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Abstract: The static nature of the noncooperative power control game model in optical
networks makes it difficult to study and design an appropriate pricing scheme. In this paper, we
derive a first-order best response dynamics from the game-theoretical model and formulate a
general multi-input and multi-output (MIMO) state-space model. We use classical linear system
theory to explain the controllability of the pricing and the observability of the power states. We
use the output regulator theory to design a pricing policy for the network for a given optical
signal-to-noise ratio (OSNR) target.

1. INTRODUCTION

Recent investigations of the dynamic and performance
aspect of optical wavelength-division multiplexed (WDM)
communication networks are inspired by the interest in
an intelligent network management system that can main-
tain network stability and optical channel performance
in an on-line fashion (Mukherjee [2007], B. Ramamurthy
and Mukherjee [2007], Pavel [2004]). Channel performance
is closely dependent on the optical signal-to-noise ra-
tio (OSNR), dispersion and nonlinear effects, (Agrawal
[2005]). In Zander [1992], Chraplyvy et al. [1992], some
static approaches have been developed for a single link
optimization. However, for a modern reconfigurable optical
networks, where different channels can travel via different
optical paths, it is desirable to implement a decentralized
and iterative algorithm to intelligently control the net-
work.

As an alternative to traditional system-wide optimization,
non-cooperative game theory has been used to control and
optimize network performances. In a large-scale networks,
decisions are made independently with local network in-
formation, as it is difficult to gather real-time complete
information for decision-making. Game theory’s inherent
property of distributedness and noncooperativeness makes
itself an appropriate framework in the OSNR performance
optimization.

Such non-cooperative model is considered in Pavel [2006],
where an OSNR network model has been developed for
decentralized optimization. Each user has a payoff function
that is composed of utility and the cost calculated from
network price. Under such framework, a closed-form solu-
tion of the Nash equilibrium (NE) is found and an iterative
algorithm is designed to achieve the solution. However,
the NE’s static nature makes it difficult to further study
and design the network pricing policy that affects each
channel’s utility function. Pricing of networks is one of the
crucial control mechanisms. Proposed in Saraydar et al.
? This work was supported in part by Natural Sciences and Engi-
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[2002], pricing is introduced to provide incentives or a
control signal to motivate users to adopt a social behavior,
i.e., reach some social optimal solution. A pricing policy is
needed to enforce a Nash equilibrium to attain a certain
target solution.

In Pavel [2006], Srikant et al. [2002], a limited investigation
has been on some special type of pricing schemes, such
as uniform pricing and proportional pricing. In Saraydar
et al. [2002], pricing algorithms are developed in a heuristic
way without a rigorous demonstration of convergence and
its uniform pricing policy doesn’t fully motivate the service
of differentiation. Therefore, it still remains a challenge to
find an appropriate framework to study the pricing issue
analytically.

In this regard, we develop a state-space model from each
channel’s best response dynamics and offer a different
perspective towards the non-cooperative game in optical
networks. In our model, we view pricing as a control signal
determined by the network manager and channel power
as a network state. Using the classical control theory, we
are able to study the pricing controllability of our system
and design a pricing scheme to drive the network to a
desirable OSNR level. The systematic approach adopted
in this paper allows us to investigate other interesting
problems in networks. such as robustness and time-delay.

The main contribution of this paper is to connect the state-
space control theory to the non-cooperative power control
in networks, and build a novel framework to address
the issue of pricing in optical networks. We construct
a linear system model based on the relation of OSNR
and OSND and give a closed-form non-uniform pricing
policy for achieving given desired OSNR levels. This paper
is organized as follows. In section II, we review OSNR
Nash game and formulate the state-space model to design
pricing mechanism in section III. In section IV, we study
the effects of modeling uncertainty and time delay on the
stability. We conclude and point out some future work in
section V.
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2. STATE-SPACE MODEL OF OSNR GAME

2.1 OSNR Nash Game Model

We consider the same optical network model described
in Pavel [2006]. We let N denote the set of of channels
are transmitted and ui be the i−th channel input optical
power (at Tx), and u = [u1, ..., uN ]T the vector of all
channels’ input powers. The ith channel optical OSNR is
thus given as

OSNRi =
ui

n0,i +
∑

j∈N Γi,juj
, i ∈ N (1)

where Γ is the full n×n system matrix which characterizes
the coupling between channels. n0,i denotes the ith channel
noise power at the transmitter. An OSNR game without
constraints is defined by a triplet 〈N , (Ai), (Ji)〉. N is the
index set of players or channels; Ai is the strategy set {ui |
ui ∈ [ui,min, ui,max]}; and, Ji is the cost function, chosen
such that minimizing the cost is related to maximizing
OSNR level. In Pavel [2006], Ji is defined as

Ji(ui, u−i) = αiui − βi ln
(

1 + ai
ui

X−i

)
, i ∈ N (2)

where αi, βi are channel specific parameters, that quantify
the willingness to pay the price and the desire to maximize
its OSNR, respectively, ai is a channel specific parameter,
X−i is defined as X−i =

∑
j 6=i Γi,juj +n0,i. Provided that∑

j 6=i Γi,j ≤ ai ,the resulting NE solution is given in a
closed form by

Γ̃u∗ = b̃, (3)

where Γ̃i,j = ai, for j = i; Γ̃i,j = Γi,j , for j 6= i and
b̃i = aibi

αi
− n0,i.

2.2 State-Space Approach to OSNR Game

State-space method is a powerful tool to study dynamical
systems. It provides a different viewpoint from the input-
output frequency domain method and allows a way of
systematic study of coupled systems. In this section, we use
the features of state-space methods based on the derivation
of best response dynamics of the OSNR game to design
pricing schemes.

The static best response function for payoff functions in (2)
can be derived by taking its first derivative with respect
to ui as follows.

ui = BR(u−i) = argmin
ui

Ji(ui,u−i) =
βi

αi
− X−i

ai
. (4)

From (4), we can derive the first-order best response
dynamics as in (5).

ẋi =
aiβi

αi
−X−i − aixi. (5)

or equivalently,

ẋi = −aixi −
∑
j 6=i

Γi,jxj +
aiβi

αi
− n0,i,∀i ∈ N (6)

where xi is equal to ui quantitatively but denotes the
unconstrained state variable of the channel power i. It easy

to observe that the static Nash equilibrium corresponds to
the equilibrium from the dynamical coupled system in (6).

To keep the state-space in a linear form, we can define
optical signal-noise difference (OSND), based on (1) as

OSNDi = ui −mi = (1− Γi,j)ui −
∑
i 6=j

Γi,juj ,∀i ∈ N (7)

where mi is defined from (1) as mi = Γi,iui+
∑

j 6=i Γi,juj+
n0,i. OSND measures transmission quality just as OSNR
does. Since OSND measures the difference of the optical
power, we will use unit dBm for it. It is obvious that the
higher the value of OSND, the better the transmission
quality will be.

For the simplicity of notation, let γd
i = OSNDi and

γr
i = OSNRi, i ∈ N . Subsequently γd = [γd

i ] : RN → RN

and γr = [γr
i ] : RN → RN . Since γd

i = ui − mi and
γr

i = ui/mi, we can relate γd
i and γr

i by equation (8).

γr
i =

ui

ui − γd
i

, i ∈ N . (8)

Definition 1. An ONSR vector γr is feasible if there exists
a power vector u ∈ RN such that γr

i = ui/mi =
OSNRi(u) = ui

Γi,iui+X−i
,∀i ∈ N .

Since not all given γr can be realized by a power vector
u ∈ RN , Definition 1 provides a concept on the feasibility
of γr that can be chosen. With a given γd

i , we can calculate
γr

i from (8) by a γr-feasible choice of signal u. In the
following Theorem 1, we are going to show that under
certain conditions, the translation between γr and γd can
actually become one-to-one.
Theorem 1. Let Θ : RN → RN be a mapping from OSNR
γr and OSNR γd,i.e., γd = Θ(γr). Θ is bijective provided
that the following conditions hold:

• (C1) γr
i < 1∑

j∈N
Γij

,∀i ∈ N .

• (C2)
∑

j∈N Γij < 1,∀i ∈ N .

Proof. Suppose a γr ∈ RN is given. From (1), we can
obtain

(1− γr
i Γii)ui − γr

i

∑
j 6=i

Γijuj = γr
i n0,i,

or in the matrix form as

Γ̂u = b̂, (9)

where b̂i = γr
i n0,i,∀i ∈ N , and

Γ̂ =


1− γr

1Γ11 −γr
1Γ12 · · · −γr

1Γ1N

−γr
2Γ21 1− γr

2Γ22 · · · −γr
2Γ2N

...
. . . . . .

...
−γr

NΓN1 · · · · · · 1− γr
NΓNN

 .

Provided that γr
i < 1∑

j∈N
Γij

, Γ̂ is strictly diagonal

dominant and nonsigular; the mapping Θ1 : RN → RN

from u to γr is a one-to-one bijective mapping such that
u = Γ̂−1b̂. On the other hand, OSND γd and u are related
in a linear fashion via (10)

Cu = γd, (10)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12002



where C ∈ RN×N is given by

C =


1− Γ11 −Γ12 · · · −Γ1N

−Γ21 1− Γ22 · · · −Γ2N

...
...

. . .
...

−ΓN1 · · · · · · 1− ΓNN

 .

When
∑

j Γij < 1, C is strictly diagonally dominant and
there exists a unique solution u = C−1rd. Thus, the
mapping Θ2 : RN → RN from γd to u is bijective.
Combining (9) and (10), we have

γd = CΓ̂−1b̂. (11)

Under the conditions of γr
i < 1∑

j∈N
Γij

and
∑

j∈N Γij < 1,

OSNR and OSND are one-to-one. Therefore, the mapping
Θ = Θ1 ◦Θ2 is bijective.

Corollary 1. An OSNR vector γr is feasible if and only if

b̂ ∈ R(Γ̂)

The Corollary is an immediate result following (9) and
provides a way to check feasibility of γr as defined in
Definition 1.
Corollary 2. Suppose OSNR target is uniform among
users, i.e., γr = γr

01, γr
0 ∈ R. An increase in γr

0 will result
in a lower ‖γd‖, and vice versa, provided that ‖Γ̂‖ ≤ 1

γr
0

and the conditions (C1), (C2) in Theorem 1 hold.

Proof. Let’s take the norm on both sides of (11) and
under uniform target γr

0 we obtain

‖γd‖ = ‖CΓ̂−1b̂‖ ≤ ‖C‖‖(I− γr
0Γ)−1‖‖b̂‖. (12)

Since γr
0‖Γ‖ ≤ 1, using Lemma 2.3.3 in Golub and Loan

[1996], we obtain

‖γd‖ ≤ ‖C‖‖b̂‖
1− γr

0‖Γ̂‖
. (13)

From (13), an increase in γr
0 results in ‖γd‖.

With (6) and (7), the state-space form of the best response
dynamics is given by

ẋ = Ax + Bv − n (14)

y = Cx− n (15)
where x ∈ RN is the state-vector physically modeling the
evolution of the power vector u in optical networks; v ∈
RN is a vector of control variables relating to the pricing
parameters component-wise by vi = 1/αi,∀i; y is the
output vector that observes OSND. Matrices A ∈ RN×N ,
B ∈ RN×N and vector n ∈ RN are given respectively as
follows.

A =


−a1 −Γ12 · · · −Γ1N

−Γ21 −a2 · · · −Γ2N

...
...

. . .
...

−ΓN1 · · · · · · −aN

 ,

B = diag{a1β1, a2β2, · · · , aNβN} and vector n ∈ RN =
[n0,1, n0,2, · · · , n0,N ]T .

State-space model (14) is a multi-input and multi-output
(MIMO) system; however, the model is single-input and

multi-output (SIMO) system, if Bv in (14) is replaced
by Bv, where B ∈ RN is a vector given by B =
B1 = [a1β1, · · · , aNβN ]T and v ∈ R, v = 1/α is a scalar
pricing parameter. SIMO represents a uniformly priced
Nash game, in which the network assigns a single network
price to every user.

Due to the nonlinearity of OSNR expression, a direct
OSNR output formulation will result in solving for a diffi-
cult nonlinear set of equations. Without losing generality,
we next study a design of pricing to achieve desirable
OSNR in the form of OSND as OSNR can be determined
from OSND by (8) under (C1) and (C2). In this way, we
are able to take the advantage of linearity of OSND and
derive a closed form for the pricing scheme.

The state-space model (14) naturally allows us to examine
the pricing design problems based on classical control
theory by viewing it as controller. In the following devel-
opment, we will ignore the term n, since it is important
to first develop some insightful results and then consider
the model by viewing noise as a disturbance to the system.
Furthermore, the term n in a typical network is usually on
the magnitude of 1.0×10−4mW, that is, less than 1%−5%
of the common signal power.

3. PRICING CONTROL DESIGN

A common problem in OSNR Nash game is to design a
pricing mechanism so that players can reach their OSNR
targets at their steady-state, i.e., the best response dy-
namics ẋ = Ax + Bv yields a solution x(t) = x′ at a
sufficiently large t and for some given x′ that corresponds
to target OSNR from (1). In this section, instead of dealing
directly with OSNR, we investigate the problem using
OSND targets, as its linearity allows us to give some
fundamental results in controllability and observability.

Based on classical control theory, it is obvious that (14)
is pricing controllable if the controllability matrix has full
rank. Since it is assumed that aiβi 6= 0,∀i in (14), diagonal
matrix B is non-singular and therefore the OSNR game
described in Section II-B is inherently pricing controllable.

In addition, we also can conclude that OSNR game is also
power observable if ‖Γ‖ < 1, since C = I−Γ is nonsingular
from Lemma 2.3.3 in Golub and Loan [1996] and thus the
observability matrix is full rank.

3.1 Constant Reference Signal Tracking

In this subsection, we study a regulator problem in which
the output is desired to track given feasible OSNR levels.
We will use classical regulator theory Wonham [1979] to
develop insights into this pricing problem. Let’s construct
a dynamical system whose output is the given OSND γd

obtained from OSNR γr. Such a reference system is given
by (16).

ẇ = Sw (16)

y = Cdw = yd (17)

Since the given performance target OSND γd is a constant
signal, we let S ∈ RN×N = 0, Cd ∈ RN×N = diag(γd

i ),
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yd = γd and w ∈ RN ,w(0) = 1. It is obvious that (16)
will yield w(t) = 1,∀t. We need to find a v such that
e(t) = y − yd will converge to 0.

Theorem 2. Suppose A = A + BF1 is Hurwitz and F2 =
F2 − F1Π. A regulator (18)

v = F2w + F1(x−Πw) = F1x + F2w (18)

exists if and only if there exists maps F2 ∈ RN×N and
Π : RN → RN such that

0 = AΠ + BF2 (19)

CΠ = Cd (20)

Equations (19) are called classic regulator equations or
FBI equations named after Francis-Byrnes-Isidori Won-
ham [1979]. Solving this set of equations, we obtain

F2 =−B−1AC−1Cd (21)

Π = C−1Cd (22)

under the assumption that

Φ =
[
A B
C 0

]
is non-singular. (23)

and B,C ∈ RN×N . Condition (23) is actually equivalent
to C and B being non-singular. This result is summarized
in the following proposition.

Theorem 2 gives a necessary and sufficient condition to
design pricing values for an asymptotic tracking of given
transmission performance OSND targets in OSNR Nash
games. Different from an open-loop style pricing described
in Srikant et al. [2002], Pavel [2006], the general controller
described in Theorem 2 provides a feedback mechanism
on the OSNR game dynamics and gives another degree
of freedom in F1 to adjust the dynamical response in
addition to the choice of ai. It is desirable because the
network is able to adjust the dynamics via F1 once ai

are set and submitted to the network. For instance, if we
choose ai such that −A is strictly diagonally dominant,
i.e., ai >

∑
i Γi,j ,∀i. A = A itself is already Hurwitz.

Thus, we can simply let F1 = 0 and the pricing design can
be simply found by

v = F2w = −B−1AC−1γd, (24)

and thus the pricing parameter in OSNR game is found as
αi = 1/vi. However, with the presence of network model
uncertainties and network delay, we may need to further
use F1 to ensure stability of the OSNR game. This issue
will be elaborated in Section V.
Remark 1. Observing from (24), we can see that the
norm of the pricing vector ‖α‖ increases as OSND ‖γd‖
decreases. We can use Corollary 2 to relate the pricing
with OSNR: as the uniform OSNR target γr

0 increases, we
need to have on average smaller prices indicated by ‖α‖.
This observation allows us to increase OSNR target levels
in an allowable region by adjusting prices.

4. STABILITY UNDER MODELING UNCERTAINTY
AND TIME-DELAY

In Section IV, we discussed pricing design to track a
desired OSNR output. Since the stability of OSNR game is
ensured by the assumption of the diagonal dominance, the
first-order best response dynamics of the game is stable
as an open loop system. However, with uncertainties in
network conditions and modeling, it is necessary for us to
ensure the stability using feedback in the pricing design.
In this section, we take into account another two aspects
of the state-space model. One is the parametrical uncer-
tainty in OSNR network model, namely, uncertainties in
variable Γi,j , which may deviate from its nominal value due
to manufacturing error, temperature, and other network
conditions. Another is delay in the network, mainly coming
from power updates in each iteration at the interface with
electronics.

4.1 Stability under Modeling Uncertainty

The OSNR network model described in Section II may be
subject to parametrical uncertainties arising from device
manufacturing, signal measurement, network condition,
etc. In particular, parameters Γij may change from its
nominal value to some Γ′i,j . Such uncertainties may be
small but need to be taken into account to ensure the
stability of the pricing control algorithm. One simple
modification to the state-space model in (14) to study this
problem is to use additive uncertainty, i.e.

ẋ = (A + Ã)x + Bv. (25)

where Ãi,j = ∆Γi,j for i 6= j and Ãi,j = δn,i for i = j, in
particular, to model the signal noise, which is usually less
than 5% of the signal power.
Definition 2. (Stable Pricing Under Additive Uncertainty)
A pricing scheme v = F1x + F2w is stable under uncer-
tainties Ã if the disturbed best response dynamics (25) is
stable for any given

Ã ∈ {∆ ∈ RN×N | ‖∆‖ < ∞}.
Theorem 3. A pricing scheme v is stable under additive
modeling uncertainty Ã if and only if BF1 is satisfies the
following inequality

‖Ma(s)‖∞ <
1√

λmax(ÃT Ã)
, (26)

where Ma(s) = (sI− (A + BF1))
−1, λmax(·) is the largest

eigenvalue of matrix (·) and ‖F (s)‖∞ = supω∈R σ(F (jω))

Proof. The stability study of (25) with controller v =
F1x+F2w can be reduced to the study of internal stability,
i.e., the stability of the following linear system:

ẋ = (A + BF1)x + Ãx. (27)

Its representation of the best response dynamics is shown
in Figure 1. It can be further reduced into a ∆ − Ma

configuration, where Ma(s) = (sI−A + BF1)
−1 and

∆ = Ã. Using the small-gain theorem Zhou et al. [2005],
the system is stable if and only if ‖Ma(s)‖∞‖Ã‖2 < 1.
Thus, we complete the proof.
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Fig. 1. Block Diagram Representation Under Additive
Uncertainty

Theorem 3 indicates that for a given additive uncertainty
matrix Ã, a stable pricing scheme is to design BF1 such
that the inequality (26) holds. In other words, if the
uncertainty in the modeling is bounded from above in
norm, i.e., ‖Ã‖2 ≤ 1/β, β > 0, then a pricing design needs
to satisfy ‖ (sI− (A + BF1))

−1 ‖∞ < β.

Lemma 1. Let the transfer function G(s) = (sI − (A +
BF1))−1. ‖G(s)‖∞ < β if and only if J(β) has no
eigenvalues on jω-axis, where

J(β) =
[
A + BF1 β

−2
I

I −AT − FT
1 BT

]
Lemma 1 is a direct application of Lemma 4.7 from Zhou
et al. [2005]. It leads to the following design criterion on
F1.
Theorem 4. Suppose F1 be a diagonal matrix given by
F1 = diag{fi}, where fi is a design parameter. The pricing
scheme is stable under additive uncertainty Ã such that
‖Ã‖2 ≤ 1/β, provided that fi < 1/βi−ϕi or fi > 1/βi+ϕi,
where

ϕi =
ξi

aiβi
and ξi = max

∑
j 6=i

Γij + β
−2

,
∑
j 6=i

Γji + 1

 .

Proof. We use Gershgorin’s Theorem to ensure that
eigenvalues of J does not have eigenvalue onf jω-axis.
Therefore, it requires that |−ai+aiβifi| >

∑
j 6=i Γij+β

−2
,

and in addition,|ai − aiβifi| >
∑

j 6=i Γji + 1. From the
above two inequalities, we arrive at |1 − βifi| > ξi

ai
. And

equivalently we have fi < 1/βi − ϕi, and fi > 1/βi + ϕi.

4.2 Stability under Time-Delay

From an algorithmic point of view, the best response
dynamics in practice has delays in measuring the power
from other channels. It has been justified in Stefanovic
and Pavel [2007] that delays occur on the path from
channel power uj to the OSNR outputs OSNRi and from
OSNRi to source ui. For example, in an optical span about
100km, the optical signal travels between the receiver and
transmitter for power regulation in approximately on the
order of 1ms. The thousands of kilometer-long optical
network may easily incur tens of milliseconds of delay,

which is beyond negligence. We use τi,j ≥ 0 to represent an
aggregate time-delay from source j to source i via OSNRi.
The best response with time-delay, therefore, is given by

ẋi(t) = −aixi(t)−
∑
j 6=i

Γijxj(t− τi,j) +
aiβi

αi
.

Uniform Delay: In this section, we assume that time
delays for each channel are uniform, i.e., τi,j = τ,∀i, j ∈ N .
We can express the best response in the following standard
form

ẋ(t) = A0x(t) + A1x(t− τ) + Bv(t)− n.

Suppose the pricing controller is chosen as v = F1x+F2w
as in section IV-B. Therefore the stability study of the
affine system above is equivalent to the study of the linear
system without constant term.

ẋ(t) = (A0 + BF1)x(t) + A1x(t− τ). (28)

where matrix A0 = diag{−a1,−a2, · · · ,−aN} and A1 are
given by

A1 =


0 −Γ12 · · · −Γ1N

−Γ21 0 · · · −Γ2N

...
. . . . . .

...
−ΓN1 · · · −ΓN,N−1 0


Theorem 5. (Gu et al. [2003]) The system (28) is stable
independent of delay if and only if

(1) A0 + BF1 is Hurwitz
(2) A0 + BF1 + A1 is Hurwitz, and,
(3) ρ((jωI−A0)−1A1) < 1,∀ω > 1 (29)

where ρ(·) denotes the spectral radius of a matrix.

In Theorem 5, BF1 provides a degree of freedom for design
to ensure stability with the presence of delay. With the
assumption of diagonal dominance on −A, it can also be
shown that conditions in Theorem 5 are satisfied with
F1 = 0. It is obvious that A0 + BF1 is Hurwitz due to
the fact that ai > 0 without feedback pricing control, i.e.,
F1 = 0. In addition, when F1 = 0, A = A0 + A1 has
it eigenvalues on the open right half s-plane, from the
assumption of the strict diagonal dominance. Thus, the
second condition in Theorem 5 can also be easily verified to
be true. It is not obvious to show that the third condition
is obviously satisfied by system (28) when F1 = 0. This
result is summarized in Theorem 6.
Theorem 6. Suppose F1 = 0. If Γ̃ is strictly diagonally
dominant, i.e., ai >

∑
j 6=i Γi,j , then the system (28) is

stable independent of delay.

Proof. Let H = (jωI −A0)−1A1 and ri be the radius
of the Gershgorin disc for H given by ri =

∑
j 6=i |Hij |.

From the definition of H, we obtain ri =
∑

j 6=i
|Γij |

(jω+ai)
.

Therefore, |ri| =
∑

j 6=i
|Γij |√

a2
i
+ω2

< 1,∀ω > 0. Based on the

Gershorgin Theorem, ρ(H) < 1. It is obvious to verify that
A0 and A0 + A1 are stable, under the condition of strict
diagonal dominance. Using the sufficiency of Theorem 5,
we complete the proof.

Non-uniform Delay: Theorem 6 yields results that co-
incide with Theorem 1 obtained in Stefanovic and Pavel
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[2007] for uniform delays from a different point of view. In
this section, we assume the time delay are not uniform in
a way such that τi,j = τi,∀i, j ∈ N . The time-delayed best
response dynamics is thus given by

ẋ(t) = A0x(t) +
N∑

k=1

Akx(t− τk) + Bv(t). (30)

where A
j

k = Ak, for j = k; A
j

k = Ak, for j 6= k ; and Aj

denotes j−th row of matrix Aj .
Theorem 7. (Gu et al. [2003]) Suppose that A0 + BF1 is
Hurwitz. Then the system (30) is stable independent of
delay if

‖(sI− (A0 + BF1))−1 (A1, · · · ,AN ) ‖∞ <
1√
N

.

Theorem 8. Suppose F1 = 0,
∑

j 6=i Γij < ai/N , then the
system (30) is stable independent of delay.

Proof. Let H(s) = (sI−A0)−1 (A1, · · · ,AN ).

‖H(s)‖∞ = sup
ω

σ(H(jω)) = sup
ω
‖H(jω)‖2 (31)

≤
√

N sup
ω

max
i

∑
j Γij√

a2
i + ω2

≤
√

N max
i

∑
j Γij

ai
, .

Suppose
∑

j 6=i Γij < ai/N , ‖H(s)‖∞ < 1/
√

N. From
Theorem 7, we can conclude that the system (30) is stable
independent of delay.

Theorem 8 shows that a stronger condition on diagonal
dominance is required to ensure stability independent of
delay without F1. However, we may relax this strong
condition into strict diagonal dominance condition (as in
Theorem 6) by using F1 as another degree of freedom.
Theorem 9. Let R = BF1. Suppose

∑
j Rij > ai

(
1− 1

N

)
>

0, and
∑

j 6=i Γij < ai, then the system (30) is stable
independent of delay.

Proof. Following a similar argument in the proof of
Theorem 8, we obtain

‖H(s)‖∞ ≤
√

N sup
ω

max
i

∑
j

|Hij | (32)

=
√

N sup
ω

max
i

∑
j | − Γij + Rij |√

a2
i + ω2

(33)

=
√

N max
i

(∑
j Γij

ai
−

∑
j Rij

ai

)
≤ 1√

N
.(34)

Therefore, the results follow after applying Theorem 7.

Theorem 9 implies a way to design F1 to reach stability
independent of delay. Moreover, since B is a diagonal
matrix, a direct condition on F1 becomes

∑
j(F1)ij >

1
βi

(
1− 1

N

)
.

5. CONCLUSION

In this paper, we developed a state-space framework for
the pricing design in the OSNR game. The classical control

theory enables us to view pricing from a control design
point of view and helps us develop insights into the pricing
controllability of the network. As a result, we use regulator
equations to find an analytical pricing policy so that the
network is able to attain a given set of OSNR targets.
We hope this study will initiate further investigations and
extensions of this model in this area. In this paper, we
did not take into account capacity constraints arising from
a physical operating threshold in the network. It will be
more realistic to find a control scheme that can only allow
power states evolve within a simplex.
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