers and the clusters,
as shown in Fig.1.

Fig. 1. Tree topology network

Each edge ek
ij ∈ E can be assigned a weight W k

ij . A
common traffic matrix (N + 1)×(N + 1) is defined with
elements

ek
ij =

{

1, if Sensor i can directly communicate with
Sensor j,

0, otherwise.
(1)

The channel between Sensor V k
ij and its parent is as-

sumed to be a DMC (Discrete memoryless channel) with
a sufficient capacity Ck

ij and transmission rate Rk
ij , where

i, j ∈ V .

In Dong [2005], different definitions of network lifetime
have been addressed. Here the network lifetime is defined
as the working period till the first sensor failure. In other
words, the instant that the first sensor stops working also
signifies the end of the network lifetime.

2.2 Energy Model

Table 1. Typical power consumption of the
components in a sensor.

Table 1 shows that radios consume most of the energy, so
a common power model for MAC layer of wireless sensor
networks is related to the distance dk

ij from transmitter(i)
in kth layer to receiver(j) in (k − 1)th layer.

In the following analysis, a similar model will be applied.
To simplify the formula, we define Ek

bij as the energy usage
per bit from Sensor i to Sensor j, which depends on the
distance between them, that is

Ek
bij = ed{d

k
ij}

α. (2)

where ed is the energy dissipated per bit per m2.

Therefore, the energy spent in radio transmission between
Sensor i and Sensor j becomes

Energy spent in radio transmission = Ek
bijR

k
ij , (3)

where Rk
ij is the number of bits to transmit per second.

Let each sensor node i have the initial battery energy P k
ij .

Considering the power usage model (3), we have

P k
ij = Ek

bijR
k
ijt

k
ij , (4)

where tkij is the active transmission time from Sensor i to
its parent Sensor j.

Our analysis is conducted in each sub-star network. There-
fore, in one sub-star network the equation can be simplified
into

Pi = EbiRiti. (5)

2.3 Model Cost Function and Constraints

The energy model (5) states that the higher the data
rate the more energy consumption for the sensor. The
cost function is developed for power optimization by
considering rate allocation.

From (5), the working time for each Sensor i is

ti =
Pi

EbiRi

(6)

We define

Ki =
ti
∑

i

ti
, (7)

where
∑

i

Ki = 1 and Ki > 0. (8)

The cost function for a star network can be written as

{R∗
i } = max

{Ri}N

i=1

(

−
∑

i

Ki log Ki

)

(9)

The model constraints guarantee the lossless coding rate
for the sensors. Under the same constraints, the sink
gathering the information from the sensor field can fully
reconstruct the information for each sensor. The constraint
is upper bounded by capacity and the lower bound is
given by the multiple-source Slepian-Wolf theorem. Let
(X1i,X2i, . . . ,Xmi) be i.i.d ∼ p(x1, x2, . . . , xm).

The complete constraints are then presented as,

H(X(S)|X(Sc)) ≤ R(S) ≤
∑

i∈S

Ci. (10)

for all S ⊆ {1, 2, . . . ,m} where

R(S) =
∑

i∈S

Ri, (11)

and X(S) = {Xj : j ∈ S}.
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The following section presents a theoretical analysis of our
cost function. The dual problem for our model is solved
and the possible solutions for our model are discussed.

3. MODEL ANALYSIS

The cost function in (9) under the constraints (10) as well
as (8) is difficult to solve directly, since the constraints of
data rates are impossible to transform into an expression
of Ki. However, a dual problem can be formulated and
used as an upper bound for the primal problem:

max
H(X(S)|X(Sc)) ≤ R(S) ≤

∑

i∈S

Ci,
∑

i

Ki = 1 and Ki ≥ 0

(

−
∑

i

Ki log Ki

)

≤ max
∑

i

Ki=1 and Ki>0

(

−
∑

i

Ki log Ki

)

The dual problem is then defined as

max
Ki

−
n
∑

i

Ki log Ki (12)

s.t.

n
∑

i

Ki = 1

Ki > 0

The second derivative of the cost function is negative for
Ki > 0, so the cost function is a strictly concave function
of K, which guarantees a unique maximum solution within
the constraints.

Applying the Lagrange multiplier method, the solution of
the dual problem is

Ki =
1

n
. (13)

.

The upper bound of the maximum solution for the primal
problem can be achieved when

t1 = t2 = . . . = tn. (14)

Assuming that for any i, the weight is Wi = Pi

Ebi

, (14) then
becomes

W1

R1

=
W2

R2

= . . . =
Wn

Rn

. (15)

The derivative of ti with respect to Ri is given by
∂ti
∂Ri

= −
Wi

R2
i

(16)

The derivative is negative (16) within the constraints, and
therefore the working time for each Sensor i monotonically
increases while Ri decreases, i.e.,

Three possibilities can occur under the constraints in (10):

• Unique solution: There exists only one pair of
R values satisfying (15). The primal problem can
achieve its maximum upper bound within the con-
straint region. This set of rates is the optimal solution
for the primal problem.

• Non-unique solutions: Multiple sets of R value
satisfy (15) within the constraints in (10). The primal
problem can achieve its maximum upper bound with
various rates within the constraint region. Multiple
solutions occur because the cost function does not
guarantee the longest sensor working period by bal-
ancing the network lifetime. However, we are able to
choose the solution with the longest sensor working
period due to the monotonic decreasing relationship
between ti and Ri as shown in (16).

• No solution for the dual problem: No R value
satisfies (15) within the constraints in (10). The
primal problem cannot reach its maximum upper
bound. However, a suboptimal solution can be found
due to the concavity of the cost function. As in
the multiple solutions case above, the longest sensor
working period can still be considered.

The cost criterion has been implemented in the context
of a star network topology in Wen [2007]. The simulation
results further proved that all the sensors efficiently use
their own energy supply to achieve a maximal life span for
the overall network in comparison to the minimum energy
route. In the next section, we address the implementation
method of our cost criterion, prove the sufficient rate con-
straints and develop two algorithms in hierarchy networks.

4. ALGORITHMS FOR HIERARCHY NETWORKS

Slepian-Wolf constraints are based on the idea of DSC
(Discrete Source Coding), which only considers the nec-
essary coding rate for the information of each sensor itself,
does not include the rate spent on passing through traffic.
In the network power analysis, it ignores a large proportion
of data rate, which the intermediate sensor nodes have to
pass through the lower layer data to their upper layer.
Namely, a sensor node in the intermediate layers carries
the duty of a ’sensor’ as well as a router.

In order to overcome the drawback of Slepian-Wolf con-
straints, the network is divided into different layers (shown
in Fig.1) and the analysis focuses on the sub-star networks.
A suitable algorithm needs to consider a data rate to
transfer a sensor’s own field information as well as allocate
sufficient data rate for its descendent nodes. The algorithm
developed below is imposing on the entropy chain rule
and the Slepian-Wolf theorem to reduce the minimum
required data sent from the end nodes and intermediate
nodes. Furthermore, it balances the network lifetime by
implementing our cost criterion.

The criteria of sufficient data rate for each sub-star net-
work, which is different from a single star network, is
provided and proven here. We assume that the covariance
matrix Cs of the sources are known. So the minimum loss-
less rate for a sub-star network V k

ij , i = 1, 2, . . . considering
the upper layer correlation is

H
(

V k
1j , V

k
2j , . . . , V

k
nj |all the nodes from layer 1 to (k-1)

)

.
(17)

We will prove that the total rate for each sub-star network
is large enough to reconstruct the lossless information at
the sink.

Proof. The sufficient total rate for reconstructing the
whole field information at the sink is the joint entropy
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H(all the sensor nodes).

We focus on the 1st layer and 2nd layer.

{H(V 2
11, V

2
21, . . . , V

2
n1|V

1
1s, V

1
2s, . . . , V

1
ns)

+H(V 2
12, V

2
22, . . . , V

2
n2|V

1
1s, V

1
2s, . . . , V

1
ns)

+ · · · + H(V 2
1j , V

2
2j , . . . , V

2
nj |V

1
1s, V

1
2s, . . . , V

1
ns)}

+H(V 1
1s, V

1
2s, . . . , V

1
ns)

≥ (18)

{H(V 2
11, V

2
21, . . . , V

2
n1|V

1
1s, V

1
2s, . . . , V

1
ns, all V 2

ij
,when j 6= 1)+

H(V 2
12, V

2
22, . . . , V

2
n2|V

1
1s, V

1
2s, . . . , V

1
ns, all V 2

ij
, when j 6= 1, 2)

+ · · · + H(V 2
1j , V

2
2j , . . . , V

2
nj |V

1
1s, V

1
2s, . . . , V

1
ns)}

+H(V 1
1s, V

1
2s, . . . , V

1
ns)

By the chain rule for entropy, the right-hand side of Equa-
tion (18) equals the joint entropy of all the sensors in the
1st and 2nd layers, i.e., H(all the sensors in 1st and 2nd layers).

Applying the same method from the nth layer to the
first layer, together with recursion, the total sum of
all the sub-star networks’ rates is greater than the
H(all the sensor nodes). Thus the total rate is sufficient for
reconstructing the whole field information at the sink.

In each sub-star network, we therefore apply the Slepian-
Wolf constraints conditioning on all the upper layer nodes.
For each node, the rate is sufficient for full reconstruction
at the sink, i.e.,

R(S) ≥ H(X(S)|X(Sc), all the upper layer nodes). (19)

Together with the bottom-to-top approach, the lower
bound for R(S) is its own sufficient rate plus its descendent
nodes’ rates.

R(S) ≥ H(X(S) | X(Sc), all the upper layer nodes)

+
∑

i=S’s descendent nodes

R(Vi). (20)

The lower bound of each sub-star network is given above,
and now we consider the upper bound of the constraints. In
order to obtain lossless reconstruction, each intermediate
node should have enough bandwidth (rate) allocated to its
own information. The maximum capacity for the sum of
its descendent nodes’ rates is

R(S) ≤ Ck
ij−H(V k

ij |all the nodes from layer 1 to (k-1)). (21)

Assuming the capacity Ck
ij is large enough, the algorithm

for calculating suitable capacity of a sub-star network
among intermediate layers is given as follows

ALGORITHM I

Step 1 if
∑

i

Ck+1
ij > Ck

j − H(V k
j |all nodes from layer 1 to (k-1)),

(22)
where i ∈ the (k + 1)th layer sensors with parent node
Sensor j in kth layer, then the values are reset as,

Step 1a firstly,
∑

i

Ck+1
ij = Ck

j − H(V k
j |all nodes from layer 1 to (k-1)),

(23)
Step 1b then recalculate each node capacity,

ˆCk+1
ij =

Wi
∑

i

Wi

∑

i

Ck+1
ij . (24)

where Wi is the weight Wi = Pi

Ebi

. Now compare the

new ˆCk+1
ij value and its previous value and choose the

smaller value as the new Ck+1
ij .

Step 2 Compare all Ck+1
ij with its lower bound required

reconstruction rate, i.e.,

(H(V k
ij |all nodes from layer 1 to (k-1))

+
∑

descendent nodes of i

H(V k+1
ji |all nodes from layer 1 to k)

+ . . . (25)

which includes its descendent layers’ rates. Choose the
larger value as Ck+1

ij .

If there is any Ck+1
ij (e.g., i = 1, 2, . . . , l) using its

lower bound, then a new
∑

i

Ck+1
ij is equal to previous

∑

i

Ck+1
ij (calculated from Step 1a) minus the Ck+1

ij . Go

back to Step 1b and recalculate the rest of the nodes.
Otherwise, break (Stop the algorithm calculation for the
sub-star network.).

The algorithm calculates the most suitable capacity for
each sub-star network among intermediate layers, while
considering sufficient rate for its descendent nodes. We
note that the capacity for each link does not need to be
recalculated in the first layer and the end node layer (nth
layer).

We now analyze the network Capacity in each layer and
each link from the top to bottom applying ALGO-
RITHM I as the upper bound together with the cost
function and constraints’ lower bounds presented in Equa-
tion (9) and (20).

There is an alternative algorithm (ALGORITHM II)
option for the capacity analysis, which is using the
minimum-required total sum rate of each sub-star network
as the capacity-sum’s upper bound.

From the expressions of two algorithms, it can be stated
that Algorithm I intends to give the lower layers looser
bounds in order to achieve more balance in the lower lay-
ers. Algorithm II intends to use the minimum sufficient
construction rates in lower layers, which can extend the
critical nodes’ (upper layer nodes) working period. It can
achieve a longer network lifetime by sacrificing the lower
layer’s balance. Both of these algorithms do guarantee
lossless coding and transmission.

5. NUMERICAL EXAMPLES

Example 1. The topology has a depth of three (See Fig-
ure 2). The intermediate nodes have their own data to
transmit as well as the data from their descendent nodes.
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Fig. 2. Tree topology network with a depth of three

V = {V 1
1s, V

1
2s, V

2
11, V

2
21, V

2
32, V

2
42, V

3
11, V

3
21, V

3
32, V

3
42, V

3
54}. We

assume that all the sensors have the same initial en-
ergy P = 100. Each sensor information is encoded with
rate 5 bits/sec independently (without using Distributed
Source Coding).

The covariance matrix follows the expression,

E[V k
ijV

k̂

îĵ
] =

{

1, i = î, j = ĵ and k = k̂,

0.5, i 6= î or j 6= ĵ or k 6= k̂.
(26)

The original channel capacities are C1
is = 30, C2

ij = 20,

C3
11 = C3

21 = 15 and C3
32 = C3

42 = C3
54 = 8.

Part 1

We analyze the network from top to bottom applying
Algorithm I to calculate the upper bound for each layer:

C1
1s − H(V 1

1s) = 25 < C2
11 + C2

21 = 40, So reset C2
11 +

C2
21 = 25 and

C2
11 =

W 2
11

W 2
11 + W 2

21

(C2
11 + C2

21) = 22.5

C2
21 =

W 2
21

W 2
11 + W 2

21

(C2
11 + C2

21) = 2.5 (27)

C2
11 = 22.5 > previous C2

11 = 20, thus we choose C2
11 = 20.

Moreover, C2
21 is smaller than the sufficient reconstruction

rate, i.e.,

H(V 2
21|V

1
1s, V

1
2s) + H(V 3

32|V
1
1s, V

1
2s, V

2
11, V

2
21, V

2
32, V

2
42)

+H(V 3
42|V

1
1s, V

1
2s, V

2
11, V

2
21, V

2
32, V

2
42) = 5.0414.(28)

We reset C2
21 = 5.0414, then C2

11 = 25− 5.0414 = 19.9586.
Using the same algorithm, we can obtain

C2
32 = C2

42 = 12.5

C3
11 + C3

21 = 18.2040

C3
32 + C3

42 = 3.2868 (29)

C3
54 = 8

The whole constraints for each sub-star network can be
calculated, for example, (V 2

11, V
2
21)’s sub-star network con-

straints are

R(V 3
11) + R(V 3

21) + H(V 2
11|V

1
1s, V

1
2s, V

2
21)

≤ R(V 2
11) ≤ 20 (the original capacity)

R(V 3
32) + R(V 3

42) + H(V 2
21|V

1
1s, V

1
2s, V

2
11)

≤ R(V 2
21) ≤ 20 (the original capacity) (30)

R(V 3
11) + R(V 3

21) + R(V 3
32) + R(V 3

42) + H(V 2
11, V

2
21|V

1
2s, V

2
11)

≤ R(V 2
11) + R(V 2

21) ≤ C3
11 + C3

21 = 18.2040

Similarly the constraints for all the other sub-star networks
can be obtained while calculating from the bottom layer
to the top layer. Together with the Model II cost function,
we have

R(V 3
11) = 3.6722 R(V 2

11) = 20 R(V 1
1s) = 26.8345

R(V 3
21) = 1.6321 R(V 2

21) = 4.9949 R(V 1
2s) = 17.1718

R(V 3
32) = 1.6547 R(V 2

32) = 3.3512
R(V 3

42) = 1.6321 R(V 2
42) = 3.3512

R(V 3
54) = 1.6434

The network lifetime is 0.9316, and the bottleneck is the
1st layer sub-star network. The number of balanced sub-
star networks is 4.

Part 2 We now analyze the network from bottom to top
applying Algorithm II to calculate the upper bound for
each layer.

We use the minimum required total sum of rates in each
sub-star network as the capacity sum’s upper bound, for
example

R(V 3
11) + R(V 3

21) + H(V 2
11|V

1
1s, V

1
2s, V

2
21)

≤ R(V 2
11) ≤ 20 (the original capacity)

R(V 3
32) + R(V 3

42) + H(V 2
21|V

1
1s, V

1
2s, V

2
11)

≤ R(V 2
21) ≤ 20 (the original capacity) (31)

k ≤ R(V 2
11) + R(V 2

21) ≤ k,

where k = R(V 3
11) + R(V 3

21) + R(V 3
32) + R(V 3

42) +
H(V 2

11, V
2
21|V

1
2s, V

2
11).

Similarly the constraints for all the other sub-star networks
can be obtained while calculating from the bottom layer
to the top layer. Together with the Model II cost function,
we have

R(V 3
11) = 1.6434 R(V 2

11) = 5.0301 R(V 1
1s) = 13.4296

R(V 3
21) = 1.6321 R(V 2

21) = 4.9836 R(V 1
2s) = 8.5298

R(V 3
32) = 1.6434 R(V 2

32) = 1.7546
R(V 3

42) = 1.6321 R(V 2
42) = 3.3515

R(V 3
54) = 1.6434

The network lifetime is 1.8616, and the bottleneck is still
the 1st layer sub-star network. The number of balanced
sub-star networks is 1.

Compared with Algorithm I, the network lifetime is
extended, but the number of balanced sub-star networks
decreases.

From Example 1, Algorithm II achieves a better lifetime
by sacrificing lower layer balance level as expected. How-
ever, the cost function still tries to balance the sub-star
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network within the tight constraints. The network lifetime
achieved by Algorithm II is the longest possible lifetime
for the network.

Algorithm I achieves better network balance in all layers
and better data quality by sacrificing the critical nodes’
working period (usually equal to the network lifetime). We
can now see the tradeoff between data rate and network
lifetime. Compared with Algorithm II, we can use a
parameter α, α > 0, to achieve looser bounds for the lower
layers than Algorithm II, and a longer network lifetime
than Algorithm I.
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