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Abstract: Intrinsically, Lagrange multipliers in Nonlinear Programming Theory play a regulating role
in the process of searching the optima of constrained optimization problems. Hence, they may be
regarded as control input variables as those in control systems. From this new perspective, it is showed
that synthesizing nonlinear programming neural networks can be formulated to solve servomechanism
problems. In this paper, under the second-order sufficient assumptions of nonlinear programming
problems, a dynamic output feedback control law is proposed to stabilize the corresponding nonlinear
programming neural networks. Moreover, their asymptotical stability is proved by the Lyapunov First
Approximation Principle.

1. PROBLEM FORMULATION

In this paper, we study the general nonlinear programming
problem with mixed constraints:

minimize f (x)
sub ject to h(x) = 0, g(x) ≤ 0,

(1)

where f (x) : Rn → R, h(x) : Rn → Rm, and g(x) : Rn → Rr

are scalar objective function and vector equality and inequality
constraint functions, respectively. Its feasible set is defined as
X = {x : h(x) = 0, g(x) ≤ 0, x ∈ Rn}.

Definition 1. Let x∗ be a vector satisfying the constraint condi-
tions, then J(x∗) denotes a set of index j for which g j(x∗) = 0,
namely

J(x∗) = { j | g j(x∗) = 0, j = 1, 2, · · · , r}. (2)

If the gradients ∇hi(x∗), i = 1, 2, · · · ,m,∇g j(x∗), j ∈ J(x∗) are
linearly independent, then x∗ is called regular point.

By introducing the vector of slack variables z = col(z1, z2, · · · , zr)
and the functions

f̄ (x, z) = f (x) (3)

h̄i(x, z) = hi(x), i = 1, 2, · · · ,m

ḡ j(x, z) = g j(x) + z2
j , j = 1, 2, · · · , r.

The problem (1) may be rewritten as

⋆ This work was supported by the National 863 Project under Grant

20060104Z2056.

minimize f̄ (x, z)

sub ject to h̄(x, z) = 0, ḡ(x, z) = 0.
(4)

It is clear that the two problems (1) and (4) are equivalent in the
sense that x∗ be a local minimum for the original problem (1) if
and only if (x∗, z∗),z∗

j
= [−g j(x∗)]−1/2, j = 1, 2, · · · , r, is a local

minimum for the problem (4).

The Lagrangian function of the problem (1) is defined as

L̄(x, z, λ, µ) = f̄ (x, z) +

m
∑

i=1

λih̄i(x, z) +

r
∑

j=1

µ jḡ j(x, z), (5)

where λ and µ are multiplier vectors.

After a direct calculation, it is derived that a variant of Karush-
Kuhn-Tucker Theorem furnishes the necessary conditions for
some x∗ being a local minimium of the problem (1) in this case
[7, 6, 8, 10].

Theorem 2. Let x∗ be a local minimum of the problem (1) and
assume that x∗ is a regular point. Then there exists the unique
vectors λ∗ and µ∗ such that

∇ f (x∗) +

m
∑

i=1

λ∗i∇hi(x∗) +

r
∑

j=1

µ∗j∇g j(x∗) = 0 (6)

2µ∗jz
∗
j = 0, j = 1, 2, · · · , r

h̄(x∗, z∗) = 0, ḡ(x∗, z∗) = 0.

The fundamental idea using neural networks to solve nonlin-
ear programming problems is to construct a continuous-time
dynamical system whose equilibria coincide with the KKT pair
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(x∗, λ∗, µ∗) in Karush-Kuhn-Tucker Theorem[1]-[5]. Obviously,
the constructed continuous-time dynamical system must be
asymptotically stable in order to settle down to its equilibria
ultimately. Observe that, if the multipliers λi’s and µ j’s in La-
grangian function are taken as the control variables ui’s and v j’s
in the nonlinear programming neural networks, respectively,
then the stabilizability of the nonlinear programming neural
networks will be boiled down to the solvability of the following
servomechanism problem without disturbances:

ẋ = −∇ f (x) −

m
∑

i=1

ui∇hi(x) −

r
∑

j=1

v j∇g j(x) (7)

ż = −























2v1z1

...
2vrzr























e1 = h(x)

e2 =

























g1(x) + z2
1

...

gr(x) + z2
r

























.

where x represents the n-dimensional state vector, z the r-
dimensional state vector, u the m-dimensional input vector, v
the m-dimensional input vector, and e the (m + r)-dimensional
output vector representing the tracking errors. Thus, we have
bonded the construction of the stable nonlinear programming
neural networks to the well-developed nonlinear servomecha-
nism theory.

The rest of the paper is organized as follows. Section 2 aims
to introduce a general theory for this servomechanism. A con-
struction of the stable nonlinear programming neural networks
is given in Section 3. Then, an illustrative example is given in
Section 4. Finally, in Section 5 we conclude this paper with
some remarks.

2. A GENERAL THEORY FOR SERVOMECHANISM
PROBLEM

Consider the general nonlinear system described by

ẋ = b(x, u) (8)

e = c(x, u),

where x(t) is the n-dimensional state vector, u(t) the m-
dimensional input vector, and e(t) the m-dimensional output
vector representing the tracking errors.

The class of control laws considered here are described by

u = γ(x, ξ, e) (9)

ξ̇ = η(x, ξ, e) ξ(0) = ξ0,

where ξ is the compensator state vector of dimension ν. The
aforementioned controller is referred to as a dynamic state
controller. The closed-loop system can be written as

ẋ = b(x, γ(x, ξ, e)) x(0) = x0 (10)

ξ̇ = η(x, ξ, e) ξ(0) = ξ0

e = c(x, u).

All the functions involved in this setup are assumed to be
sufficiently smooth and defined globally on the appropri-
ate Euclidean spaces, with the value zero at the equilibrium

x∗e = col(x∗, ξ∗) of the system (10), that is, b(x∗, ξ∗, 0) = 0,
η(x∗, ξ∗, 0) = 0 and c(x∗, ξ∗) = 0. The servomechanism problem
was intensively studied in the literature[11]-[15].

Definition 3. Local Simplified Servomechanism Problem(LSSP):
Find a controller of the form (9) such that the closed-loop
system (10) satisfies the following two properties.

P1: The eigenvalues of its linearized part at its equilibria have
negative real parts.

P2: For xe belong to sufficiently small neighborhood of the
equilibrium x∗e, limt→∞ e(t) = 0.

Note that the system (9) may be written in the form

ẋ = Ax + Bu + φ(x, u) (11)

e = Cx + Du + ψ(x, u),

where φ(x, u) and ψ(x, u) vanish at the equilibrium with their
first order derivatives, and A, B,C,D are matrices defined by

A =
∂b

∂x
(x∗, u∗) B =

∂b

∂u
(x∗, u∗)

C =
∂h

∂x
(x∗, u∗) D =

∂h

∂u
(x∗, u∗).

(12)

To give an account of the solvability condition for the LSSP, let
us first state two standard assumption as follows.

A1: The pair (A, B) is stabilizable.
A2: The pair (A,C) is detectable.

From [16]-[17], there is

Theorem 4. If Assumptions A1 and A2 are hold, then the LSSP
is solvable by the linear dynamic output feedback control law,
namely,

u = Kξ (13)

ξ̇ = Lξ + Qe.

3. STABILIZATION OF NONLINEAR PROGRAMMING
NEURAL NETWORKS

Unfortunately, although we have given the dynamic output
feedback control law (13) for solving the LSSP, it is useless for
stabilizing nonlinear programming neural networks since the
equilibria of nonlinear programming neural networks cannot
be known a priori. Therefore, a new output feedback control
law which is independent of these equilibria must be sought to
stabilize nonlinear programming neural networks. One of such
candidate dynamic output feedback control law for stabilizing
the system (7) is written as

u = λ + ce1, v = µ + ce2 (14)

λ̇ = e1, µ̇ = e2,

where c is a positive parameter. Hence, the overall closed-loop
system is given

ẋ = −∇ f (x) −

m
∑

i=1

(λi + cei
1)∇ei

1 −

r
∑

j=1

(µ j + ce
j

2
)∇e

j

2
(15)

ż = −
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λ̇ = e1, µ̇ = e2

e1 = h(x)

e2 =

























g1(x) + z2
1
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gr(x) + z2
r

























.

One more assumption is appended in order to show the stability
of the closed-loop system:

A3: Let x∗ be regular point for the nonlinear programming
problem (1). If there exists vectors λ∗ and µ∗ satisfying

∇ f (x∗) +

m
∑

i=1

λ∗i∇hi(x∗) +

r
∑

j=1

µ∗j∇g j(x∗) = 0 (16)

h(x∗) = 0, g(x∗) ≤ 0

µ∗ ≥ 0, µ∗jg j(x∗) = 0, j = 1, 2, · · · , r,

as well as the strict complementarity condition

µ∗j > 0,∀ j ∈ J(x∗). (17)

Assume that for every y , 0 such that ∇hi(x∗)T y = 0, i =
1, 2, · · · ,m, and ∇g j(x∗)T y = 0 for every j ∈ J(x∗), it
follows that

yT [∇2 f (x∗) +

m
∑

i=1

λ∗i∇
2hi(x∗) +

r
∑

j=1

µ∗j∇
2g j(x∗)]y > 0. (18)

Assumption A3 is referred generally as the second-order suf-
ficient condition for x∗ being a strict local minimum of the
nonlinear programming problem (1).

Let

∇2
xxL(x, λ, µ) = ∇2 f (x) +

m
∑

i=1

λi∇
2hi(x) +

r
∑

j=1

µ j∇
2g j(x).

Before the stability result is stated, we introduce a lemma[7, 9].

Lemma 5. Let P be a symmetric n × n matrix and Q a positive
semidefinite symmetric n× n matrix. Assume that yT Py > 0 for
every y , 0 satisfying yT Qy = 0, then there exists a scalar c > 0
such that

P + cQ > 0. (19)

From Lemma (5), we easily show that, if Assumption A3 hold,
there exists a c̄ > 0 such that

∇2
xxL(x∗, λ∗, µ∗) (20)

+c

















m
∑

i=1

λ∗i∇hi(x∗)∇hi(x∗)T
+

r
∑

j=1

µ∗j∇g j(x∗)∇g j(x∗)T

















> 0

for any c > c̄.

For simplicity of notation, let

Q = ∇2
xxL(x∗, λ∗, µ∗) (21)

+c

















m
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r
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µ∗j∇g j(x∗)∇g j(x∗)T

















.

Proposition 6. Assume that Assumption A3 is satisfied. Then
the servomechanism problem (7) is solved by the dynamic
output feedback control law (14).

proof: We linearize the closed-loop system at its equilibrium
point (x∗, λ∗, µ∗). Taking the KKT conditions into account, the
linearized part is given as follows:



























ẋ
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(22)

where

H =

[

G F

−FT

]

.

with
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.

Now we shall show that the real part of every eigenvalue of H
is negative.

For any complex vector v, denotes by vH its complex conjugate
transpose, and for any complex number α, denotes by ℜ(α)
its real part. Let β be an eigenvalue of H, and nonzero vector
p = col(z,w) be a corresponding eigenvector. We have

ℜ(pH Hp) = ℜ(β)(|z|2 + |w|2). (23)

Expanding the left-hand side of the above equation, we obtain

ℜ(pH Hp) = ℜ{zHGz + zH Fw − wH FT z}. (24)

Since there isℜ(zH Fw) = ℜ(wH FT z), it follows from Eqs. (23)
and (24) that

ℜ(β)(|z|2 + |w|2) = ℜ(zHGz) ≤ 0. (25)

Then we derive that eitherℜ(β) < 0 or z = 0. However, if z = 0,
the following equation

H

[

z
w

]

= β

[

z
w

]

(26)

yields

Fw = 0. (27)

If w is partitioned into two parts w = col(w1,w2) with appropri-
ate dimensions, Eq. (27) may be rewritten

∇h(x∗)w1 + ∇g(x∗)w2 = 0 (28)






















2z∗1
. . .

2z∗r























w2 = 0.

From the second part of the last equation, we derive that

w
j

2
= 0, j ∋ J(x∗). Since ∇hi(x∗), i = 1, 2, · · · ,m,∇g j(x∗), j ∈

J(x∗) has full row rank, it follows that w1 = 0 and w
j

2
=
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0, j ∈ J(x∗). Hence, we have that w = 0. This contradicts
our earlier assumption that p is a nonzero vector. Consequently,
we must haveℜ(β) < 0. Thus (x∗, λ∗, µ∗) is the asymptotically
exponentially stable point of the closed-loop system (15), that
is, the servomechanism problem (7) is solvable.

4. AN ILLUSTRATIVE EXAMPLE

An example from Matlab is taken showing how to construct
nonlinear programming neural networks with the proposed
approach.

minimize f (x) = exp(x1)(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)
sub ject to x1 + x2 − x1x2 ≥ 1.5

x1x2 ≥ −10

where its optimal solution locates at the point (−9.5474, 1.0474)
and both of constraints are active.

The corresponding differential equations are

ẋ1 = −
∂ f

∂x1

− (µ1 + ce1)
∂g1

∂x1

− (µ2 + ce2)
∂g2

∂x1

ẋ2 = −
∂ f

∂x2

− (µ1 + ce1)
∂g1

∂x2

− (µ2 + ce2)
∂g2

∂x2

ż1 = −2µ1z1, µ̇1 = e1, e1 = g1 + z2
1

ż2 = −2µ2z2, µ̇2 = e2, e2 = g2 + z2
2,

Figure 1 shows that the trajectories of state variables in the
nonlinear programming neural network tend ultimately to the
optimal solutions.
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Fig. 1. Trajectories of x1, x2, z1, z2.

5. CONCLUSIONS AND DISCUSSIONS

Reconsidering Lagrange multiplier in Nonlinear Programming
Theory as control input variables in control systems, a new
approach to study the stabilization of nonlinear programming
neural networks is proposed in this paper. We conclude that
the stabilizability of nonlinear programming neural networks
is boiled down to the solvability of servomechanism problems
without disturbances. Under second-order sufficient assump-
tion, a dynamic output feedback control law with linear form

is used to stabilize nonlinear programming neural networks,
and, by the Lyapunov First Approximation Principle, the neural
networks are shown to be locally asymptotically stable. Finally,
an illustrative example is given to show the feasibility of the
proposed approach.
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