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Abstract: Microalgae biotechnology has been focusing on the use of algae in the production of high value 
compounds. During the last few decades, the intense research effort has been aiming at improving new 
controls and supervising tools as well as on a good process understanding. This requirement involves a 
large diversity and a better accessibility to process measurements. Probes or sensors are required to control 
the process. They are however relatively limited. Classical photobioreactors are usually equipped with 
temperature, dissolved oxygen and pH probes. These sensors actually provide very little online 
information on cell growth, viability, metabolic state and production. For the time being, sensors reliability 
cannot meet industrial bioprocessing requirements. In this context software sensors show numerous 
potentialities. The central axis of this work is the development of an extended Kalman filter (EKF) for the 
estimation of biomass concentration based on a dynamic process model in combination with total 
inorganic carbon measurement. A microalga Porphyridium purpureum was used as a model organism in 
this study. Numerical simulations and real-life experiments (batch and continuous mode) have been carried 
out and corresponding results are given in order to highlight the performance of the proposed estimator. 

 

1. INTRODUCTION 

Today, the microalgal biomass is recognized as an excellent 
source of proteins, carbohydrates, lipids and vitamins used as 
food and feed additives. Microalgae, as photosynthetic 
organisms, use light and carbon dioxide for their energy. 
Large-scale cultures also find applications in energy 
production (e.g. photobiological hydrogen, biofuel, methane) 
and environmental remediation (e.g. wastewater treatment, 
carbon dioxide fixation and greenhouse gas emissions 
reduction) (Benemann 1997, Hallenbeck et al., 2002). 
Microalgae also can absorb heavy metals and sequester or 
degrade many different classes of toxic compounds (Boussiba 
and Leu, 2007) 

Current commercial technology for microalgae production 
involves both open ponds and closed photobioreactor 
productions system. Open ponds, although of lower cost than 
closed photobioreactors, have tendency to becoming rapidly 
contaminated with unwanted species. Commercial culture is 
usually carried out in closed photobioreactors which have 
several advantages such as high productivity and clean 
microalgal culture. A variety of closed devices have been 
proposed for generating microalgal biomass: tubular, bubble 
columns and airlift photobioreactors are widely used in the 
bioprocess industry (Camacho Rubio et al. 1999; Acién 
Fernandez et al.; 2001, Chisti, 2007). A good control over the 
growth environment results in a consistent product quality 
and the higher operating biomass densities. Dissolved 
oxygen, pH, temperature and light intensity are commonly 

monitored. The accessibility to process measurements and to 
culture physiological states is however limited. 

The control system of bioreactor is a difficult task due to non-
linear and time-varying nature of the system, slow response 
of the process and lack of reliable on-line sensors which can 
detect the important state variables (Shimizu, 1996). 

Biomass is one of the most valuable variables to control. 
Such information may be collected by sampling and off-
analysis such a cell counting, optical density or dry weight 
measurements. Other experimental methods are available to 
quantify and qualify the biomass: optical ones (visible near 
infrared absorption, scattering, etc) and those exploiting the 
electrochemical properties of the culture. Though, these 
methods are difficult to apply for online monitoring of 
biomass concentration in a photobioreactor. This is because 
these sensors are particularly sensitive to calibration 
problems and often need on-line cleaning. Aggregate 
formation and cell death can induce erroneous turbidity 
measurements.  

In this context, considerable attention has been devoted to the 
development of on-line software sensors. The objective of a 
software sensor is indeed to provide an estimation of the 
system state variables and particularly those which are not 
obtained through in situ hardware sensor or which need 
laborious and expensive analysis.  

Many studies have been made on the state estimation of 
unmeasured states variables. Several estimation techniques 
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have been proposed in the literature (Oliveira et al.,1996; 
Soroush, 1998; Bastin & Dochain, 1990; Bernard et al., 
2001; Dochain, 2001). 

In this paper, we report the development of an extended 
Kalman filter (EKF) for on-line estimation of biomass 
concentration, based on dynamic process model in 
combination with total inorganic carbon measurement. The 
process model is divided in two submodels: growth kinetics 
and gas-liquid mass transfer in the photobioreactor. A 
microalga Porphyridium purpureum was used as the model 
organism. This software sensor is capable of estimating 
biomass density in the photobioreactor bubbled with air 
containing a variable percentage of carbon dioxide and 
continuously illuminated with fluorescent lamps. 

The paper is organized as follows. Section 2 presents the 
bioprocess and its components. The system modelling is then 
introduced in section 3 and the EKF in section 4. This 
estimator is applied on simulation and on a laboratory-scale 
reactor. Finally, some conclusions and perspectives are given 
in Section 5. 

2. BIOPROCESS DESCRIPTION  

2.1 Strain and growth conditions 

The red microalga Porphyridium purpureum SAG 1830-1A 
was obtained from the Sammlung von Algenkulture 
Pflanzenphysiologister Institut der Universität Göttingen, 
Germany. The strain was grown and maintained on Hemerick 
medium (Hemerick, 1973). The pH was adjusted to 7.0 prior 
to autoclaving at 121 ºC for 20 min. Cultures were 
maintained at 25 ºC in 500 ml flask containing 400 ml culture 
under continuous light intensity of 70 µE m-2 s-1 and aerated 
with air containing 1% (v/v) CO2 at 100 rpm on a orbital 
shaker. Every two weeks, 200 ml of a culture was transferred 
to a new flask containing fresh medium during the 
exponential phase of growth. 

2.2 Photobioreactor culture conditions and measurements 

The cultures of P. purpureum were performed in a bubble 
column photobioreactor (fig. 1) with a working height and 
diameter of 0.4 and 0.1 m, respectively. The total culture 
volume was 2.5 l. The cylindrical reactor was made of glass 
and had an illuminated area of 0.1096 m². Air containing 2 % 
(v/v) CO2, was continuously supplied at a flow rate of 2.5 
V.V.H. (gas volume per liquid culture volume per hour) at 
the bottom of the column for the agitation of the culture. The 
air flow rate entering the photobioreactor was filtered through 
0.22 µm Millipore filters and was regulated using the suitable 
valves and flowmeters. An arrangement of four OSRAM 
white fluorescent tubes (L30W/72) and three OSRAM pink 
fluorescent tubes (L30W/77) around the bubble column was 
used as an external light source. The incident light intensity 
on the reactor surface was measured at 10 distinct locations 
using a flat-surface quantum sensor LI-COR LI-190SA. The 
average light intensity was calculated by taking the weighted 
average of all measurements. The optimal value of irradiance 
on surface for our reactor is 120 µE m-2 s-1.The reactor was 
equipped with a transparent jacket connected to a thermostat 

unit, which allowed controlling the temperature at 25 ºC. The 
photobioreactor was also equipped with a pH sensor 
(Radiometer Analytical) and a dissolved oxygen sensor 
(Ingold type 170). 
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Fig. 1. Schematic representation of the photobioreactor 
system 

The photobioreactor has been equipped with one sampling 
port in the top of the column. Samples for off-line analysis 
were collected at regular intervals (every 6, 8, and 12 hours). 
Cells number was counted under an optical microscope 
ZEISS Axioplan-2 on Malassez cells. Four determinations 
were made for each sample and the mean and the standard 
deviation calculated. Total inorganic carbon (T.I.C.) in the 
culture medium was determined by gas phase 
chromatography. The method proposed by Marty et al. 
(1995) is used to measure low inorganic carbon 
concentrations (down 10-6 mol l-1) and gives results with 
accuracy within 10 % and thus appears reliable and sensitive.  

3. BIOPROCESS MODELLING  

Mathematical modelling of a photobioreactor requires 
knowing the coupling between the metabolism of 
microorganisms, the light transfer inside the culture and the 
fluid dynamics of the reactor. In this paper, the process model 
proposed by (Baquerisse, 1999) is considered. It is made of 
two submodels: growth kinetics and gas-liquid mass transfer 
in the photobioreactor. Thus, the dynamic process model 
considers two equations, namely biomass and total inorganic 
carbon balances. The inorganic carbon concentration is 
associated with increasing cell density. 

Evolution of cell number can be expressed as: 
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where µ, X, F, and V are the specific growth rate, biomass 
concentration per unit culture volume, medium flow rate, and 
culture volume, respectively. 

The balance of the concentration of total inorganic carbon 
(TIC) in the aqueous solution may be calculated as follow: 
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where YX/S is the mass conversion yield, m is the maintenance 
coefficient, and kLa is the gas-liquid transfer coefficient.  

By definition, the carbon dioxide concentration in the 
medium fresh *

2[ ]CO  is expressed as:  

* 2
2[ ] PCOCO H=   (3)  

where PCO2 is the partial pressure of carbon dioxide and H 
denotes the Henry’s constant for Hemerick medium. Carbon 
concentration in the medium culture is given by: 
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where K1 and K2 are the kinetic constants and [H+] is the 
concentration of hydrogen ions in the culture media which is 
defined as: 

pHH −+ = 10][  (5) 

We have also integrated a light transfer model (Krystallidis, 
1994) that describes the evolution of incident and outgoing 
light intensity. The amount of light intensity accessible per 
cell (E) and the outgoing light intensity (IOUT) were calculated 
using (6) and (7).  

( ).
.

IN OUTI I Ar
E

V X
−

=  (6) 

2
1. . C

OUT INI C I X=  (7) 

where Ar is the reactor area, C1 and C2 are the constants 
which depend on the reactor geometry. 

The specific growth rate µ is predominantly influenced by the 
light intensity and the total inorganic carbon concentration. 
Substrates limitation effect has been incorporated in the rate 
equation. Therefore, the rate expression for biomass growth 
is given by: 

max . .exp 1 . .exp 1
opt opt opt opt

EE TIC TIC
E E TIC TIC

µ µ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(8) 

where µmax, Eopt, and TICopt are the parameters of the model 
and were identified from the data batch experiments. 

The aim of this study is estimate the biomass and TIC 
concentrations, based on the measurement of TIC. This will 
be achieved thanks to an extended Kalman filtering. 

4. EXTENDED KALMAN ESTIMATOR  

The Kalman filter and is the most widely adopted state 
estimation technology for non-linear systems. This estimator 
is a recursive filter which has two steps: prediction step 
between observations in which the uncertainty in the 
estimates increases with time, and correction step which takes 
place when observations occur. 

In the case of nonlinear system, Extended Kalman filter is 
based on process dynamic (9) and measurement equation 
(10). Both these models include noise terms that serve to 
account for unmodelled dynamics in the process equations 
and measurement errors in the observation equations, mostly 
assumed as Gaussian white noises.  

( )[ ] ( ),)( ttxtx ωϕ +=   ( ) 00 xtx t =
=

 (9) 

( )[ ] ( )ttxhty υ+=)(  (10) 

where φ[*]is the dynamic matrix and is function of the state 
to be estimated, x(t) is the state vector with an initial value of 
x0, y(t) the measurement, ω(t) is the dynamic noise with the 
covariance matrix Q, h[*] is the measurement matrix, and 
υ(t) is the measurement noise which has the covariance 
matrix R.  

In the case of bioprocess systems, observations occur at 
discrete times (in general with large intervals). Thus, A 
continuous-discrete version of the EKF has been proposed.  

For the discrete-time case, the one-step ahead prediction of 
the measurement 1ˆk ky −  is computed as: 

11 1ˆ ˆ( ) ,k k kk k k ky y t h t x−− −
⎡ ⎤= = ⎣ ⎦   (11) 

The Kalman filter gain is given by: 

1
1 1. .T
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−
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k
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x t
−

∂
=

∂
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The filtered state kkx  is calculated on the basis of available 

measurements and its covariance matrix kkP  is computed by: 

( )1 1. kk k k k k kx x K y yϕ− −= + −  (13) 
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In the continuous-discrete time case, the one-step ahead 
propagation of the state estimate 1ˆk kx + , and its covariance 

1k kP + are computed as the solution to the system of 
differential equations: 

ˆ ( ) ˆ( , ( ))k
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dx t t x t
dt
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dt
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x t
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x t
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∂

, and with the initial conditions 

ˆ ˆ( )k k k kx t x=     and    kkkk PtP =)(  (17) 

Equations (15) and (16) are integrated thanks to an Euler 
integration scheme. Observability of the model is checked 
after system linearization. Covariance matrices Q and R are 
taken constant, and are tuning parameters depending on the 
wanted estimator performance. 

5. RESULTS AND DISCUSSION 

In order to illustrate the performance of the proposed 
software sensor, the estimator is applied in the cases of a 
batch and continuous modes. Its efficiency is shown thanks to 
simulation and experimental results.  

5.1 Model identification 

First, the model parameters are identified thanks to 
experimental data. These data were obtained from an 
experimental run on the real laboratory-scale photobioreactor 
in a bath mode. The effects of the incident light intensity and 
percentage of carbon dioxide in the air flow were studied 
separately. Figure 2 shows the typical growth of 
P. purpureum in Hemerick medium.  
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Fig. 2. Typical growth of P.purpureum in a photobioreactor 
with Hemerick medium in batch mode. 

Parameter values for the microalgae growth are listed in 
Table 1. These values were obtained by fitting the 
experimental data acquired along the exponential phase of 
batch cultivation (Fig. 2) of P. purpureum under the different 

conditions in the same photobioreactor from a set of four 
experiments. The correlation coefficient was calculated to be 
0.985.   

Table 1. Model parameter values calculated for 
Porphyridium purpureum at 25 ºC 

Parameters Units Value 
µmax 
Eopt 

TICopt 
kLa 
C1 
C2 

h-1 
µE s-1109cell-1 

mmole l-1 
h-1 

 

0.03 
1.20 
12.93 
41.40 
0.65 
-1.02 

 

The model parameters for the TIC dynamic have been 
obtained by (Baquerisse, 1999) and are given in Table 2. 

Table 2. Model parameters of TIC dynamic 

Parameters Units Value 
K1 
K2 
m 

YX/S 
H 

 
 

h-1 

109 cell per mole TIC 
atm.l.mole-1 

1.02. 10-6 

8.32. 10-10 

0.004 
198.1 
34.03 

 

The value of kLa has been obtained by the dynamical method 
(Leveau and Bouix, 1988) with a dissolved oxygen sensor 
(Ingold type 170). Because in a microalgal photobioreactor, 
the absorption rate was shown to be independent of the 
chemical reaction taking place in the liquid phase, the 
kLa(CO2) could be directly related to the kLa(O2) by a single 
factor obtained from (18) which take into account the 
difference in aqueous diffusivities of the two gases (Camacho 
Rubio et al. 1999). 

( ) ( )22
2

2 Oak
D
D

COak L
O

CO
L =  (18) 

where 
2COD  and 

2OD are the diffusion coefficients or 

diffusivities in Hemerick medium of carbon dioxide and 
oxygen respectively.  
 

5.2 Batch mode 

First, the model simulation was performed in batch mode 
under the following conditions: 

X(0) = 2.44 109 cells l-1 , [TIC](0) = 2.55. 10-3 mole l-1,  

FIN = FOUT = 0, [TIC]IN = 0, and XIN = 0. 

The measurement of total inorganic carbon concentration is 
corrupted with a noisy signal with a standard deviation equal 
to 3 and 5% of the corrupted quantity. The simulation results 
given in Fig. 3 show that the estimated biomass concentration 
coincides with the true values issued from the process 
simulation.  
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The measurement of total inorganic carbon concentration is 
supposed to be available at sampling times equally spaced 
(Ts = 0.5 h). These measurements are obtained by simulating 
the discrete model of the process. The experiences show the 
importance of the sampling time Ts and the noise level 
utilized. Many numerical simulations have been carried out, 
showing a good performance of the estimator and a very 
satisfactory noise rejection.  

 

Fig. 3. Simulation studies: estimation of cell concentration 
based on noisy data of total inorganic carbon. 

In order to investigate the practical interest of the approach, a 
number of experiments were carried out to implement and 
verify the performance of the software sensor algorithm. The 
objective of this experimental work was to study the 
performance of extended Kalman filter for the cultures with 
changes in operating conditions of the photobioreactor.  

The choice of covariance matrix is important for the 
estimation. Here, the system noise covariance matrix Q and 
the covariance matrix of the initial estimation error P0 were 
chosen in a diagonal form according to the usual assumption 
that the individual components in the system noise vector are 
uncorrelated. P0, Q, and R were determined empirically. The 
covariance matrix R was assumed to be characterized by a 
Gaussian noise with a standard deviation of 5%.  

The performance of extended Kalman filter was examined 
under different growth conditions: low and high light 
intensity, excess of CO2 in the air injection. Some 
experimental results are presented in Fig. 4.  

It can be seen that the EKF has good performance in the case 
of a batch culture. 
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Fig. 4. Experimental studies: cell concentration estimation in 
batch culture with (a) 5% CO2, (b) low light intensity, (c) 
high light intensity. 

5.3 Continuous cultures 

In the sequel, the performance of this estimator was 
examined in continuous mode ( 0    IN OUTF F= ≠ ). The feed-
rate profile is given in Fig. 5(a). The EKF was tested in 
simulation and on experimental conditions. 

Figure 5 shows the performances of extended Kalman filter 
for the continuous culture which was performed under the 
following conditions: X(0) = 2 109 cells l-1 , [TIC](0) = 4.51. 
10 -3 mole l-1. A slight error in the guess of the initial 
conditions of the filter was considered: X(0) = 2.25 109 cells.l-

1. As illustrated by Fig. 5, the proposed estimator has good 
performances in the case of continuous cultures of 
microalgae. 
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Fig. 5. Estimator performance for continuous culture: (a) 
culture medium feeding profile, (b) results in simulation, and 
(c) experimental results. 

6. CONCLUSIONS 

The proposed software sensor is very successful in estimating 
the biomass concentration. It was designed in continuous as 
well as in discrete time and the convergence of each of these 
versions is clearly established. Numerical simulations and 
experimental data show a satisfactory performance of the 
proposed methodology. The developed state estimator offers 
a cost-effective alternative and an easier estimation of 
biomass concentration in microalgal photobioreactors. 
Further studies will consider the validation on a full-scale 
one. The development of a combined parameter and state 
estimator will be also investigated.  
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