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Abstract: This paper presents an approach to discrete time robust H∞ control for a class of nonlinear
uncertain systems based on the use of Sum Quadratic Constraints. The approach involves controllers
which include copies of the system nonlinearities in the controller. The nonlinearities being considered
are those which satisfy a certain global Lipschitz condition. The linear part of the controller is
synthesized using linear robust H∞ control theory and this leads to a nonlinear controller which gives an
upper bound on the attainable disturbance attenuation level.

Keywords: Discrete-time systems, optimal control, Riccati equations, uncertain linear systems.

1. INTRODUCTION

This paper presents an approach to discrete-time robust H∞

control for a class of nonlinear uncertain systems based on
linear H∞ control theory (see e.g. Basar and Bernhard (1995);
Green and Limebeer (1995); Savkin and Petersen (1996)) and
the use of Sum Quadratic Constraints (SQCs for short) which
exploit repeated nonlinearities satisfying a global Lipschitz
condition. The fundamental idea behind our approach is to
modify the standard SQC approach to robust control by in-
cluding a copy of the nonlinearity in the controller as shown
in Figure 1. The idea of using a copy of the nonlinearity in
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Fig. 1. Nonlinear system with nonlinear controller.

nonlinear observer design was previously used in the paper
Arcak and Kokotovic (2001). However, in contrast to Arcak and
Kokotovic (2001), we construct the linear part of the controller
in order to obtain a guaranteed level of disturbance attenuation.
In our case, we combine both nonlinearities into the nonlinear
system model and then use an SQC which exploits the repeated
nonlinearity; see Figure 2. In this case, the nonlinear controller
design problem is converted to a linear robust controller design
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ŵ y1
y2

Fig. 2. Nonlinear system and controller redrawn with repeated
nonlinearity.

problem. This approach enables us to use a discrete time ver-
sion of the robust H∞ control theory of Savkin and Petersen
(1996) to construct the linear part of the controller and then the
nonlinear controller is constructed by including a copy of the
plant nonlinearity. The approach of this paper is related to that
of the paper Petersen (2006) which considers a continuous time
guaranteed cost control problem.

2. PROBLEM STATEMENT

We consider a nonlinear uncertain system defined using a
similar framework to that considered in Savkin and Petersen
(1996); Moheimani et al. (1995). Let k = 1,2, · · · ,N be the finite
time horizon. Then, we consider the state equations:
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x(k +1) = A(k)x(k)

+

[

f

∑
i=1

B̌1,i(k)ξi(k)+
g

∑
j=1

B̄1, j(k)µ j(k)

]

+B1(k)w(k)+B2(k)u(k); x(1) = 0,

ζi(k) = Č1,i(k)x(k)+ Ď12,i(k)u(k); i = 1,2, . . . , f ;

ν j(k) = C̄1, j(k)x(k)+ D̄12, j(k)u(k); j = 1,2, . . . ,g;

z(k) =Cz
1(k)x(k)+Dz

12(k)u(k),

y(k) =C2(k)x(k)

+

[

f

∑
i=1

Ď21,i(k)ξi(k)+
g

∑
j=1

D̄21, j(k)µ j(k)

]

+D21(k)w(k); (1)
where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input,
w(k) ∈ Rp is the noise input, ζ1(k) ∈ Rh1 , . . . ,ζ f (k) ∈ Rh f are
the uncertainty outputs, ν1(k) ∈ R, . . . ,νg(k) ∈ R are nonlin-
earity outputs, ξ1(k) ∈ Rr1 , . . . ,ξ f (k) ∈ Rr f are the uncertainty
inputs, µ1(k) ∈ R, . . . ,µg(k) ∈ R are nonlinearity inputs, z(k) ∈
Rnz is controlled output, and y(k) ∈ Rl is the measured output.

We assume, for simplicity, that

Ď21,i(k)≡ 0 ∀ i = 1,2, . . . , f̃ ;

D̄21, j(k)≡ 0 ∀ j = 1,2, . . . , g̃;

B̌1,i(k)≡ 0 ∀ i = f̃ +1, f̃ +2, . . . , f , (2)

B̄1, j(k)≡ 0 ∀ j = g̃+1, g̃+2, . . . ,g.

The nonlinearity inputs are related to the nonlinearity outputs
by the following nonlinear relations

µ j(k) = ψ j(ν j(k)) ∀ j = 1,2, . . . ,g (3)
where the nonlinear functions ψ j(·) are such that

ψ j(0) = 0 ∀ j = 1,2, . . . ,g (4)
and satisfy the following global Lipschitz conditions:

|ψ j(ν1)−ψ j(ν2)| ≤ β j|ν1 −ν2| (5)
for all ν1, ν2 and for all j = 1,2, . . . ,g.

The uncertainty in the system is described by the following Sum
Quadratic Constraints.
Definition 1. ( Sum Quadratic Constraints; e.g., see Moheimani
et al. (1995).) An uncertainty ξ = (ξ (1), · · · ,ξ (N)) of the form
ξ (k) = φ(k,x,u,w) is admissible uncertainty for the system
(1), (3) if, given any control input sequence u(·), noise input
sequence w(·), and any corresponding solution to the system
(1), (3), then

N

∑
k=1

‖ξi(k)‖2 ≤
N

∑
k=1

‖ζi(k)‖2 +di, (6)

for all i = 1, . . . , f . Here the di are given positive constants.

We wish to construct a nonlinear dynamic output feedback
controller (say Kc) which leads to an upper bound on the
associated worst-case disturbance attenuation level γc ≥ 0 (see
Savkin and Petersen (1996));

γ2
c := sup

w(·)
sup

ξ (·)∈Ξ

∑N
k=1 ‖z(k)‖2 + x′N+1QN+1xN+1 − τ ∑ f

i=1 di

∑N
k=1 ‖w(k)‖2

.

(7)

Here τ is a positive constant, and τ ∑ f
i=1 di is a measure of how

much uncertainty we tolerate when w = 0.

The class of controllers considered are nonlinear output feed-
back controllers of the form

xc(k +1) = Ac(k)xc(k)+
g

∑
j=1

B̄c, j(k)µ̃ j(k)

+Bc(k)y(k); xc(0) = xc0

ν̃ j(k) = C̄c, j(k)xc(k); j = 1,2, . . . ,g

u(k) =Cc(k)xc(k) (8)
where

µ̃ j(k) = ψ j(ν̃ j(k)) (9)
for j = 1,2, . . . ,g. That is, we include copies of the nonlineari-
ties (3) in the controller.

We first move the nonlinearities (9) into the plant description
and introduce some new notations for the inputs and outputs of
the system (8). That is, we introduce the notation:

ỹ(k) ∆
=









y(k)
µ̃1(k)
...
µ̃g(k)









; ũ(k) ∆
=









u(k)
ν̃1(k)
...
ν̃g(k)









;

B̃c
∆
=

[

Bc B̄c,1 . . . B̄c,g
]

;C̃c
∆
=









Cc
C̄c,1
...
C̄c,g









. (10)

Using this notation, the controller state equations (8) can be re-
written as

xc(k +1) = Ac(k)xc(k)+ B̃c(k)ỹ(k); xc(0) = xc0

ũ(k) = C̃c(k)xc(k) (11)
and the problem of controlling the nonlinear uncertain system
(1), (3), (6) via the nonlinear controller (8), (9) is equivalent
to the problem of controlling the nonlinear uncertain system
(1), (3), (6), (9), (with repeated nonlinearities) via the linear
controller (11).

Sum quadratic constraints for the repeated nonlinearities.
The basis of our approach is to characterize the repeated non-
linearities (3), (9) by corresponding SQCs in order to allow a
discrete-time analogue of the results of Savkin and Petersen
(1996) to be applied. To obtain these SQCs, we observe that
the conditions (5) imply

[µ j(k)− µ̃ j(k)]
2 ≤ β 2

j [ν j(k)− ν̃ j(k)]
2 (12)

for j = 1,2, . . . ,g. Also, we have the conditions

[µ j(k)]
2 ≤ β 2

j [ν j(k)]
2

[µ̃ j(k)]
2 ≤ β 2

j [ν̃ j(k)]
2

for j = 1,2, . . . ,g. (Note that for specific nonlinearities, it may
be possible to obtain tighter sector bounds than these which
could be used to obtain less conservative results.) The above
conditions imply that the following SQCs are satisfied:

N

∑
k=1

[µ j(k)− µ̃ j(k)]
2 ≤

N

∑
k=1

β 2
j [ν j(k)− ν̃ j(k)]

2 + d̄1 j

(13)
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N

∑
k=1

[µ j(k)]
2 ≤

N

∑
k=1

β 2
j [ν j(k)]

2 + d̄2 j (14)

N

∑
k=1

[µ̃ j(k)]
2 ≤

N

∑
k=1

β 2
j [ν̃ j(k)]

2 + d̄3 j (15)

for all j = 1, . . . ,g. Here the d̄1 j, d̄2 j, d̄3 j, are any positive
constants.

Note that the SQC (13) is a critical SQC which exploits the
repeated nonlinearities with one occurring in the plant and one
occurring in the controller. The SQCs (14)-(15) are standard
SQCs on the individual nonlinearities which are included to
reduce the conservatism of the overall control system design.

We now introduce some additional notation to simplify the
description of the system (1), together with the constraints (6),
(13)-(15):

ξ̃ 1(k) =







ξ̃ 1
1 (k)

...
ξ̃ 1

f̃ +g̃(k)







∆
=



















ξ1(k)
...
ξ f̃ (k)
µ1(k)
...
µg̃(k)



















;

ξ̃ 2(k) =







ξ̃ 2
1 (k)

...
ξ̃ 2

f− f̃ +2g−g̃(k)







∆
=

































ξ f̃ +1(k)
...
ξ f (k)
µg̃+1(k)
...
µg(k)
µ̃1(k)
...
µ̃g(k)

































;

ξ̃ (k) =

[

ξ̃ 1(k)
ξ̃ 2(k)

]

=







ξ̃1(k)
...
ξ̃ f +2g(k)






(16)

ζ̃ (k) =







ζ̃1(k)
...
ζ̃ f +2g(k)







∆
=





























































ζ1(k)
...
ζ f̃ (k)
ν1(k)
...
νg̃(k)
ζ f̃ +1(k)
...
ζ f (k)
νg̃+1(k)
...
νg(k)
ν̃1(k)
...
ν̃g(k)





























































;

(17)

B̃2 = [ B2 0n×g ] ;

B̃1 =
[

B̌1,1 . . . B̌1, f̃ B̄1,1 . . . B̄1,g̃ 0
n×(2g+∑ f

i= f̃+1
ri)

]

;

(18)

C̃1 =





















































C̆1,1
...
C̆1, f̃
C̄1,1
...
C̄1,g̃
C̆1, f̃ +1
...
C̆1, f
C̄1,g̃+1
...
C̄1,g
0g×n





















































; D̃12 =





















































D̆12,1 0h1×g
...

...
D̆12, f̃ 0h f̃ ×g

D̄12,1 01×g
...

...
D̄12,g̃ 01×g
D̆12, f̃ +1 0h( f̃+1)×g

...
...

D̆12, f 0h f ×g
D̄12,g̃+1 01×g
...

...
D̄12,g 01×g
0g×m Ig×g





















































;

C̃2 =

[

C2
0g×n

]

; D̆21 =

[

D21
0g×(l+g)

]

; (19)

D̃21 =

[

0
l×(g+∑ f̃

i=1 ri)
Ď21, f̃+1 . . . Ď21, f

0
g×(g+∑ f̃

i=1 ri)
0g×rg̃+1 . . . 0g×r f

D̄21,g̃+1 . . . D̄21,g 0l×g
0g×1 . . . 0g×1 Ig×g

]

;

D̃z
12 = [ Dz

12 0nz×g ]

where h = ∑k
i=1 hi, r = ∑k

i=1 ri. Using this notation and the
notation (10), we can re-write the system (1) as follows:

x(k +1) =
[

A(k)x(k)+ B̃1(k)ξ̃ (k)+ B̃2(k)ũ(k)
]

+B1(k)w(k);

ζ̃ (k) = C̃1(k)x(k)+ D̃12(k)ũ(k);

z(k) =Cz
1(k)x(k)+ D̃z

12(k)ũ(k),

ỹ(k) =
[

C̃2(k)x(k)+ D̃21(k)ξ̃ (k)
]

+D̆21(k)w(k). (20)
It is also straightforward to re-write the SQCs (6), (13)-(15) in
the form

N

∑
k=0

ξ̃ ′(k)Miξ̃ (k) ≤
[

N

∑
k=0

ζ̃ ′(k)Niζ̃ (k)d + d̃i

]

(21)

for i = 1,2, . . . , h̃ where h̃ = f +3g, Mi ≥ 0, Ni ≥ 0, and the d̃i
are positive constants.

The set of all admissible uncertainty inputs ξ̃ (·) for the uncer-
tain system defined by the state equations (20) and the SQCs
(21) is constructed as in Definition 1.
Remark 2. Since we have shown that the nonlinearities (3), (9)
satisfy the SQCs (13) - (15), then it follows that if the linear
uncertain system (20), (21) with the linear controller (11) leads
to an upper bound on the worst-case disturbance attenuation
level , then the nonlinear uncertain system (1), (6), (9), (3)
with controller (11) will lead to the same upper bound on the
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associated worst-case disturbance attenuation level. Moreover,
it then follows that the nonlinear uncertain system (1), (3), (6)
with nonlinear controller (8), (9) will also lead to the same
upper bound on the associated disturbance attenuation level.
In the next section, we will use an extension of the results
of Savkin and Petersen (1996) to construct a linear controller
which leads to an upper bound on the worst-case attenuation
level for the uncertain system (20), (21).

3. THE MAIN RESULTS

The main result of Savkin and Petersen (1996) solves a
(continuous-time) robust H∞ control problem for an uncertain
linear system with uncertainty described by SQCs. In order
to apply this result to the problem under consideration in this
paper, we will show that the SQCs (6) lead to the satisfaction
of such a SQC which is parameterized by a set of Lagrange
multiplier parameters.

We first introduce some notation: Define a matrix valued func-

tion M̃(λ )
∆
= ∑h̃

i=1 λiM̃i where M̃i =

[

−Mi 0
0 Ni

]

, and λ =

[ λ1 λ2 . . . λh̃ ]
′ ∈ Rh̃. Then it follows from (21) that

N

∑
k=0

[

ξ̃ (k)′ ζ̃ (k)′
]

M̃(λ )

[

ξ̃ (k)
ζ̃ (k)

]

+ d̃(λ ) ≥ 0 (22)

for all λ ∈ Γ where d̃(λ )
∆
= ∑h̃

i=1 λid̃i. Here,

Γ =
{

λ ∈ Rh̃ : λi ≥ 0 ∀i
}

.

Now for any symmetric matrix M ∈ R(q+p)×(q+p) (q = 2g +

∑ f
i=1 ri, p = 2g + ∑ f

i=1 hi ), let Π(M) denote the number of
strictly negative eigenvalues of the matrix M. Also, let U(M)
denote a matrix of orthonormal eigenvectors of M. Further-
more, if Π(M) = q we partition U(M) as

U(M) =

[

U11(M) U12(M)
U21(M) U22(M)

]

where U11(M) ∈ Rq×q, U12(M) ∈ Rq×p, U21(M) ∈ Rp×q,

U22(M) ∈ Rp×p. Also, we assume the matrix
[

U11(M)
U21(M)

]

con-

tains the eigenvectors corresponding to the strictly negative
eigenvalues of M.

We will restrict attention to parameters λ ∈ Γ such that the
following conditions are satisfied:

Π(M̃(λ )) = q; detU11(M̃(λ )) 6= 0. (23)

If these conditions are satisfied, it follows that there exists a
nonsingular matrix T such that the matrix T ′M̃(λ )T is a diago-
nal matrix whose diagonal elements are in the set {−1,1,0}.
As in Section 4.5 of Horn and Johnson (1985), this can be
achieved with a matrix T of the form T = U(M̃(λ ))D−1 where
D = D(M̃(λ )) is a diagonal matrix constructed from the eigen-

values of M̃(λ ) as follows: D =

[

D1 0
0 D2

]

. Here

D1 =











(−µ̄1)
1/2 0 . . . 0

0 (−µ̄2)
1/2 . . . 0

...
...

. . .
...

0 0 . . . (−µ̄q)
1/2











;

D2 =

























(µ1)
1/2 0 . . . 0 0 . . . 0

0 (µ2)
1/2 . . . 0 0 . . . 0

...
...

. . .
...

...
0 0 . . . (µ p̄)

1/2 0 . . . 0
0 0 . . . 0 1 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 0 . . . 1

























;

where µ̄1, µ̄2, . . . , µ̄q are the negative eigenvalues of the matrix
M̃(λ ), µ1, µ2, . . . ,µ p̄ are the positive eigenvalues of the matrix
M̃(λ ), and the diagonal elements of the matrix D2 correspond-
ing to the zero eigenvalues of the matrix M̃(λ ), are replaced by
ones.

With the matrix T defined as above, we obtain the following
diagonalization of M̃(λ ):

T ′M̃(λ )T =

[−Iq×q 0 0
0 Ip̄× p̄ 0
0 0 0

]

. (24)

Let

T̃ =

[

T̃11 T̃12
T̃21 T̃22

]

:= T−1 = DU(M̃(λ ))′. (25)

Also, since detU11(M̃(λ )) 6= 0 and the matrix D is diagonal, it
follows that det T̃11 6= 0. Now introduce a change of variables
for the uncertainty inputs ξ̃ (k) and uncertainty outputs ζ̃ (k)
defined as follows

[

ξ̃ (k)
ζ̃ (k)

]

= T
[

ξ̄ (k)
ζ̌ (k)

]

. (26)

Hence,
[

ξ̄ (k)
ζ̌ (k)

]

= T−1
[

ξ̃ (k)
ζ̃ (k)

]

=

[

T̃11 T̃12
T̃21 T̃22

][

ξ̃ (k)
ζ̃ (k)

]

. (27)

Also, it follows from (24) and (26) that the SQC (22) can be
re-written as

N

∑
k=1

[

ξ̄ (k)′ ζ̌ (k)′
]

[

−I 0
0 Θ

][

ξ̄ (k)
ζ̌ (k)

]

+ d̃(λ ) ≥ 0,

where Θ = Θ2 =

[

I 0
0 0

]

≥ 0. This is equivalent to the SQC

T

∑
k=0

‖ξ̄ (k)‖2 −‖ζ̄(k)‖2 − d̃(λ ) ≤ 0

(28)

where ζ̄ (k) ∆
= Θζ̌ (k). It now follows from (27) that we can

write

ξ̃ = T̃−1
11

(

ξ̄ − T̃12ζ̃
)

;

ζ̌ = T̃21T̃−1
11

(

ξ̄ − T̃12ζ̃
)

+ T̃22ζ̃ .

Hence, we obtain
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[

ξ̃
ζ̌

]

=

[

T̃−1
11 −T̃−1

11 T̃12
T̃21T̃−1

11 T̃22 − T̃21T̃−1
11 T̃12

][

ξ̄
ζ̃

]

.

We now substitute these expressions into (20) to re-write this
system as follows

x(k +1) =
[

Ā(k)x(k)+ B̄1(k)ξ̄ (k)+ B̄2(k)ũ(k)
]

+B1(k)w(k);

ζ̄ (k) = C̄1(k)x(k)+ D̄11ξ̄ (k)+ D̄12(k)ũ(k);

z(k) =Cz
1(k)x(k)+ D̃z

12(k)ũ(k),

ỹ(k) =
[

C̄2(k)x(k)+ D̄21(k)ξ̄ (k)+ D̄22(k)ũ(k)
]

+D̆21(k)w(k) (29)
where

Ā(k) ∆
= A(k)− B̃1(k)T̃−1

11 T̃12C̃1(k);

B̄1(k)
∆
= B̃1(k)T̃−1

11 ;

B̄2(k)
∆
= B̃2(k)− B̃1(k)T̃−1

11 T̃12D̃12(k);

C̄1(k)
∆
= Θ(T̃22− T̃21T̃−1

11 T̃12)C̃1(k);

D̄11
∆
= ΘT̃21T̃−1

11 ;

D̄12(k)
∆
= Θ(T̃22− T̃21T̃−1

11 T̃12)D̃12(k);

C̄2(k)
∆
= C̃2(k)− D̃21(k)T̃−1

11 T̃12C̃1(k);

D̄21(k)
∆
= D̃21(k)T̃−1

11 ;

D̄22(k)
∆
=−D̃21(k)T̃−1

11 T̃12D̃12(k). (30)

Note that the system (29) and the SQC (28) are dependent on
the parameter λ ∈ Γ. Also, the approach of Savkin and Petersen
(1996) cannot be directly applied to uncertain system (29), (28)
due to the D̄11 and D̄22 terms in the state equations (29). We will
deal with these terms using standard loop shifting ideas arising
in H∞ control theory; e.g., see Basar and Bernhard (1995).

The first step in this process is to remove the D̄11 term. In order
to achieve this, we will require that

D̄′
11D̄11 < I. (31)

Now assuming that this condition is satisfied, we can define
Φ = I− D̄′

11D̄11 > 0; Φ̄ = I− D̄11D̄′
11 > 0.

Also, define transformed uncertainty inputs and uncertainty
outputs as

ξ̂ ∆
= Φ

1
2 ξ̄ −Φ− 1

2 D̄′
11

[

C̄1x(k)+ D̄12(k)ũ
]

;

ζ̂ ∆
= Φ̄− 1

2
[

C̄1(k)x+ D̄12(k)ũ
]

.

Hence,

ξ̄ = Φ− 1
2 ξ̂ +Φ−1D̄′

11
[

C̄1(k)x+ D̄12(k)ũ
]

.

Now, using these definitions, it is straightforward to verify that

‖ξ̄ (k)‖2 −‖ζ̄(k)‖2 ≡ ‖ξ̂ (k)‖2 −‖ζ̂(k)‖2.

Therefore, the SQC (28) can be re-written as

N

∑
k=0

[‖ξ̂ (k)‖2 −‖ζ̂(k)‖2]− d̃(λ ) ≤ 0.

(32)
Also, we can re-write the state equations (29) as

x(k +1) =
[

Â(k)x(k)+ B̂1(k)ξ̂ (k)+ B̂2(k)ũ(k)
]

+B1(k)w(k);

ζ̂ (k) = Ĉ1(k)x(k)+ D̂12(k)ũ(k);

z(k) =Cz
1(k)x(k)+ D̃z

12(k)ũ(k),

ỹ(k) =
[

Ĉ2(k)x(k)+ D̂21(k)ξ̂ (k)+ D̂22(k)ũ(k)
]

+D̆21(k)w(k) (33)

where

Â(k) ∆
= Ā(k)+ B̄1(k)D̄′

11Φ̄−1C̄1(k);

B̂1(k)
∆
= B̄1(k)Φ− 1

2

B̂2(k)
∆
= B̄2(k)+ B̄1(k)D̄′

11Φ̄−1D̄12(k);

Ĉ1(k)
∆
= Φ̄− 1

2 C̄1(k);

D̂12(k)
∆
= Φ̄− 1

2 D̄12(k);

Ĉ2(k)
∆
= C̄2(k)+ D̄21(k)D̄′

11Φ̄−1C̄1(k);

D̂21(k)
∆
= D̄21(k)Φ− 1

2 ;

D̂22(k)
∆
= D̄22(k)+ D̄21(k)D̄′

11Φ̄−1D̄12(k). (34)

Thus under the additional assumption that D̄′
11D̄11 < I, the

uncertain system (29), (28) is equivalent to the uncertain system
(33), (32) which has no D11 term in the state equations.

We now consider the removal of the D̂22(k) term in the state
equations (33). In order to achieve this, we define a transformed
measured variable ȳ(k) such that

ȳ(k) = ỹ(k)− D̂22(k)ũ(k).

Hence, the state equations (33) can be re-written as

x(k +1) =
[

Â(k)x(k)+ B̂1(k)ξ̂ (k)+ B̂2(k)ũ(k)
]

+B1(k)w(k);

ζ̂ (k) = Ĉ1(k)x(k)+ D̂12(k)ũ(k);

ȳ(k) =
[

Ĉ2(k)x(k)+ D̂21(k)ξ̂ (k)
]

+D̆21(k)w(k) (35)

and applying a controller of the form

xc(k +1) = Āc(k)xc(k)+ B̃c(k)ȳ(k); xc(0) = xc0

ũ(k) = C̃c(k)xc(k) (36)

to the uncertain system (35), (32) is equivalent to applying the
original controller (11) to the uncertain system (33), (32) where

Āc(k) = Ac(k)+ B̃c(k)D̂22(k)C̃c(k). (37)
Thus, the D11 and D22 terms have been removed and we
can design a controller for the original uncertain system by
designing a controller (36) for the uncertain system (35), (32)
and then implement the controller (11), (37) on the original
uncertain system.

We will apply results similar to that of Savkin and Petersen
(1996) to the uncertain system defined by state equations (35)
subject to the SQC (32). To this end, introduce the notations
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ˆ̂B1 =

[

1
γ

B1
1√
τ

B̂1

]

, ˆ̂D21 =

[

1
γ

Ď21
1√
τ

D̂21

]

,

ˆ̂C1 =

[

Cz
1√

τĈ1

]

, ˆ̂D12 =

[

Dz
12√

τD̂12

]

.

¯̄A(k) := Â(k)− B̂2(k)
(

ˆ̂D′
12(k)

ˆ̂D12(k)
)−1 ˆ̂D′

12(k)
ˆ̂C1(k),

¯̄Q(k) := ˆ̂C1(k)′
ˆ̂C1(k)− ˆ̂C1(k)′ ˆ̂D12(k)×

(

ˆ̂D′
12(k)

ˆ̂D12(k)
)−1 ˆ̂D′

12(k)Ĉ1(k),

Γ(k) := X(k +1)−1 + B̂2(k)
(

ˆ̂D′
12(k)

ˆ̂D12(k)
)−1

×
B̂2(k)′− ˆ̂B1(k) ˆ̂B1(k)′,

˜̃A(k) := Â(k)− ˆ̂B1(k) ˆ̂D21(k)′
(

ˆ̂D21(k) ˆ̂D21(k)′
)−1

Ĉ2(k),
˜̃Σ(k) := ˆ̂B1(k) ˆ̂B1(k)′− ˆ̂B1(k) ˆ̂D21(k)′×

(

ˆ̂D21(k) ˆ̂D21(k)′
)−1 ˆ̂D21(k) ˆ̂B1(k)′,

∆(k) := Y (k)−1 +Ĉ2(k)′
(

ˆ̂D21(k) ˆ̂D21(k)′
)−1

×
Ĉ2(k)− ˆ̂C1(k)′ ˆ̂C1(k).

(38)

The main result will be presented in terms of the following pair
of Riccati recursions.

X(k) = Q̄(k)+ Ā(k)′Γ(k)−1Ā(k); k = 1, · · · ,N.
X(N +1) = Q f .

(39)

Y (k +1) = Σ̃(k)+ Ã(k)∆(k)−1Ã(k′); k = 1, · · · ,N.
Y (1) = Q−1

0 .
(40)

We also require the matrices X̃k, Ỹk defined respectively by

X̃(k) = ¯̄Q(k)+ ¯̄A(k)′
(

X(k +1)−1− ˆ̂B1(k) ˆ̂B1(k)′
)−1 ¯̄A(k),

(41)
and

Ỹ (k +1) = ˜̃Σ(k)+ ˜̃A(k)
(

Y (k)−1 − ˆ̂C1(k)′
ˆ̂C1(k)

)−1 ˜̃A(k)′.
(42)

The solutions to these Riccati difference equations will be
required to satisfy the following assumption:
Hypothesis 3. Given τ > 0, γ > 0, and λ ∈ Γ satisfying condi-
tions (23), (31), there exist positive definite solutions, to Riccati
recursions (40) and (39) , such that the spectral radius of the
product matrix Ỹk+1Xk+1 (or YkX̃k) is strictly less than 1, for
k = 1, · · · ,N.

If Hypothesis3 is satisfied, then we will construct a controller
of the form (11) where matrices Āc, B̃c and C̃c are defined as
follows

Āc(k) = Â(k)+ B̂2(k)Cc(k)+ ˜̃A(k)∆(k)−1 ˆ̂C′
1 ×

(

ˆ̂C1 + ˆ̂D12Cc(k)
)

,

B̃c(k) =
(

Ã(k)∆(k)−1C2(k)′ +D12(k)′
)

×

(D21(k)D21(k)′)−1,

C̃c(k) =−(D12(k)′D12(k)′)−1
(

B2(k)′Γ(k +1)−1Ā(k)
)

×
(

I − 1
γ2 Y (k)X(k)

)−1
, (43)

and xc(0) = 0.

We now present the main results:

Theorem 4. Suppose there exist τ > 0, γ > 0 and vector λ ∈ Γ
satisfying Hypothesis 3. Then
(i). the controller defined by (36), (43) has robust attenuation
level γ when applied to the uncertain system defined by (35),
(32).
(ii). If the controller defined by (11), (43), (34), (37) is applied
to the uncertain system defined by (29), (28), then it can achieve
the robust attenuation level γ .

Proof: Part (i) follows by the standard results of linear H∞

theory (Savkin and Petersen (1996) and Chapter 6 in Basar
and Bernhard (1995)). Part (ii) of the theorem follows from
Part (i) of the theorem and the discussion above concerning the
construction of the controller (11), (43), (37) together with the
discussion above concerning the construction of the uncertain
system (33), (32) from the uncertain system (29), (28). 2

Using this theorem, we obtain the main result of this paper:
Theorem 5. Suppose there exist a constant τ > 0,γ > 0 and
vector λ ∈ Γ satisfying Hypothesis 3. If the nonlinear controller
defined by (8), (9), (10), (43), (30), (37) is applied to the
nonlinear uncertain system defined by (1), (3), (6), then it has
robust attenuation level γ .

Proof: This result follows directly from Part (ii) of the previous
theorem and the construction of the system (29), the SQC (28)
and the controller (11). 2
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