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Abstract: Synchronization in classes of continuous-time dynamical networks with different topologies is 

investigated.  A synchronization-optimal algorithm based on the synchronization criterion is proposed so 

as to get the appropriate topology such that complex network has the optimal synchronizability. It has been 

argued that heterogeneity suppresses synchronization in unweighted networks. However, it is shown in this 

work that synchronizability of Type I networks is independent of heterogeneity in the degree distribution, 

while synchronizability of Type II networks is dependent of both heterogeneity and scale of networks. It is 

presented the more heterogeneous and larger scale, the poorer synchronizability of Type II networks. 

 

1. INTRODUCTION 

Many social, biological, and communication systems can be 

properly described as complex networks with nodes 

representing individuals and edges mimicking the 

interactions among them (Newman, 2003). One of the 

ultimate goals of research on complex networks is to 

understand how the structure of complex networks affects the 

dynamical process taking place on them, such as traffic flow, 

epidemic spread (Boccaletti et al., 2006). One of the most 

significant and interesting properties of a dynamical network 

is the synchronous output motion of its network nodes. 

Synchronization in coupled dynamical networks and systems 

has been studied for many years within a common framework 

based on non-linear dynamical system theories. It has been 

observed, however, that most existing work have been 

concentrated on networks with completely regular 

topological structures (Li, 2005). It has been noticed that the 

topology of a network often plays a crucial role in 

determining its dynamical features. Especially, the discovery 

of the small-world effect and scale-free feature of most 

complex networks has led to a fascinating set of common 

problems concerning how a network structure facilitates and 

constrains the synchronization of complex networks (Wang  

et al., 2002a, b; Hong et al., 2002). Small-world networks are 

objects in between regular and random networks 

characterized by a small average distance between any two 

nodes, while keeping a relatively highly clustered structure 

(Watts et al., 1998). Scale-free networks are characterized by 

highly heterogeneous distribution of degrees (number of links 

per node) and display a power-law distribution ( )p k k
γ−

� in 

the node connectivity k  (degree)(Barabási et al., 1999). 

Compared with regular networks, the networks with small-

world topology have better synchronizability (Wang et al., 

2002a). On the other hand, it has been shown that the more 

heterogeneous the network is, the more difficult it is to be 

synchronized (Takashi et al., 2003). 

Previous work has focused mainly on scale-free network 

(SFN)( Hong et al., 2004; Fan et al., 2005; Zhao et al., 2006; 

Lu et al., 2006), the different heterogeneity networks is 

obtained by adjusting power-law exponent γ . However, we 

observe the phenomenon: the number of edges of networks 

changes, as γ  is decrease in random SFN (Takashi et al., 

2003; Motter et al., 2005). So, the conclusion that 

heterogeneity of networks restrains the synchronizability 

can’t exclude the effect of networks edges density. In this 

paper we investigate a class of tunable heterogeneity 

networks model (Jesús et al., 2006), which can preserve the 

total number of final edges and nodes. 

The aim of this work is to investigate the synchronizability 

classes of continuous-time dynamical networks with different 

topologies. Furthermore, based on the synchronization 

criterion, we propose a synchronization-optimal topology 

model. At last we investigate the relation between 

heterogeneity and network synchronizability based on 

tunable heterogeneity networks model. 

2. NETWORK SYNCHRONIZATION 

Consider a dynamical network consisting of N linearly 

coupled identical oscillators, with each oscillator being an 

n − dimensional dynamical system. The state equations of the 

network can be written as 

1

( ) ( ) 1,2, ,
N

i ij j

j

x f x c G h x i N
=

= + =¦� "       (1) 

where n
1 2( , , , )i i i inx x x x= ∈ R"  are the state variables of 

node i , where ( )f f x=  describes the dynamics of each 

individual oscillator, ( )h h x=  is the inner coupling matrix, 

c  is the overall coupling strength ( 0)c > , and ( )ijG G= is 

the coupling matrix. 
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Dynamical network (1) is said to be (asymptotically) 

synchronized if  

1 2
( ) ( ) ( ) ( )

N
x t x t x t s t as t= = = = → ∞"               (2) 

where ( )s t  is a solution of an isolated node, which can be an 

equilibrium point, a periodic orbit, or a chaotic attractor, 

depending on the interest of study(Li  et al., 2003). 

Suppose that all eigenvalues of the matrix G  satisfy 

1 2 3
0

N
λ λ λ λ= > ≥ ≥"                             (3) 

The variational equation governing the linear stability of the 

synchronous state { }( ) ( ),
i

x t s t i= ∀  of the network can be 

diagonalized into N  blocks of the form 

[ ( ) ( )]
i i

Jf s Jh sη α η= +�                               (4) 

where J  denotes the Jacobian operator, and icα λ= . The 

largest Lyapunov exponent linked to icα λ= , the so-called 

master stability function (MSF), fully determines the linear 

stability of the synchronous state. The region where the MSF 

( ) 0αΓ =  is denoted by SR R∈ . Depending on dynamical 

function f , inner coupling matrix h , and synchronization 

state s , there are three possible types of networks (Barahona 

et al., 2002).  

Type I network: 1( , )SR α∈ −∞ , where 1 0α−∞ < < . For this 

type of networks, the synchronization state is stable if 

2 1cλ α< (Wang et al., 2002b). This implies that 

synchronizability of Type I network can be characterized by 

the second largest eigenvalue 2λ  of the coupling matrix. 

Smaller 2λ  leads to better synchronizability.  

Type II network: 
2 3

( , )SR α α∈ , where 
2 3

0α α−∞ < < < . 

For this type of networks, the synchronization state is stable 

if 2Ncλ α>  and 2 3cλ α< , which leads to 2 2 3Nλ λ α α< . 

This implies that the synchronizability of Type II network 

can be characterized by the eigenratio 2NR λ λ=  of the 

coupling matrix. Smaller R  leads to better synchronizability. 

Type III network: SR ∈ Φ . Synchronization cannot be 

achieved for this type of networks.  

In this work, we investigate Type I and II networks. If 

dynamical network (1) satisfies (3), then has the 

synchronization criterion: the smaller 2λ  for Type I networks 

or 2NR λ λ= for Type II networks leads to better 

synchronizability. 

3. SYNCHRONIZATION-OPTIMAL NETWORK 

Recent advances in complex network research have 

stimulated increasing interests in understanding the 

relationship between the topology and dynamics of complex 

networks. Recently, several works try to find the most 

synchronizable networks topological structure (Hong et al., 

2006; Fan et al., 2005a, b). Fan and Wang give a 

synchronization-optimal growth networks. In that model, 

degree of nodes can only increase. This is the limitation if we 

want to get the model with the best synchronizability. Then, 

for a given number of nodes and edges networks, which is the 

most synchronizable structure? To get the structural for 

optimal synchronizability, we present random rewiring 

algorithm to adjust topology while keeping networks scale 

and edges unchanged. The algorithm is as follows: 

A) Start with WS model: Construct an original network 

with N  nodes and l
N  edges by applying the WS small-

world model. 

B) Rewire edges: Rewire each edge of the network in turn. 

The criterion for rewiring the edges to which the new 

nodes connects is to optimize the synchronizability of 

the obtained network, equivalently, to minimize the 

second-largest eigenvalue of the corresponding coupling 

matrix Type I networks or the eigenratio R  for Type II 

networks.  

After 
l

t N�  time steps, we obtain a synchronization-optimal 

model if any rewiring can’t decrease the second-largest 

eigenvalue 2λ or eigenratio R  of the corresponding coupling 

matrix. Rewiring within this context means shifting one end 

of the edge to a new node chosen in turn from the whole 

network, with the constraints that any two different nodes 

cannot have more than one edge between them, and no node 

can have an edge with itself. 

For clarity, 2λ is the second-largest eigenvalue, R is the 

eigenratio. The network has N  nodes and mlN N= ∗  edges. 

Where m  is determined by regular network. Regular network 

model is the nearest-neighbor coupled network (a lattice), 

which is a regular graph in which every node is connected to 

its first 2m neighbours ( m  on each side). In numerical 

computation, the eigenvalues are obtained by averaging the 

results of 10 runs. It is shown from fig.1 and fig.2 that the 

synchronization-optimal network can get the better 

synchronizability than WS, BA, ER random and regular 

networks for Type I network. And it is also shown from fig.3 

and fig.4 that synchronization-optimal model has the better 

synchronizability for Type II network.  
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Fig.1. Changes in the second-largest eigenvalue of the 

coupling matrix of different topology when network nodes 

increasing. 2, 2lm N N= = . 
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Fig.2. Changes in the second-largest eigenvalue of the 

coupling matrix of different topology when network nodes 

increasing. 4, 4lm N N= = . 
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Fig.3. Changes in the eigenvalue R of the coupling matrix of 

different topology when network nodes increasing. 

2, 2
l

m N N= = . 
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Fig.4. Changes in the eigenvalue R  of the coupling matrix of 

different topology when network nodes increasing. 

2, 2lm N N= = . 

It is noticed that star model as the synchronization-optimal 

model is got for Type I network when 1m = . Star model is 

more heterogeneous than others, it seems contravene the 

result that heterogeneity suppresses the synchronization of 

network (Takashi et al., 2003). The more homogeneous and 

random the Type II  network structure is, the better 

synchronizability the network has. Which confirm the 

conclusion from scale-free networks (Takashi et al., 2003). In 

next section, we investigate the relations between 

heterogeneity and synchronization in both types 

synchronization networks. Further more it is also observed 

that the edges density plays an important role in 

synchronization. Synchronization-optimal model has the 

better synchronizability when 4m = than 2m = . So, it should 

be considered the effects of change of edges density with 

heterogeneous distribution of degrees on synchronizability.  

4. A CLASS OF TUNABLE HETEROGENEITY 

NETWORKS 

In section 3, we have compared the synchronizability of BA, 

regular, WS, and ER random networks with the 

synchronization-optimal model. The numerical computations 

show that the synchronization-optimal model has the better 

synchronizability than others for both types networks. In this 

section, we investigate the relations between heterogeneity 

and synchronization. For universality, we will not address a 

particular dynamical system such as scare-free networks, but 

concentrate on the family of networks generated with the 

model(Jesús  et al., 2006). This model generates a one-

parameter family of networks labelled by [ ]0,1α ∈ . The 

parameter α  measures the degree of heterogeneity of the 

final networks so that 0α =  corresponds to the 

heterogeneous BA networks and 1α =  to homogeneous ER 

graphs. For intermediate values of α  one obtains networks 

that have been grown combining both preferential attachment 

and homogeneous random linking so that each mechanism is 

chosen with probabilities ( )1 α−  and α , respectively. It is 

worth stressing that the growth mechanism preserves the total 

number of edges lN , and nodes N , for a proper comparison 

between different values of α . Thus, we can get networks 

with different heterogeneity but the same edges density. It is 

the one of main contributions that considering the effects of 

change of edges density with heterogeneous distribution of 

degrees on synchronization. A class of tunable heterogeneity 

networks is constructed as following: 

Growth: A network of size N  is generated starting from a 

fully connected core of 0m  nodes and a set ( )0S  of 

( )0N m− unconnected nodes. At each time step, a new node 

(not selected before) is chosen from ( )0S and linked 

to m other nodes. 

Chosen attachment: Each of the m  edges is linked with 

probability α  to a randomly chosen node (avoiding multiple 

and self-edges) from the whole set of ( )1N − remaining nodes 

and with probability ( )1 α−  following a linear preferential 

attachment strategy. 
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After repeating the second process ( )0N m−  times, networks 

interpolating between the limiting cases of ER ( )1α = and 

SF ( )0α =  topologies are generated. Furthermore, with this 

procedure, the degree of heterogeneity of the grown networks 

varies smoothly between the two limiting cases. Thus, we get 

a class of general networks with different topology and the 

same nodes and edges.  
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Fig.5. Synchronizability of Type I networks: 2λ  versus 

α with different network size N .  
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Fig.6. Synchronizability of Type II networks:

2N
R λ λ=  

versus α with different network size N .  

Fig. 5 shows the synchronizability of Type I networks for 

different network size, while α  ranges from 0 to 1, 0α =  

corresponds to the heterogeneous BA networks and 1α =  to 

homogeneous ER graphs. It can be observed that the second-

largest eigenvalue 2λ is independent of α  for the same 

network size. Because α  measure the heterogeneity in 

degree distribution, this implies that the synchronizability of 

Type I is independent of heterogeneity. Fig. 6 shows the 

synchronizability of Type II networks for network size, while 

α ranges from 0 to 1. Obviously, eigenratio R  decreases 

with the increase of α  for the same N . Therefore, Type II 

networks are easier to synchronize with the increase of α  for 

the same N . We also notice that for the same value of α , 

especially for 0α = , R increases with the increase of N . 

This implies that the Type II networks become harder to 

synchronize if network has larger size. For Type II networks, 

heterogeneity suppress the synchronization of networks,  

5. CONCLUSIONS 

We investigate the relation between network topology and 

synchronization, present a synchronization-optimal algorithm 

based on random rewired mechanism. Networks will have the 

better synchronizability by apply this algorithm. And we find 

that the edges density plays an important role in network 

synchronization, especially in the analyses synchronizability 

and heterogeneity. However, in previous works which is 

always neglected. In this paper, we investigate the 

synchronizability and heterogeneity while networks have the 

same nodes and edges. We find that synchronizability of 

Type I networks is independent of heterogeneity in the degree 

distribution, while synchronizability of Type II networks is 

dependent of both heterogeneity and scale of networks. It is 

presented the more heterogeneous and larger scale, the poorer 

synchronizability of Type II networks. Our research may be 

useful to understand the complete synchronization behaviors 

complex networks and design effective networks. 
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