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∗ DIMI, Universitá degli Studi di Udine, Via delle Scienze 208, 33100
Udine - Italy (e-mail: {blanchini, carlo.savorgnan}@uniud.it)
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Abstract: Computing polytopic controlled invariant sets which are maximal inside a prescribed
region often yields sets which have a really complex representation. Since the associated control
has a complexity which drastically increases with that of the region, this turns out to be a major
problem in the implementation of the theory of controlled invariant regions. In this paper, we
consider the problem of reducing the complexity of these regions and/or the complexity of
the associated compensator. We propose two heuristic techniques based on spectral properties
of some relevant matrices and on vertex-elimination methods. The paper presents several
preliminary results which are interesting on their own such as dynamic augmentation and the
properties of complex (as opposed to real) polytopic invariant regions.

1. INTRODUCTION

It is well known that the problem of controlling a system
in the presence of control and state constraints can be
faced via controlled invariant sets. Controlled invariant
sets of several types have been addressed in the literature,
in particular the ellipsoidal and the polytopic ones. It is
also well established that there is a fundamental tradeoff
between the complexity of the representation of one of
such regions and its size. Indeed regions and compen-
sator of fixed complexity (e.g. ellipsoids) may be much
smaller in size than the largest invariant set compatible
with the constraints Blanchini (1999). Polytopic sets do
not have this problem since they can approximate the
largest controlled invariant region with arbitrary precision
Gutman and Cwikel (1987); Keerthi and Gilbert (1987).
Unfortunately, the price to pay is the resulting complexity
of the region and, more important, of the control.

In this paper, we consider the problem of generating
controlled-invariant polytopic sets and control laws of
reduced (or limited) complexity. As a first result we
consider the problem of deriving a dynamic linear con-
trol which fulfills the constraints starting from a con-
trolled invariant polytope. It turns out that we can al-
ways achieve a controlled-invariant set in the extended
(plant+compensator) space which can be associated with a
linear control. The projection of this set on the plant state
space is equal to the original controlled invariant set. We
show how this dynamic augmentation procedure can pro-
duce a significant complexity reduction of the compensator
with respect to previous nonlinear static compensators
proposed in the literature.

The mentioned dynamic augmentation method may sim-
plify the compensator, not the region. Then we face the
problem of reducing the region complexity. We introduce
an approach based on the pole selection of a relevant ma-
trix appearing in the controlled invariance basic condition.

This decomposition is shown to be affected by a restric-
tion on the eigenvalues of this matrix. Such a restriction
disappears when complex (instead of real) regions are con-
sidered Brayton and Tong (1980); Miani and Savorgnan
(2006).

Finally, we propose an heuristic method to reduce the
region complexity. This is based on the elimination of
vertices which are “close to others” and seem not so
significant in the region structure.

2. PRELIMINARIES AND DEFINITIONS

In this paper, we consider discrete-time systems of the
form

x(t + 1) = Ax(t) + Bu(t) (1)

where x(t) ∈ IRn, u(t) ∈ IRm are the state and input
vectors respectively and continuous-time systems

ẋ(t) = Ax(t) + Bu(t) (2)

We assume that the couple (A, B) is stabilizable and that
the system is subject to constraints

M

[

x
u

]

≤ 1̄ (3)

where 1̄ = [ 1 1 . . . 1 ]T . It is well known Blanchini
(1999) how the theory of controlled-invariant sets plays
a fundamental role in the constrained control problem,
according to the following definition and theorem.

Definition 1. A set P is controlled invariant and compat-
ible with the constraints (3) if and only if there exists a
control u = Φ(x) such that, for every x(0) ∈ P we have
that x(t) ∈ P and that

M

[

x(t)
Φ(x(t))

]

≤ 1̄

Theorem 1. There exists a feedback control for which no
constraint violations occur from the initial condition x(0)
if and only if the initial state belongs to an invariant set
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P which is controlled invariant and compatible with the
constraints.

It is also known that controlled invariance is not enough
to enforce convergence to 0. What we need in practice is
contractivity. Without entering in the detail (the reader is
referred to Blanchini (1999) Blanchini e Miani (2007)),
we remind the reader that if we modify the systems as
follows

x(t + 1) =
A

λ
x(t) +

B

λ
u(t)

and, respectively,

ẋ(t) = (I + β)Ax(t) + Bu(t)

with 0 < λ < 1 (respectively β > 0), then any controlled
invariant set for the modified systems is contractive for the
original ones. If a contractive C-set P 1 is known then the
condition

Ψ(x(t)) ≤ λtΨ(x(0))

(respectively Ψ(x(t)) ≤ e−βtΨ(x(0))) is satisfied (Ψ is the
Minkowski function associated with P), hence x(t) → 0.

In this paper we will mainly (although not exclusively)
consider polytopic controlled invariant sets. A polytopic
set can be described in term of its vertex matrix X =
[x1 x2 . . . xr] as

P = {x =

r
∑

k=1

pkxk :

r
∑

k=1

pk = 1, pk ≥ 0}

= {x = Xp : 1̄T p = 1, p ≥ 0}

In the following, to keep the notation simple, we will limit
our attention to 0-symmetric polytopes. These can be
represented as

P = {x = Xp, ‖p‖1 ≤ 1}

For symmetric polytopes, with a slight abuse of notation,
we will call X the vertex matrix, though the actual vertex
matrix of the set is [X − X].

Definition 2. A matrix P belongs to the class H if there
exists τ > 0 such that ‖I + τP‖1 < 1.

As a preliminary statement of the paper we need the
following Blanchini e Miani (2007).

Theorem 2. The 0-symmetric polytopic C-set P with ver-
tex matrix X is contractive for the discrete-time (resp.
continuous-time) system if and only if there exists a matrix
P with ‖P‖1 ≤ 1 (P ∈ H) and a matrix U such that

AX + BU = XP (4)

(the columns of U represent the input associated to each
vertex of the polytope). Furthermore P is compatible with
the constraints if and only if

±M

[

xk

uk

]

≤ 1̄ (5)

for all k, where xk and uk represent the kth columns of X
and U .

If the conditions of the theorem hold, then P is a stable
matrix in both the discrete and continuous-time case. It
is known how, by applying algorithms presented in the
literature (see Keerthi and Gilbert (1987); Gutman and
Cwikel (1987); Blanchini (1994) and based on dynamic

1 convex and compact set including 0 in its interior

programming (see Bertsekas (1972)), it is possible to
approximate (to determine, in lucky cases) the largest
controlled invariant set by means of a polytope which is
controlled invariant.

The major trouble with this kind of sets is their com-
plexity and the complexity of the associated compensator.
Indeed in general the compensator that can be associ-
ated is nonlinear. This is in contrast with the case of
ellipsoidal controlled-invariants sets which can be always
associated with a proper linear gain u = Kx. Among
the nonlinear controllers we can take the piecewise linear
controller proposed in Gutman and Cwikel (1986), the
on-line-LP-solving considered in Blanchini (1994). For
continuous-time systems it is possible to partly reduce
the compensator complexity by using a controller based
on a smooth approximation of P (see Blanchini e Miani
(1998)). However, the complexity of the set P is very high
and, as a consequence, the compensator complexity is very
high. Therefore the main issue in this paper is basically the
following.

Problem 1. Given the matrices X and P in equation (4)
how can we obtain a new invariant (contractive) set and a
compensator of a simpler description?

To deal with this problem we first consider some basic
properties of the dynamic augmentation as in the next
section.

3. DYNAMIC AUGMENTATION

We now assume that a controlled invariant polytope is
given. It is important to stress that the complexity of
the compensator may grow even exponentially with the
complexity of the set. For instance the Gutman and Cwikel
control requires a simplex partition of the polytope. A
proper linear gain is applied inside each simplex. Unfor-
tunately the number of simplices is typically much greater
than the number of vertices (see Blanchini e Miani (1998)
for an example). Therefore a first question is how to
achieve a compensator whose complexity is not explosive
with respect to such a number.

An interesting property which can be useful to give an
answer (and we think interesting on its own) is the
following.

Theorem 3. Given a controlled invariant polytopic sym-
metric C-set P, compatible with constraints, the system
state space can always be extended to achieve a new
polytopic C-set S (affine to a diamond) in such a way
that

• P is the projection of S on the original state space;
• S is controlled invariant is the extended state space;
• S can be associated with a linear stabilizing compen-

sator;
• S is compatible with the constraints.

Proof If P is a C-set, then X has full row rank. Take an
augmentation matrix Z such that

X̂
.
=

[

X
Z

]

is square invertible. Then the polytope generated by this
matrix X̂
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S =

{[

x
z

]

=

[

X
Z

]

p, ‖p‖1 ≤ 1

}

has clearly P as projection on the original state space.

Define V = ZP and write
[

A 0
0 0

] [

X
Z

]

+

[

B 0
0 I

] [

U
V

]

=

[

X
Z

]

P

Consider the linear dynamic controller
[

u(t)
z(t + 1)

]

=

[

K H
G F

] [

x(t)
z(t)

]

where
[

K H
G F

]

:=

[

U
V

] [

X
Z

]

−1

(6)

Then the closed-loop system has state matrix Acl which
satisfies the equation

[

A + BK BH
G F

] [

X
Z

]

= Acl

[

X
Z

]

=

[

X
Z

]

P

Note that Acl is stable since it is similar to P . This is
an invariance condition for S. The compatibility with the
constraints comes for the fact that if [xT zT ]T ∈ S then
the corresponding input is

u = Kx + Hz = [ K H ]

[

X
Z

]

p = Up

thus satisfies constraints in view of (5).

Remark 1. An interesting property (see Blanchini e Pel-
legrino (2003)) is that this approach allows for the de-
termination of a stable compensator (strong stabilization).
Indeed, instead of fixing X and determining the compen-
sator via (6), we can fix a stable F and solve for Z and G
the following linear matrix equation

GX + FZ = ZP

If a (nontrivial) solution is found and if [XT ZT ]T is
invertible (a condition generically satisfied), then we can
find H and K.

The nice property is that the dimension of the state space
of the compensator is N = r−n, where r is the number of
columns of Z. The linear compensator is quite simple to be
implemented, via standard techniques. The only problem
is its initialization. Indeed, given the initial plant state
x(0) ∈ P we must initialize z(0) in such a way that

[

x(0)
z(0)

]

∈ S

Once we have performed this operation, the dynamic
controller assures convergence and constraint satisfaction.

It is interesting to note the following.

Corollary 1. Consider any invariant convex set S (not nec-
essarily a C-set!) in the extended state space, compatible
with the constraints for the extended system whose state
matrix is

Acl =

[

A + BK BH
G F

]

Then its projection P on the original state space is
controlled invariant and compatible with constraints.
Remark 2. The corollary is valid for convex sets in general.
For instance consider an invariant ellipsoidal set {x̂ :
x̂T (Q−1)x̂ ≤ 1} for the system Acl (not necessarily derived
by a controlled invariant in the original space) namely such
that

[

A + BK BH

G F

]

[

Q1 Q12

QT

12
Q2

]

+

[

Q1 QT

12

Q12 Q2

]

[

A + BK BH

G F

]T

= −

[

S1 S12

ST

12
S2

]

with the last matrix S positive definite. If we project
this set on the original state space we get the ellipsoid
{xT (Q−1

1 )x ≤ 1} and

AQ1 + Q1A
T + BR + RT BT = −S1

with R = KQ1+HQ12 which implies controlled invariance
of {x : xT (Q−1

1 )x ≤ 1}. Other types of sets can be consid-
ered, e.g. the semi-ellipsoidal ones presented in O’Dell and
Misawa (2002); Artstein and Raković (2008).

The mentioned properties have the following meaning.

• Although a controlled invariant polytope does not
admit a linear static controller as in the case of
controlled invariant ellipsoids, this property becomes
in some sense true if we extend the state space;

• We can generate controlled invariant sets and gen-
erate linear dynamic controllers or consider linear
dynamic controllers, find an invariant set, and derive
controlled invariants in the original space via projec-
tion.

3.1 A simple example of dynamic augmentation

Consider the simple system ẋ = Ax + Bu with

A =

[

0 1
0 0

]

B =

[

0
1

]

and the constraint u ∈ U = {u : |u| ≤ 8}. The set
P represented by the matrix X below, together with the
control matrix U

X =

[

3 0 −4
0 4 4

]

U = [ − 8 − 8 − 4 ]

satisfy the conditions in Theorem 2 with

P =
1

3

[

−8 4 0
0 −6 0

−6 0 −3

]

The Gutman and Cwikel piecewise linear control for this
system is given by (see Blanchini e Miani (2007), Chapter
4)

u = K(i)x

The whole set of control gains is reported in the next table.

sector number control gain
1 [−8/3 −2 ]
2 [−1 −2 ]
3 [−5/3 −8/3 ]
4 [−8/3 −2 ]
5 [−1 −2 ]
6 [−5/3 −8/3 ]

As an alternative approach we can “square” the matrix X
by adding the matrix Z which can be taken, for instance
as

Z = [ 0 0 1]

so that
V = ZP = [ − 2 0 − 1 ]
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u = 4

u = −8

u = −8u=−4

u = 8

u = 8

C

C

C

C

C

C

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. The sector partition

The resulting dynamic compenstator is
[

K H
G F

]

=

[

U
V

] [

X
Z

]

−1

=

[

-7/3 -7/3 -20/3
-2/3 0 -11/3

]

The closed-loop eigenvalues are those of P and precisely
−1, −8/3 and −2. Note that, in this case, the compensator
is stable and has its pole equal to −11/3. This compensator
has to be initialized. This can be done as follows. For
any x(0) ∈ P one can take z(0) in such a way that
[x(0)T z(0)T ]T ∈ S namely such that [x(0)T z(0)T ]T =
[XT ZT ]T p with some ‖p‖1 ≤ 1. In view of the invertibility
of [XT ZT ]T , z(0) must be such that

∥

∥

∥

∥

∥

[

X
Z

]

−1 [

x(0)
z(0)

]

∥

∥

∥

∥

∥

1

≤ 1

The so obtained linear compensator is simpler than the
piecewise-linear compensator that would require to keep
in memory all the information on the sectors of P and the
associated gains.

In general, the complexity reduction becomes more effec-
tive as the system dimension increases. For instance, for
two dimensional systems, the number of sectors is (up
to symmetry) equal to the number r of columns of X.
The dimension of the dynamic compensator is r − 2 and
therefore the complexity is basically the same. For the 4
dimensional system proposed in Blanchini e Miani (1998)
the matrix X has 30 columns. Thus the dynamic compen-
sator would have 30 − 4 = 26 state variables. Conversely,
the simplicial partition would give 296 sectors with 296
linear gains (actually 148 distinct gains by symmetry).

Since in general the compensator turns out to be quite
complex, one might think about simplifying the region
rather than seeking for a simpler compensator for that
region. This is what will be done next.

4. SPECTRAL REDUCTION

We consider for brevity the discrete-time case only and we
assume (4) can be rewritten as follows

A [X1 X2] + B [U1 U2] = [X1 X2]

[

P1 P12

0 P2

]

(7)

Note that this kind of decomposition can be achieved by
applying a state transformation to (4) as follows

AXT + B UT = XT T−1PT

where T is a proper similarity transformation for P . Then
we get the reduced equation

AX1 + BU1 = X1P1 (8)

If P1 ∈ M we have a simplified contractive region repre-
sented by X1. The first trouble is the following.

Problem 2. How can we find a “good” transformation T?

It is intuitive that we can use a spectral decomposition.

T = [T1 T2]

where T1 is any basis matrix of a proper eigenspace of P ,
while T2 is any complement which makes T invertible. The
resulting matrix X1 = XT1 gives a new invariant polytope.

Unfortunately, some problems arise if we work with real
regions since P1 has part of the eigenvalues of P . If these
are real, then we can take, for instance, P1 diagonal so
that ‖P1‖ < 1. Conversely, if P1 has complex eigenvalues,
a block diagonal matrix must be composed by 2×2 blocks
of the form

P1 = block diag

{[

ξk θk

−θk ξk

]

, k = 1, 2, . . .

}

This imposes the restriction, known in the literature (see
Vassilaki, Hennet and Bitsoris (1988)), |ξk| + |θk| <
1 (in the continuous-time case this condition becomes
ξk < |θk| Castelan and Hennet (1993); Bitsoris (1991)).
Unfortunately, this restriction penalizes the procedure if
we start from a given P (for instance that associated with
the maximal controlled invariant set) since the eigenvalues
of P1 must be selected among those of P . This restriction
disappears if we consider regions which are projections of
complex polytopes on the real space Miani and Savorgnan
(2006). One of such polytopes can be written as

P = {x = Xp, ‖p‖1 ≤ 1}

where X is a matrix of complex vertices and p is a
complex vector and ‖p‖1 =

∑

i |pi|. Since P is stable, any
diagonal matrix P1 whose nonzero elements are given by
any selection of eigenvalues of P is such that (8) holds
(possibly with complex eigenvalues, the basic conditions
of controlled invariance for complex regions hold) since
any diagonal stable P1 has 1-norm strictly less than 1 in
the complex domain. According to Miani and Savorgnan
(2006), the projection of controlled invariant complex
regions on the real space produces controlled invariant
regions which can be used for the determination of a
controller. The following comments are important.

• Unfortunately, due to the transformation T , it is pos-
sible that the transformed matrices X1 and U1, once
projected on the real space, produce regions which do
not satisfy the constraints. Thus, the produced region
must be scaled by a factor ρ̄

ρ̄ = arg max{ρ > 0 : ρ M [ X1, U1 ] ≤ 1̄}

(here we assume that X1 and U1 are real, possibly
after projection).

• There is no clear way on how to select the poles. “Bad
selections” can produce very small regions compared
with the maximal.
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• The advantage of this procedure is that by selecting
the number of eigenvalues, we fix a priori the com-
plexity of the region.

• We can assign the poles by fixing P and by solving
for X and U of fixed complexity. This basically ex-
tends previous work Benzaouia (1994); Castelan and
Hennet (1993) (note that we can consider dynamic
compensators rather than purely static ones). The
derived region is not maximal, however fixing the
poles may be a task of its own interest.

In the next section we propose a completely different
criterion to reduce complexity.

5. AN HEURISTIC PROCEDURE

In this section we illustrate an heuristic algorithm to re-
duce the complexity of a given invariant set. For simplicity
only the discrete-time case is considered. The main idea is
that of suppressing vertices which are “nearly redundant”.
The final set is a polytope of fixed complexity whose
vertices will be stored in the matrix

X̃ = [ µ1x̄1 µ2x̄2 . . . µrx̄r ] (9)

where the column vectors x̄j are a subset of the columns
of X and 0 ≤ µj ≤ 1. We chose such target region in order
to preserve some of the information about the shape of the
original region given by X.

We now just outline the steps performed in the algorithm.
The details of the single procedures are discussed later in
this section.

Algorithm 1. (1) Set the desired number of vertices nv of
the final region.

(2) Select nv columns from the matrix X as to obtain a
full rank matrix X̄ (select procedure).

(3) Calculate the coefficients µ1, . . . , µr in equation (9)
in order to maximize the volume of the final polytope
and such that there exist Ũ and P̃ ∈ M which satisfy
the equation

AX̃ + BŨ = X̃P̃ (10)

and the state and input constraints (shrink–enlarge
procedure).

5.1 The “select” procedure

The selection of the vertices of the original polytope is a
crucial point in the algorithm since the goodness of the
reduced complexity polytope depends on it. We propose a
procedure which is reasonably effective and is based on the
following idea: to preserve the information about the shape
of the original polytope we discard the vertices which are
close to other vertices with respect to the Euclidean norm
‖·‖. The procedure we use is the following:

(1) Set X̄ = X and n̄v equal to the number of columns
of X̄.

(2) If n̄v ≤ nv terminate the procedure, otherwise go to
step 3.

(3) Select two column indices i and j such that i 6= j and
the quantity ‖xi − xj‖ is minimized.

(4) Select two column indices ī and j̄ such that ī 6= i
and j̄ 6= j and the quantities di = ‖xī − xi‖ and
dj =

∥

∥xj̄ − xj

∥

∥ are minimized.

(5) If di < dj eliminate the j-th column from X̄, other-
wise eliminate the i-th column.

(6) Update the value of n̄v and go to step 2.

At the end of the procedure we have to check if X̄ is full
rank (if it is not, it is necessary to change the selection,
possibly increasing nv).

5.2 The “shrink–enlarge” procedure

The first step in this procedure is finding a scalar µ̄
such that the polytope represented by µ̄X̄ is contractive.
Equivalently we search a µ̄ for which there exist Ū and P̄
such that

Aµ̄X̄ + BŪ = µ̄X̄P̄ (11)
is satisfied. Such scalar can be found by solving the linear
programming problem

1

µ̄
= min

γ,U,P̄
γ

s.t.
∥

∥P̄
∥

∥

1
≤ 1

M

[

xi

ui

]

≤ γ1̄ ∀i = 1, . . . , nv

AX̄ + BU = X̄P̄

(12)

Equation (11) is satisfied with

Ū = µ̄U

When algorithm 1 is used to reduced the complexity of
a contractive set for which the constraint (3) is active
on some of the vertices, the value of γ in (11) will be
greater than 1 (in order to relax the constraint). In this
case µ̄ < 1 and therefore µ̄X̄ is shrinked with respect to
X̄. The shrinking phase of the procedure is necessary to
find an initial contractive polytope for the second part of
the procedure where µ̄X̄ is enlarged.

The method proposed to enlarge the polytope increases
the value of every µi in an iterative manner. To use this
procedure we need to set the value of γ which is the
minimum rate of improvement under which the iteration
is stopped.

(1) Set µi = µ̄ for all i = 1, . . . , r. Set terminated =
false.

(2) If terminated = true stop the procedure, otherwise
continue.

(3) Set i = 1 and terminated = true.
(4) If i > nv go to step 2, otherwise continue.
(5) By bisection method, find the maximal value of µi

such that

min
u,p

nv
∑

j=1

p, pj ≥ 0,

s.t. M

[

µix̄i

u

]

≤ 1̄

Aµix̄i + Bu = X̃p

is less or smaller than 1 (the values of the lower and
upper bounds used initially by the bisection method
are the previous value of µi and 1, respectively).

(6) If the increment obtained for µi in the preceding step
is greater γ set terminated = false.

(7) Set i = i + 1 and go to step 4.

Example 1. Consider a system whose matrices are

A =

[

1 0.1
0 0.98

]

B =

[

0
0.98

]
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If we consider the constraints

M =

[

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

]T

we obtain a maximal invariant set which is represented
by 28 vertices. By using algorithm 1 and eliminating 20
vertices we achieve the regions depicted in figure 2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

Fig. 2. The largest set represents the maximal invariant
set. The other sets starting from the most internal
one are the sets µ̄X̄ and X̃ obtained by the shrink–
enlarge procedure, respectively.

Remark 3. Algorithm 1 can be easily extended to deal
with the uncertain case:

x(t + 1) = A(w(t))x(t) + B(w(t))u(t)

where

[A(w) B(w)] =

s
∑

i=1

[Ai Bi]wi, wi ≥ 0,

s
∑

i=1

wi = 1

Even in this case an invariant polytopic region can be de-
termined by means of the procedure presented in Blanchini
(1994).

6. CONCLUSIONS

A viable approach to reduce complexity in determining a
controlled invariant polytopic set and the associated com-
pensator is that based on dynamic augmentation which
allows for a linear, hence easily implementable, compen-
sator. We have shown that this can always be done and
how we can derive such compensator. Since the stability
of the compensator (granted the closed-loop stability) is
also important, we have given conditions to achieve strong
stabilization (see Remark 1).

We have proposed an approach to reduce the complexity
of the region based of an eigenvalue selection procedure.
At the moment it is not clear at all how to select the
eigenvalues to derive a good approximation of the maximal
controlled invariant set compatible with the constraints.
The tested examples showed that the procedure finds sim-
plified controlled invariant set which are, unfortunately,
quite smaller that the maximal.

Finally we have presented an heuristic procedure, whose
main idea is to eliminate some vertices. This approach

seems, at list tested on simple examples to provide better
results in terms of tradeoff between complexity and volume
of the region.
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Z. Artstein and S. Raković, “Feedback and Invariance
under Uncertainty via Set Iterates”, Automatica J.
IFAC, 44(2):520–525, 2008.

M. Vassilaki, J.C. Hennet, and G. Bitsoris. Feedback
control of linear discrete-time systems under state and
control constraints. Internat. J. of Control, 47(6):1727–
1735, 1988.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14329


