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Abstract: The purpose of this paper is to evaluate the reliability in finite samples of
different methods for constructing probabilistic parameter confidence regions in prediction
error identification using Output Error (OE) models. The paper presents alternatives to the
”classical method” of constructing asymptotically valid confidence regions, which is based on
the asymptotic statistical properties of the parameter estimator. It is shown that if alternative
test statistics are used, more reliable confidence regions for finite samples can be obtained.
Particularly, it is demonstrated that the use of a test statistic based on the Fisher score allows
the construction of exact confidence regions for finite samples.
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1. INTRODUCTION

Prediction error (PE) methods have become a wide-spread
technique for system identification. In PE identification,
the reliability of the parametric dynamic models identified
on the basis of measurement data is generally limited due
to noise disturbances and the finite length of the data.
The need for quantifying model uncertainties is especially
relevant when identified models are used as a basis for
model based control, monitoring, simulation or any other
model based decision-making. An indication of the reli-
ability of the identified model is given by probabilistic
confidence regions for its parameters. A confidence region
is a region in the parameter space that attempts to ”cover”
the true but unknown parameter vector with a nominal
probability. Confidence regions are exact if the coverage
probability equals the nominal probability. The confidence
regions that are most widely used in PE identification
are derived from the asymptotic statistical properties of
the parameter estimator. These regions generally have a
simple ellipsoidal shape, but for finite data lengths their
nominal level is often misleading. Finite-time analysis of
parameter inference in PE identification is an important
problem, however with few results so far. For some results
see e.g. (Campi and Weyer, 2002; Weyer and Campi, 2002;
Campi and Weyer, 2005). In this paper, we consider the
construction of confidence regions for the parameters of
Output Error (OE) models. The classical method as well
as a recently proposed alternative (Douma and Van den
Hof, 2005) are briefly reviewed. In addition, three new
alternative methods (with finite time perspectives) are
proposed, two of which are based on likelihood theory. The
goal of the paper is to evaluate, validate and compare the
reliability of different methods for constructing confidence

regions for finite data lengths. This is done by means
of Monte-Carlo simulation experiments. It is shown that
although all methods considered are equivalent in very
large samples , for finite data lengths the methods show
different reliability. Results of a similar study for the case
of ARX (Auto Regression with eXogenous inputs) models
were presented earlier (den Dekker et al., 2007).

2. STATISTICAL INFERENCE IN PREDICTION
ERROR IDENTIFICATION

We will consider dynamical data generating systems of the
form

y(t) = G0(q)u(t) +H0(q)e(t) (1)
with q the standard shift operator, y(t) the stochastic
(measurable) output signal, u(t) the deterministic (mea-
surable) input signal and e(t) (non-measurable) zero-mean
Gaussian white noise. In (1), G0(z) and H0(z) are proper
rational transfer functions that have no poles in |z| ≥ 1,
which means that the system is stable. In addition, H0(z)
will be restricted to be monic and minimum-phase. The
one-step ahead predictor of y(t), given the system (1) and
given the observations {(y(s), u(s)), s ≤ t− 1}, is given by

ŷ(t|t− 1) = H−1
0 (q)G0(q)u(t) + [1 −H−1

0 (q)]y(t), (2)

which can be rewritten as

y(t) = ŷ(t|t− 1) + e(t). (3)

The one-step ahead predictor (2) is the best one-step
ahead predictor in the sense of the conditional expectation
(Ljung, 1999). In reality, the true system (G0(z), H0(z)) is
generally unknown, and predictor models determined by a
collection of two rational transfer functions (G(z), H(z))
are considered instead. A predictor model set M is defined
as any collection of predictor models:

M := {(G(q, θ), H(q, θ))|θ ∈ Θ ⊂ R
n} (4)
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with θ a real valued parameter vector ranging over a subset
of R

n. It is assumed that this model set is composed of
predictor models (i.e., transfer functions) that satisfy the
same conditions of properness, stability and monicity as
the transfer functions H0(z) and G0(z) described above.
Underlying the set of models, there is a parameterization
that determines the specific relation between a parameter
θ ∈ Θ and a model M within M. If we assume that
the data generating system S belongs to the model set
(S ∈ M), there exists an exact parameter θ0 reflecting the
transfer functions G0 and H0 and one may rewrite (3) as

y(t) = ŷ(t|t− 1; θ0) + e(t), (5)

with

ŷ(t|t−1; θ) = H−1(q, θ)G(q, θ)u(t)[1−H−1(q, θ)]y(t). (6)

The model of the observations is given by

y(t) = ŷ(t|t− 1; θ) + ε(t, θ), (7)

with ε(t, θ) the prediction errors. Since S ∈ M, the
prediction errors evaluated at θ0 are equal to e(t) and
thus zero mean, independent, Gaussian distributed, with
probability density function (PDF)

fε(ε(t, θ0); θ0) =
1√

2πσ2
exp

[

− 1

2σ2
ε2(t, θ0)

]

(8)

with σ2 the variance of e(t). The joint PDF of the
observations yN = {y(t)}t=1,··· ,N (conditioned on the
given deterministic input sequence uN ) is given by:

fy(yN ; θ0) =

N
∏

t=1

fε(y(t)−ŷ(t|t−1; θ0)) =

N
∏

t=1

fε(ε(t, θ0); θ0).

(9)
Taking the logarithm yields:

log fy(yN ; θ0) =

N
∑

t=1

log fε(ε(t, θ0); θ0), (10)

which can be written as

log fy(y
N ; θ0) = −N

2
log(2π)−N log σ− N

2σ2
VN (θ0) (11)

with

VN (θ0) =
1

N

N
∑

t=1

ε(t, θ0)
2. (12)

2.1 The Fisher score

The Fisher score S(θ) is defined as

S(θ) =
∂ log fy(y

N ; θ)

∂θ
. (13)

It can be shown that the Fisher score (13) evaluated at
the true value θ0 of θ has mean zero:

E[S(θ0)] = 0. (14)

It follows from (13) and (11) that the Fisher score can be
written as

S(θ) =
−N
2σ2

V ′(θ) (15)

with V ′

N (θ) the first derivative of VN (θ) with respect to θ.

2.2 The Fisher information matrix

The covariance matrix of the Fisher score S(θ0) is de-
scribed by

J(θ0) = E
[

S(θ0)S
T (θ0)

]

(16)

which is known as the Fisher information matrix (Fisher,
1922). It can be shown that J(θ0) may alternatively be
written as

J(θ0) = −E

[

∂2 log fy(y
N ; θ)

∂θ2

∣

∣

∣

∣

θ=θ0

]

. (17)

It follows from (11), (15), (16) and (17) that the Fisher
information matrix is given by:

J(θ0) =
N2

4σ4
E

[

V ′(θ0)V
′T (θ0)

]

, (18)

or, alternatively, by

J(θ0) =
N

2σ2
E [V ′′(θ0)] , (19)

with V ′′(θ) the second derivative of V (θ) with respect to
θ. Furthermore, by the multivariate central limit theorem,
it is generally derived that, for N → ∞,

S(θ0) → N (0, J(θ0)), (20)

that is, the Fisher score is asymptotically normally dis-
tributed with expectation value zero and covariance matrix
J(θ0) (Wilks, 1962).

2.3 The likelihood function and the maximum likelihood
estimator

By substituting the available observations yN for the
corresponding indeterminate variables in (9) and regarding
the resulting expression as a function of the parameter
vector θ for fixed observations yN , the likelihood function,
written as fy(θ; yN ), is obtained. The maximum likelihood
estimator (MLE) of θ0 is given by

θ̂N = arg max
θ
fy(θ; yN ) = argmin

θ
VN (θ). (21)

Fisher (1922) has shown that, for N → ∞,

θ̂N → N (θ0, J
−1(θ0)). (22)

Furthermore, Wald (1949) has shown that, under very

general conditions, the MLE θ̂N is a consistent estimator.
Finally, it can be shown that the MLE of σ2 is given by

σ̂2
ML = VN (θ̂N ), (23)

whereas a (slightly) more accurate estimator of σ2 is given
by

σ̂2 =
N

N − n
VN (θ̂N ). (24)

3. OUTPUT ERROR MODELLING

The OE model structure describes the input-output rela-
tionship of a linear dynamical system as in (1) with

G(q, θ) =
q−nkB(q−1, θ)

F (q−1, θ)
, H(q, θ) = 1 (25)

with nk the delay and

B(q−1, θ) =
(

b0 + b1q
−1 + · · · + bnb−1q

−nb+1
)

, (26)

F (q−1, θ) = 1 + f1q
−1 + · · · + fnf

q−nf , (27)

with θT = [b0, b1, · · · bnb−1, f1, · · · , fnf
]. In an output error

model structure we consider the one-step ahead predictor

ŷ(t|t− 1; θ) =
B(q, θ)

F (q, θ)
u(t) (28)
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and we denote the predictor derivative:

ψ(t, θ) =
∂

∂θ
ŷ(t|t− 1; θ). (29)

Furthermore, define

Ψ(θ) =







ψT (1, θ)
...

ψT (N, θ)






. (30)

Suppose that the data generating system belongs to the

model class (S ∈ M). The MLE θ̂N of θ0 is then given by
(21), where

VN (θ) =
1

N

N
∑

t=1

(y(t) − ŷ(t|t− 1; θ))2 (31)

and the Fisher score is equal to

S(θ) =
−N
2σ2

V ′

N (θ) =
1

σ2

N
∑

t=1

ψ(t, θ) [y(t) − ŷ(t|t− 1; θ)]

=
1

σ2
ΨT (θ) (y − ŷ(θ)) , (32)

with
y = [y(1), y(2), . . . , y(N)]T , (33)

and

ŷ(θ) = [ŷ(1|0; θ), ŷ(2|1; θ), . . . , ŷ(N |N − 1; θ)]T . (34)

Evaluating (32) at θ = θ0 yields:

S(θ0) =
1

σ2
ΨT (θ0)e, (35)

with e = [e(1) · · · e(N)]T . It is very important to note
that for OE models, the Fisher score (35) is exactly
normally distributed (due to the fact that the term Ψ(θ0)
is deterministic) and the asymptotic result (20) holds for
finite data as well:

S(θ0) ∼ N (0, J(θ0)), ∀N, (36)

where the Fisher information matrix J(θ0) is given by:

J(θ0) = E
[

S(θ0)S
T (θ0)

]

=
1

σ2
ΨT (θ0)Ψ(θ0). (37)

As we will see later, this result allows us to construct
confidence regions that are exact also for finite values ofN ,
which is remarkable since in the classical approach, based
on the statistical properties of the parameter estimator, ex-
act confidence regions for finite samples are only obtained
for linear regression models with deterministic regressors,
such as Finite Impulse Response (Ljung, 1999).

4. CONFIDENCE REGIONS

Confidence regions can be interpreted as the result of
hypothesis testing. If we want to test the null hypothesis

H0 : θ0 = θ (38)

against the alternative hypothesis

H1 : θ0 6= θ, (39)

at significance level α, where the significance level is
defined as the probability of rejecting H0 when H0 is
true, we first have to construct a test statistic with known
distribution under H0. Such a test statistic will be a
function of θ and yN . The general test principle now states
that the null hypothesis H0 is rejected if the sample value
of the test statistic used is larger than some user specified

threshold. Knowledge of the PDF of the test statistic under
H0 allows one to compose tests (i.e., set thresholds) with
a desired significance level. This principle can now be used
to compose confidence regions for the parameters θ0. This
is done as follows. First, select a test statistic for testing
the null hypothesis θ0 = θ against the alternative θ0 6= θ,
at significance level α. A 100(1−α)% confidence region for
θ0 is then constituted by the set of all values θ for which
the null hypothesis θ0 = θ would be accepted.

4.1 The classical approach

In the classical approach to constructing confidence re-
gions for the parameters of OE models, the starting point
is a first order Taylor expansion:

(θ̂N − θ0) ≈ −[V ′′(θ0)]
−1[V ′

N (θ0)], (40)

with V ′′(θ0) = 2
N

ΨT (θ0)Ψ(θ0) (assuming a deterministic

input sequence uN ) (Ljung, 1999). It can be shown that

V ′

N (θ0) ∼ N (0,
2σ2

N
V ′′(θ0)). (41)

Hence, in the first order Taylor approximation, an expres-

sion for the covariance matrix of (θ̂N − θ0) is given by

P = [V ′′(θ0)]
−1 2σ2

N
V ′′(θ0) [V ′′(θ0)]

−1
=

2σ2

N
[V ′′(θ0)]

−1
.

(42)
This covariance matrix is approximated using an estimate

of V ′′(θ0) given by the term 2
N

ΨT (θ̂N )Ψ(θ̂N ) to arrive at
the test statistic

1

σ2
(θ̂N − θ)T ΨT (θ̂N )Ψ(θ̂N )(θ̂N − θ). (43)

Under H0, the test statistic (43) has approximately a χ2
n

distribution, i.e., a chi-square distribution with n degrees
of freedom. An approximately valid 100(1−α)% confidence
region for θ0 is then given by

{

θ| 1

σ2
(θ̂N − θ)T ΨT (θ̂N )Ψ(θ̂N )(θ̂N − θ) ≤ χ2

n,1−α

}

,

(44)
where χ2

n,1−α is the 1 − α quantile of the chi-square
distribution with n degrees of freedom (cfr. Mood et al.
(1974)). This confidence region corresponds with the one
implemented in the Matlab System Identification Toolbox
(Ljung, 2003) and has also been derived by Douma and
Van den Hof (2006) using an alternative paradigm for
probabilistic uncertainty bounding.

Alternatively, (44) can be derived starting from the
(asymptotic) statistical properties of the MLE described
in section 2. It follows from (22), and the consistency
property of the MLE that the quadratic form

(θ̂N − θ0)
TJ(θ̂N )(θ̂N − θ0). (45)

has asymptotically (i.e., for N → ∞) a χ2
n distribution.

(Kay, 1998). Then, if we want to test the null hypoth-
esis (38) against the alternative hypothesis (39) the test
statistic

TW = (θ̂N − θ)TJ(θ̂N )(θ̂N − θ), (46)

which is known as the Wald test statistic, may be used.
Asymptotically, (46) has a χ2

n distribution under H0.
It follows from section 3 that for the case of normally
distributed data yN and an OE model structure, the test
statistic TW can be written as:
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TW =
1

σ2
(θ̂N − θ)T ΨT (θ̂N )Ψ(θ̂N )(θ̂N − θ), (47)

which equals (43). Finally, it can be shown that if σ2 is

replaced by σ̂2, the distribution of (43) is better approx-
imated by an F distribution and the term χ2

n,1−α in (44)
is to be replaced by nFn,N−n,1−α, with Fn,N−n,1−α the
1−α quantile of the F distribution with n and N degrees
of freedom. This leads to the following asymptotically valid
100(1 − α)% confidence region for θ0:
{

θ| 1
n

(θ̂N − θ)T ΨT (θ̂N )Ψ(θ̂N )(θ̂N − θ)

σ̂2
≤ Fn,N−n,1−α

}

(48)

4.2 An alternative approach without Taylor approximation

An alternative approach, without Taylor approximation,
was recently proposed by Douma and Van den Hof (2005).

Since the MLE θ̂N of θ0 is given by Eq.(21), it must satisfy

V ′

N (θ̂N ) = 0. By defining

yF (t) = F (q, θ̂N )−1y(t); uF (t) = F (q, θ̂N )−1u(t) (49)

the equation V ′

N (θ̂N ) = 0 can be rewritten as

1

N

N
∑

t=1

[

F (q, θ̂N )yF (t) − z−nkB(q, θ̂N )uF (t)
]

·ψ(t, θ̂N ) = 0.

(50)

The parameter estimate θ̂N satisfying these equations can
now be written in a linear regression-type equation:

θ̂N =
(

ΨT Φ
)−1

ΨTyF (51)

with Ψ = Ψ(θ̂N), yF = [yF (1) · · · yF (N)]T ,

ΦT =
[

ϕF (1, θ̂N), · · · , ϕF (N, θ̂N )
]

, (52)

and

ϕT
F (t, θ̂N ) = [uF (t− nk) · · ·uF (t− nk − nb + 1)

−yF (t− 1) · · · − yF (t− nf)]. (53)

The system’s relations

y(t) =
q−nkB0(q)

F0(q)
u(t) + e(t) (54)

can then be rewritten as:

F0(q)yF (t) = q−nkB0(q)uF (t) +
F0(q)

F (q, θ̂N )
e(t), (55)

which can be rewritten in the regression form:

yF = Φθ0 + eF , (56)

where eF = F0(q)

F (q,θ̂N )
[e(1) · · · e(N)]T . Substituting (56) in

(51) now delivers:
(

ΨT Φ
)

(θ̂N − θ0) = ΨT
eF . (57)

Unlike the Taylor approximation (40), (57) is an exact
result. Unfortunately, the statistical distribution of the
random variable ΨT

eF is unknown for finite values of
N . It can be shown, however, that asymptotically ΨT

eF

is normally distributed with zero mean and covariance
matrix Q = σ2Ψ(θ0)Ψ

T (θ0). Therefore, the test statistic

(θ̂N − θ)TP−1
D (θ̂N − θ) with

PD =
(

ΨT Φ
)−1 ·Q ·

(

ΦT Ψ
)−1

(58)

is asymptotically χ2
n distributed under H0. By replacing

the term Ψ(θ0)Ψ(θ0)
T by the estimate ΨΨT , and σ2 by

σ̂2, Douma and Van den Hof (2005) arrive at the following
asymptotically valid 100(1−α)% confidence region for θ0:

{

θ|(θ̂N − θ)TP−1
s (θ̂N − θ) ≤ nFn,N−n,1−α

}

, (59)

with
Ps =

(

ΨT Φ
)−1

σ̂2ΨT Ψ
(

ΦT Ψ
)−1

. (60)

4.3 A new approach without Taylor approximation

A new alternative approach starts again from the equation

V ′(θ̂N ) = 0, or equivalently,

1

N

N
∑

t=1

ψ(t, θ̂N )ε(t, θ̂N ) = 0. (61)

It can be shown that, in the case of OE systems,

ε(t, θ̂N) = e(t) − ϕT
oe(t, θ0)(θ̂N − θ0), (62)

with

ϕT
oe(t, θ0) = [uF (t− nk) · · ·uF (t− nk − nb + 1)

−G(q, θ0)uF (t− 1) · · · −G(q, θ0)uF (t− nf)] (63)

being a vector with dimension n = nb + nf . Substituting

(62) for ε(t, θ̂N ) in (61) and using a matrix notation it
follows

ΨT Φoe(θ0)(θ̂N − θ0) = ΨT
e, (64)

with Ψ = Ψ(θ̂N ) and ΦT
oe(θ0) = [ϕoe(1, θ0), · · · , ϕoe(N, θ0)].

Pursuing a similar line of reasoning as in subsection 4.2, we

can conclude that the test statistic (θ̂N − θ)TP−1
B (θ)(θ̂N −

θ), with

PB(θ) =
(

ΨT Φoe(θ)
)−1

σ2ΨT Ψ
(

ΦT
oe(θ)Ψ

)−1
, (65)

is asymptotically χ2
n distributed under H0. An asymptot-

ically valid 100(1− α)% confidence region for θ0 can then
be formulated as

{

θ|(θ̂N − θ)TP−1
oe (θ)(θ̂N − θ) ≤ nFn,N−n,1−α

}

, (66)

with

Poe(θ) =
(

ΨT Φoe(θ)
)−1

σ̂2ΨT Ψ
(

ΦT
oe(θ)Ψ

)−1
. (67)

Note that unlike Ps in (59) and ΨT Ψ in (48), the term
Poe in (66) depends on θ. Therefore, the construction of
(66) is generally computationally expensive, requiring the
evaluation of Poe(θ) at a sufficient number of points to
produce contours. In addition, whereas (48) and (59) are
ellipsoids, confidence region (66) generally is not.

4.4 An approach based on the likelihood ratio

A second alternative approach is to use a test statistic that
is based on a comparison of (maximized) likelihood func-
tions under the hypotheses H0 and H1. Since the models
underlying these hypotheses are nested, the generalized
likelihood ratio (LR)

LG =
fy(θ; yN )

supθ fy(θ; yN )
=

fy(θ; yN )

fy(θ̂N ; yN)
(68)

is bound to be between 0 (likelihoods are non-negative)
and 1. It has been shown that under certain regularity
conditions, the test statistic

TLR = −2 logLG (69)
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has asymptotically a χ2
n distribution under H0 (Kay,

1998). It follows from section 3 that for the case of
normally distributed data yN and an OE model structure,
the test statistics TLR can be written as:

TLR =
N

σ2

(

VN (θ) − VN (θ̂N )
)

, (70)

Based on this test statistic, the following (asymptotically
valid) 100(1−α)% confidence region for θ0 can be derived:

{

θ|N
(

VN (θ) − VN (θ̂N )
)

≤ σ2χ2
n,1−α

}

, (71)

If σ2 is unknown and replaced by σ̂2, χ2
n,1−α is replaced

by nF (n,N − n, 1 − α) to arrive at






θ|N
n

(

VN (θ) − VN (θ̂N )
)

σ̂2
≤ Fn,N−n,1−α







(72)

Note that the construction of (71) and (72) is generally
computationally expensive, requiring the evaluation of
V (θ) at a sufficient number of points to produce contours.
Likelihood ratio based confidence regions have also been
discussed by Quinn et al. (2005).

4.5 An exact Fisher score based finite sample approach

A third new approach is based on the statistical properties
of the Fisher score described in section 3. It follows from
(36) that for OE models the quadratic form

S(θ0)
TJ−1(θ0)S(θ0) (73)

has a χ2
n distribution. Then, if we want to test the null

hypothesis (38) against the alternative hypothesis (39) the
test statistic

TR = S(θ)TJ−1(θ)S(θ), (74)

which is known as the Rao (or score) test statistic (Kay,
1998) may be used, since it is known to be exactly χ2

n

distributed under H0 (for all N). It follows from section 3
that (74) can be written as:

TR =
1

σ2
(y − ŷ(θ))TP (θ)(y − ŷ(θ)), (75)

with
P (θ) = Ψ(θ)(ΨT (θ)Ψ(θ))−1ΨT (θ). (76)

Note that the N × N matrix (76) is an orthogonal pro-
jection matrix since it is symmetric and idempotent, i.e.,
P 2 = P . Based on this test statistic, the following exact
100(1 − α)% confidence regions for θ0 can be derived:

{

θ|(y − ŷ(θ))TP (θ)(y − ŷ(θ)) ≤ σ2χ2
n,1−α

}

(77)

If σ2 is unknown, it is known from nonlinear regression
theory (Hamilton, 1986; Seber and Wild, 1989) that it is
still possible to construct an exact confidence region based
on the Rao test statistic. Such a region is obtained by using
the following variant of the test statistic TR:

T ′

R =
N − n

n

(y − ŷ(θ))TP (θ)(y − ŷ(θ))

(y − ŷ(θ))T [I − P (θ)](y − ŷ(θ))
, (78)

with I the N × N identity matrix. It can be shown that
the test statistic T ′

R is the ratio of two independent χ2

distributed random variables with n and N − n degrees
of freedom, respectively. Therefore, it is exactly Fn,N−n

distributed under H0. This leads to the following exact
100(1 − α)% confidence region:
{

θ|
N − n

n

(y − ŷ(θ))T P (θ)(y − ŷ(θ))

(y − ŷ(θ))T [I − P (θ)](y − ŷ(θ))
≤ Fn,N−n,1−α

}

(79)

Note that the construction of (77) and (79) is generally
computationally expensive, requiring the evaluation of
P (θ) at a sufficient number of points to produce contours.
The method of obtaining the exact confidence region (79)
is often referred to as the lack-of-fit method (Donaldson
and Schnabel, 1987; Gallant, 1987).

5. SIMULATION EXPERIMENT

In a MATLAB environment, a Monte Carlo simulation
experiment was performed to evaluate and compare the
methods for computing confidence regions described in the
preceding sections. For different data lengths N , K data
sets (yN , uN ) = {y(t), u(t)}t=1,··· ,N were generated using
a data generating system S that is completely known and
belongs to the OE model class:

G0(q) =
q−1(b0 + b1q

−1)

1 + f1q−1 + f2q−2
, H0(q) = 1, (80)

with b1 = 0.1047, b2 = 0.0872, f1 = −1.5578 and f2 =
0.5769. For each value ofN , we used a fixed input sequence
uN , with uN a realization of a zero mean, Gaussian
distributed white noise process with variance σ2

u = 1 being
uncorrelated with the zero mean, Gaussian distributed
white noise process {e(t)} with variance σ2 = 1. For
each value of N, K different data sets were obtained by
repeating the same experiment K times, where each time
only the noise realization eN was different. From each data
set, the model was identified using a model set M with the
same OE structure as the data generating system:

G(q, θ) =
q−1(b0 + b1q

−1)

1 + f1q−1 + f2q−2
; H(q, θ) = 1, (81)

with θT = [b0 b1f1f2] and it was recorded whether or
not the confidence regions described by (48), (59), (66),
(72), and (79) contained the true value θ0. Note that
determining whether θ0 lay within the confidence regions
did not require the construction of the full confidence
regions. The observed coverage γα, for a particular nominal
confidence level 1 − α, is defined as the percentage of the
total number of data sets K for which θ0 lay within the
confidence region. In this study, we used K = 50000.
Furthermore, a nominal confidence level α = 0.05 was
chosen. This means that the (asymptotic) theory predicts
an observed coverage of 95%. Figure 1 shows the observed
coverage rates γ0.05 as a function of the number of data
points N . The 95% confidence intervals for γ0.05 can be
obtained from the binomial distribution. The maximum
width of these confidence intervals was approximately
0.01. The results show that for increasing data lengths,
all observed coverage rates tend to 0.95, as predicted
by asymptotic theory. For finite data lengths, however,
the different confidence regions show different reliability.
The lack of fit method (based on the Rao test statistic)
turns out to yield the most reliable confidence regions
in the sense that the coverage probability equals the
nominal probability for all data lengths (as predicted
by theory). For the other confidence regions considered,
coverage and nominal probabilities differ significantly for
smallN . Particularly the ”classical” confidence region (48)
and the alternative (59) turn out to be unreliable for
small N . The reliability of the LR based confidence region
(72) and the alternative (66) turn out to be relatively
high, but suboptimal when compared to the lack-of-fit
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Fig. 1. Results of the simulation experiment described in
section 5 . Observed coverage rates of the confidence
regions based on the ”classical” approach (48)(◦), the
alternative approaches (59)(+) and (66)(*), the LR
based approach (72)(2), and the lack of fit method
(79)(×), as a function of N . The data generating
system is given by (80) and the OE model set is de-
scribed by (81). The nominal confidence level is 0.05.
All results were obtained from 50000 realizations.

method. The simulation experiment was repeated for data
sequences obtained using different realizations of both
the noise contribution eN and the input sequence uN in
each of the K = 50000 data sets (for each value of N).
The results were similar to those obtained with a fixed
input sequence uN . More simulation experiments were
performed, using alternative data generating systems (all
belonging to the OE model class), parameters and nominal
confidence rates. All experiments yielded similar results.

6. CONCLUSION

It was shown that the classical method for constructing
confidence regions for OE model parameters yields unreli-
able inference results for small data lengths. In addition,
the possibility of constructing exact confidence regions for
finite data lengths was demonstrated. It should be noted
that whereas the classical regions (ellipsoids) are easy to
compute, the construction of the newly proposed (exact)
confidence regions is computationally expensive. There-
fore, more research should be done towards their practical
implementation. The prospect of using randomized algo-
rithms (Tempo et al., 2004) for this purpose is subject of
ongoing research, as well as a further generalization of the
results to the Box-Jenkins model structure.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge fruitful discussions
with Sippe Douma and Asbjörn Klomp.

REFERENCES

M.C. Campi and E. Weyer. Finite sample properties of
system identification methods. IEEE Trans. Autom.
Control, 47(8):1329–1334, 2002.

M.C. Campi and E. Weyer. Guaranteed non-asymptotic
confidence regions in system identification. Automatica,
41(10):1751–1764, 2005.

A. J. den Dekker, X. Bombois, and P.M.J. Van den Hof.
Likelihood based uncertainty bounding in prediction
error identification using ARX models: A simulation
study. In Proc. European Control Conference ECC’07,
pages 2879–2886, Kos, Greece, July 2-5, 2007.

J.R. Donaldson and R.B. Schnabel. Computational expe-
rience with confidence regions and confidence intervals
for nonlinear least squares. Technometrics, 27(1):67–82,
1987.

S.G. Douma and P.M.J. Van den Hof. An alternative
paradigm for probabilistic uncertainty bounding in pre-
diction error identification. In Proc. 44th IEEE Conf.
Decision and Control and European Control Confer-
ence ECC’05, CDC-ECC’05, pages 4970–4975, Sevilla,
Spain, December 12-15, 2005.

S.G. Douma and P.M.J. Van den Hof. Probabilistic
model uncertainty bounding: An approach with finite-
time perspectives. In Preprints 14th IFAC Symposium
on System Identification, pages 1021–1026, Newcastle,
Australia, March 27-29, 2006.

R. A. Fisher. On the mathematical foundations of theo-
retical statistics. Phil. Trans. Roy. Soc. London, Series
A, 222:309–368, 1922.

R.A. Gallant. Nonlinear statistical models. John Wiley
and Sons, Inc., New York, 1987.

D. Hamilton. Confidence regions for parameter subsets in
nonlinear regression. Biometrika, 73(1):57–64, 1986.

S.M. Kay. Fundamentals of Statistical Signal Processing,
Volume II Detection Theory. Prentice Hall PTR, Upper
Saddle River, New Jersey, 1998.

L. Ljung. System Identification - Theory for the User.
Prentice Hall, Upper Saddle River, NJ, 2nd edition,
1999.

L. Ljung. System identification toolbox in matlab. The
Mathworks, Inc., 2003.

A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction
to the Theory of Statistics. McGraw-Hill, Tokyo, 3rd

edition, 1974.
S.L. Quinn, T.J. Harris, and D.W. Bacon. Accounting

for uncertainty in control-relevant statistics. Journal of
Process Control, 15(1):675–690, 2005.

G. A. F. Seber and C. J. Wild. Nonlinear regression. John
Wiley and Sons, New York, 1989.

R. Tempo, G. Calafiore, and F. Dabbene. Randomized
algorithms for analysis and control of uncertain systems.
Springer Verlag, New York, 2004.

A. Wald. Note on the consistency of the maximum
likelihood estimate. Ann. Math. Stat., 20:595–601, 1949.

E. Weyer and M.C. Campi. Non-asymptotic confidence
ellipsoids for the least-squares estimate. Automatica,
38:1539–1547, 2002.

S.S. Wilks. Mathematical Statistics. John Wiley and Sons,
Inc., New York, 1962.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5029


