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Abstract: Alignment is the process whereby the orientation of the axes of an inertial navigation system is 
determined with respect to the reference system. In this paper, the initial alignment error equations of the 
strapdown inertial navigation system (SINS) with large initial azimuth error have been derived with 
inclusion of nonlinear characteristics. The second order central difference filter (CDF2) has been used for 
solution of the alignment problem. Simulations have been carried out to validate and corroborate the 
stationary alignment case employing a strapdown inertial measurement unit (SIMU). A performance 
comparison between the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the CDF 
demonstrate that the accuracy of attitude error estimation using the CDF2 is better than that of using the 
EKF or the UKF. 

  
1. INTRODUCTION 

The navigation parameters (position, velocity, and attitude) 
are provided in the navigation frame through the 
transformation from the body frame to the navigation frame 
using the attitude transformation matrix. The relation 
between these two frames is realized by continuously 
updating this transformation matrix. To limit the errors in the 
derived navigation parameters, it is very important to 
determine the initial value of such matrix with high accuracy 
(Britting, 1971). The process of computing the initial value of 
transformation matrix is known as the alignment of the SIMU. 
Alignment is accomplished by two steps, namely coarse 
alignment (CA), and fine alignment (FA). The purpose of the 
CA is the determination of approximate values of the attitude 
angles (roll, pitch, and azimuth) between the body and the 
navigation frame, the FA then refines the CA estimated 
attitudes using an iterative optimal estimation technique 
(Savage, 1997 and Rogers, 2003). 

The accelerometer and gyro measurements are referenced to 
the strapdown inertial measurement unit (SIMU) body frame. 
In stationary alignment and neglecting sensor errors, these 
measurements are related to the Earth’s gravity and rotation 
rate vectors. The accelerometer and gyro measurements are 
averaged over two or three minutes during the CA procedure 
to determine initial estimates for the pitch, roll and azimuth. 
Due to the inertial sensor bias errors and measurement noise, 
the CA cannot provide accurate values for the initial attitude 
angles that guarantee reliable and precise inertial positioning. 
Therefore, the FA procedure is utilized to optimally estimate 
the initial attitude errors as well as the sensor biases and 
compensate for their effect. This process usually requires 
about five to ten minutes of static data for a navigation-grade 
SIMU. The Kalman filter is usually used as an optimal 
estimation tool during the FA process (Chatfield, 1997). 

Estimation in nonlinear systems is extremely important 
because almost all practical systems involve nonlinearities of 

one kind or another. Accurately estimating the state of such 
systems is extremely important for fault detection and control 
applications, for those suitable extensions to the Kalman 
Filter have been sought. The most common approach is to 
use the extended Kalman filter (EKF) (Jason et al., 2001) 
which simply linearizes all nonlinear models so that the 
traditional linear Kalman filter can be used. Linearization 
errors in EKF arise from estimation errors due to the 
dependency of the Jacobian elements on the current state 
estimate. Such errors lead to suboptimal performance. The 
EKF is ‘only as good as the linearization; if the estimate gets 
too far off, there comes the EKF divergence. An alternative 
approach is the unscented Kalman filter (UKF) where the 
random variable, Gaussian distribution is linearized while the 
nonlinear model equations are directly used in the 
calculations (Julier et al., 2000, 2001). 

The central difference filter (CDF), also called divided 
difference filter (DDF), is similar to the concept behind the 
UKF, both of which are considered to be among the class of 
linear regression Kalman filters, but is based on a 
multivariable extension of Stirling’s interpolation formula. 
Like the UKF, the CDF generates several points about the 
mean based on varying the covariance matrix along each 
dimension. A slight difference from the UKF is in that the 
CDF evaluates a nonlinear function at two different points for 
each dimension of the state vector that are divided 
proportionally by the chosen step size (Nørgaard et al., 2000 
and Saulson et al., 2004). 

The CDF performs a better covariance estimate than the UKF 
by approximating the covariance based on prior covariance as 
opposed to depending on the covariance of the set of sampled 
points. Additionally, the CDF provides a faster processing 
speed than the UKF because it does not need to predict 
forward every positive and negative sigma point in separate 
stages from when the measurement prediction, measurement 
prediction covariance and cross-covariance are solved. Also, 
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the CDF impose less system memory requirement (Nørgaard 
et al., 2000 and Saulson et al., 2004). 

In this paper, a second order (CDF2) is employed for the 
initial alignment problem of the SINS. This filter is simple to 
implement as it needs no derivatives for linearization of the 
system. The CDF2 implemented here gives the comparable a 
priori estimate as the UKF described in (Julier et al., 2001, 
2004), but a better covariance estimate. The initial alignment 
error equations of the SINS with large initial azimuth error 
have been derived and nonlinear characteristics are included 
(Bar-Itzhack, 1985). When the azimuth error is fairly small, 
nonlinear error equations can be reduced to the linear ones. In 
the initial alignment problem, it is assumed that latitude and 
longitude are accurately known. In addition to this, it is 
assumed that rate of change of these position coordinates is 
small as compared with the Earth’s rate. Under these 
assumptions, relationships are derived for the Earth’s rate, 
position change rate and the Coriolis acceleration error. 

This paper comprises 4 sections; the section 2 presents 
statement of the problem for the SINS initial alignment using 
the CDF2; theory and algorithm of the CDF2 is also briefed 
here; the SINS initial alignment problem for the application 
of the proposed filter structure is the subject of section 3; 
simulation results are also depicted in this section, and then 
in the section 4, some useful conclusions are drawn. 

2. STATEMENT OF THE PROBLEM 

The nonlinear system’s dynamic and observation equations in 
discrete form are given as (Jazwinski, 1970) 

 1 1( , 1)k k kx f x k w− −= − +  (1) 
 ( )k k k kz h x ϑ= +  (2) 

where () n n
kf

×∈  is the process model; n
kx ∈  is the state 

vector; n
kw ∈  is the system noise; p

kz ∈  is the 

measurement vector; () p n
kh ×∈  is the measurement model 

and p
kϑ ∈  is the measurement noise. It is assumed that 

noise is uncorrelated Gaussian white noise sequences with 
mean and covariances as follows: 

{ } 0; { }i i j ijE w E w w Qδ= =  
{ } 0; { }i i j ijE E Rϑ ϑϑ δ= =  
{ } 0i jE wϑ = , for all ,i j  

where {}E ⋅  denotes the expectation, and ijδ  is the Kronecker 
delta function. Q and R are bounded positive definite 
matrices (Q>0, R>0). Initial state 0x  is normally distributed 
with zero mean and covariance 0P . 

The problem here is to use nonlinear filter that is more 
efficient and estimation accuracy is more than the 
conventional EKF. The reason for including the CDF in this 
study is due to the rapidly growing support for the linear 
regression filters over the EKF in potentially all applications 
of nonlinear state estimation. The motivation behind 
including the CDF in this study is due to its improvement 
over the EKF and the UKF. 

2.1 The Central Difference Filter 

Historically the first of these approximate nonlinear filters 
was the EKF (Jazwinski, 1970) which linearizes the system 
and observation equations about a single sample point with 
the assumption that the a priori distribution is Gaussian, and 
uses the Kalman filter to obtain estimates for the state and 
covariance of these estimates. The single sample point is 
chosen as the best estimate, that is, the approximation of the 
conditional mean. 

Recently, there have been interesting developments in 
derivative-free nonlinear state estimation techniques as 
efficient alternatives to the EKF (Nørgaard et al., 2000, Julier 
et al., 1995, 1997 and van der Merwe et al., 2004). These 
include the UKF and the CDF. These are called sigma point 
filters (SPFs) and belong to the simulation based nonlinear 
filters (Lee et al., 2003). The UKF (Julier et al., 2001) works 
on the principle that a set of discretely sampled sigma points 
can be used to parameterize the mean and covariance of the 
Gaussian random variables, and the posterior mean and 
covariance are propagated through the true nonlinear function 
without the linearization steps.  

The UKF has advantages over the EKF in that 1) it can lead 
to a more accurate, stable estimate of both the state and 
covariance, 2) the new filter can estimate with discontinuous 
functions, 3) no explicit derivation of the Jacobian or Hessian 
matrix is necessary, and 4) the new filter is suitable for 
parallel processing.  

The CDF adopts an alternative linearization method called a 
central difference approximation (Nørgaard et al., 2000 and 
Saulson et al., 2004) in which derivatives are replaced by 
functional evaluations, and an easy expansion of the 
nonlinear functions to higher order terms is possible. This put 
ups easy and efficient implementation of the filters in 
nonlinear estimation applications.  

2.2 The CDF Algorithm Equations 

In this section, the algorithm employed, referred to as the 
CDF2 (Nørgaard et al., 2000) is presented. The CDF2 is 
described as a SPF in a unified way where the filter linearizes 
the nonlinear dynamic and measurement functions by using 
an interpolation formula through systematically chosen sigma 
points. The linearization is based on polynomial 
approximations of the nonlinear transformations that are 
obtained by Stirling’s interpolation formula, rather than the 
derivative-based Taylor series approximation.  

Conceptually, the implementation principle resembles that of 
the UKF, the implementation, however, is significantly 
simpler because it is not necessary to formulate the Jacobian 
matrices of the nonlinear dynamic and measurement 
equations. Thus, the CDF2 can replace the UKF, EKF and its 
higher-order estimators in practical real-time applications that 
require accurate estimation, but less computational cost 
(Christopher et al., 2006). 

The CDF2 filter makes use of first and second order central 
differences (CDs) to approximate nonlinear transformation of 
the state and covariance.  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4732



Initialization: It is same as that of the EKF except the 
square-root decompositions of the covariance, process noise, 
and measurement noise matrices which are defined as  

ˆ ˆ ˆ, , ,T T T T
w w x x x x xQ D D R D D P D D P D Dϑ ϑ

− − −= = = =  
Also, the jth column of xD−  shall be referred to as ,x jd−  and 
likewise for the other matrices. The factorization of the noise 
covariance matrices can usually be made in advance. xD− and 
ˆ xD  are updated directly during application of the filter. 

Time update: Matrices containing first order CDs are 

 
' '
ˆ, ,

' '
ˆ, ,

[ ]/(2 ), [ ]/(2 )

[ ]/(2 ), [ ]/(2 )

xx k p p xw k q q

zx k p p z k r r

D F F m D F F m

D H H m D H H mϑ

+ − + −

+ − + −

⎫= − = − ⎪
⎬
⎪= − = − ⎭

 (3) 

where m is the central difference perturbing parameter, and 

,ˆ( )p k x j kF f x md w+ −= + + , ,ˆ( )p k x j kF f x d w− −= − + ,  

,ˆ( ) ( )q k k w jF f x w md+ = + + , ,ˆ( ) ( )q k k w jF f x w md− = + − ,  

1 , 1ˆ( )p k x j kH h x md ϑ+ −
+ += + + , 1 , 1ˆ( )p k x j kH h x md ϑ− −

+ += − + ,  

1 1 ,ˆ( ) ( )r k k v jH h x mdϑ+
+ += + + , 1 1 ,ˆ( ) ( )r k k x jH h x mdϑ− −

+ += + −  
The matrices of second order CDs are defined as 

 

2

2

2

2

2

2

2

2

1"
ˆ, 1

2

1"
, 1

2

1"
ˆ, 1

2

1"
, 1

2

[ ]

[ ]

[ ]

[ ]

m
xx k p p

m

m
xw k q q

m

m
zx k p p

m

m
z k r r

m

D F F F

D F F F

D H H H

D H H Hϑ

− + +
+

− + −
+

− + −
+

− − −
+

⎫
= + − ⎪

⎪
⎪
⎪= − −
⎪
⎬
⎪= − − ⎪
⎪
⎪

= − − ⎪
⎭

 (4) 

where ˆ2( ( ) )k kF f x w= + , and 1 1ˆ2( ( ) )k kH h x ϑ+ += +  
The state, state root covariance, measurement, and 
measurement root-covariance predictions are given by 

( )2 ( ) 1
1 1 12 22

ˆ ( ) ( )m n n n nx w x x
k p p q qj jm m

x F F F F F− +− + − + −
+ = == + + + +∑ ∑  (5) 

 , 1x kD−
+ =H ' ' " "

ˆ ˆ, 1 , 1 , 1 , 1([ ])xx k xw k xx k xw kD D D D+ + + +  (6) 

( )2 ( ) 1
1 1 12 22

ˆ ( ) ( )m n n n nx w x x
k q q r rj jm m

z H H H H H− +− + − + −
+ = == + + + +∑ ∑  (7) 

 , 1z kD−
+ =  H ' ' " "

ˆ ˆ, 1 , 1 , 1 , 1([ ])zx k z k zx k x kD D D Dϑ ϑ+ + + +  (8) 

where xn  and wn denote the dimensions of the state and 
process noise vector, respectively; H represents a 
Householder transformation of the argument matrix 
(Nørgaard et al., 2000). 

Measurement update: Lastly, the state, Kalman gain and 
state root-covariance update equations are given by 
 1 1 1 1 1ˆ ˆ( )k k k k kx x K z z− −

+ + + + += + −  (9) 

 ' 1
ˆ1 , 1 , , 1 , 1( ) [ ( ) ]T T

k x k zx k z k z kK D D D D− − − −
+ + + +=  (10) 

ˆ , 1Dx k =+ H ' ' " "([ ])ˆ ˆ, 1 1 , 1 , 1 , 1 ,D K D K D K D K Dx k k zx k k z k k zx k k z kϑ ϑ
− −+ + + + + (11) 

Here, the same state and noise perturbations, used to calculate 
the first order CDs, are again used to compute the second 
order CDs. This point has important implications with regard 

to the computational costs, suggesting that the CDF2 may not 
require a great deal more computing time than the CDF1. 

The CDF2 implementation algorithm is depicted in Fig. 1. 

Square-root Decomposition

MeasurementsPrediction

Correctionˆ, , ,P P Q R−

1. Update state estimate

    (Eq. 9)
2. Kalman gain 
    (Eq. 10)
3. Upadte state root cov.

    (Eq. 11)

1. Matrices of CDs 
    (Eqs. 3 and 4)
2. State prediction
    (Eq. 5)
3. State root cov.
    (Eq. 6)
4. Measurement predict  
    (Eq. 7)
5. Measurement root cov.
    (Eq. 8)

 
Fig. 1. The CDF2 implementation algorithm 

3. ERROR MODEL FOR THE INITIAL ALIGNMENT 

3.1 Coordinate Frames 

Coordinate frames used in the case study of initial alignment 
of the SINS are as follows (Britting, 1971): 

Inertial frame (i-frame): It has origin at Earth center; z-axis is 
normal to the equatorial plane; x-axis lies in equatorial plane, 
its direction can be specified arbitrarily; y-axis complements 
the right handed system. 

Body frame (b-frame): It has origin at center of mass of 
vehicle; x-axis is along longitudinal axis; z-axis is 
perpendicular to longitudinal plan of symmetry and y-axis 
complements the right handed system. 

The Earth fixed frame (e-frame): It is the Earth fixed 
coordinate frame used for position location definition. Its z-
axis is coincident with the Earth’s polar axis while the other 
two axes are fixed to the Earth within the equatorial plane. 

The navigation frame (n-frame): It is a local geographic 
coordinate frame; z-axis is parallel to the upward vertical at 
the local Earth surface referenced position location; x-axis 
points towards east, and y-axis points towards north. 

3.2 Error Analysis 

Consider a vector v  that is known in the geographical frame 
and can be obtained by processing the sensor outputs. Ideally, 
their relationship can be written as (Jiang, 1998) 

 n n b
bv C v=  (12) 

where n
bC  represents the true transformation matrix.  

However, it is inevitable that the inertial sensing signals will 
be contaminated with uncertainties in a practical strapdown 
system. Therefore, only the computed transformation matrix, 
ˆ n
bC , and the estimated vector ˆ bv  are available. As finishing 
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the alignment process, the relationship (12) has to be written 
as 
 ˆˆ ˆn n b

bv C v=  (13) 

When the alignment process has completed, ˆ n
bC and n

bC  can 
be related with 
 ˆ ( )n n

b bC I S C= + −Φ  (14) 
where I is the identity matrix, and S represents the deviation 
of matrix ˆ n

bC  from the orthogonal form. The matrix S is 
symmetric with the form of 

 
x z y
z y x
y x z

s e e
S e s e

e e s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (15) 

where the diagonal elements represent the scale errors and off 
the diagonal elements represent the skew misalignment 
angles. 

When the ˆ n
bC  matrix is made orthogonal, S is zero. But ˆ n

bC  

will still be different from n
bC . Then,Φ  provides a measure 

of the difference between the two rotations. The matrix Φ  is 
a skew symmetric with elements denoting axes misalignment 
angles. It is important to study the case of large uncertainties 
in the azimuth and low uncertainties in tilt angles. Therefore, 
for small pitch and roll errors, we have 

 
cos sin
sin cos

1

z z yn
n z z x

y x
C

φ φ φ
φ φ φ

φ φ
′

′ ′

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

 (16) 

Small angle approximations used here are 
sin ,sin ,cos 1,cos 1, 0x x y y x y x yφ φ φ φ φ φ φ φ≈ ≈ ≈ ≈ ≈  

cos siny y z x zφ φ φ φ φ′ = +  and sin cosx y z x zφ φ φ φ φ′ = − +  

3.3 Velocity and Attitude Error Model 

The vehicle’s acceleration relative to Earth in the navigation 
frame is (Britting, 1971). 
 n n n nv f f g= − ∆ +  (17) 

where nv  represents acceleration, nf  is the specific force, 
nf∆  is the Coriolis acceleration and the vehicle’s centripetal 

acceleration around the Earth and [0 0 ]n Tg g= −  is the 
gravitational acceleration vector. 

The estimated acceleration of the SINS is 
 ˆ ˆˆ n n n nv f f g= − ∆ +  (18) 
Now considering the accelerometer bias, estimated specific 
force is given as 
 ˆ n n nf f ′ ′= + ∇  (19) 

where nf ′  and n′∇  is the specific force and accelerometer 
bias, respectively in the computed geographic frame. Above 
equation can also be written as 
 ˆ n n n n

nf C f′ ′= + ∇  (20) 

Multiplying both sides of above equation by n
nC ′ , we get 

 ˆn n n n n n n
nn n nC f C C f C′ ′

′ ′ ′= + ∇  (21) 

Simplification and rearrangement yields 
 ˆn n n n

nf C f′= −∇  (22) 
Subtracting (17) from (18), and using (22) yields 
 ˆ ˆ ˆˆ ( ) ( )gn n n n n n n n n n

g nv v v f C f f f I C fδ′ ′∆ = − = − +∇ − ∆ − ∆ = − − +∇  (23) 

where I is the identity matrix and ˆn n nf f fδ = ∆ − ∆  

For the matrix n
nC ′ , by virtue of the Poisson equation, we 

have 
 n n n n n n n

n n i n n inC C C C′ ′ ′ ′ ′
′= −Ω = −Ω + Ω  (24) 

where n
iΩ  is the skew symmetric matrix of the angular 

velocity of the geographical frame rotation about the inertial 
frame and it is expressed as 
 [ ( )cos ( )sin ]Tn

i ie ieω ϕ ω λ ϕ ω λ ϕ= − + +  where n
i
′Ω  and n

n
′Ω  

represent matrices of the angular velocities of the computed 
geographical frame relative to the inertial frame and of the 
computed geographical frame relative to the geographical 
frame.  
From (24), for small angle approximation of ,x yφ φ , we find 

 [ ]
Tn n n n n

n x y zφ ω ω ω ω′ ′= =  (25) 

Post multiplying both sides of (24) by n
nC ′  and simplification 

yields 
 n n n n n

n i n i nC C′ ′ ′
′Ω = Ω − Ω  (26) 

Equation (26) corresponds to the vector equality as 
 n n n n

n i n iCω ω ω′ ′ ′= −  (27) 

The angular velocity n
iω
′  of the computed coordinate system 

for the SINS orientation algorithm is derived on the 
information about n

iω  obtained from SINS as 

 n n n n
i i iω ω δω ε′ = + +  (28) 

where nε  is the gyro drift vector in the computed navigation 
frame, n

iδω  is the angular rate error in n
iω  obtained from the 

SINS.  
From (27), we get n

iω
′  and equating it with (28) yields 

 ( )n n n n n n n n n n
n n i i n i iC I Cω φ ω δω ε ω δω ε′ ′ ′ ′= = − − + + = −∆ + +  (29) 

In the initial alignment problem, it is assumed that latitude 
and longitude are accurately known. Besides this, it is 
assumed that rate of change of these position coordinates is 
small as compared with the Earth’s rate. Under these 
assumptions, relationships for the Earth’s rate, position 
change rate and the Coriolis acceleration error are (Dmitriyev 
et al., 1997). 

 [0 cos sin ]n T
i ie ieω ω ϕ ω ϕ=          (30) 

 [ / / tan / ]n T
i y x xv R v R v Rδω ϕ= −∆ ∆ ∆  (31) 

 
2 cos 2 sin

2 cos
2 cos

ie z ie yn
ie x
ie x

v v
f v

v

ω ϕ ω ϕ
δ ω ϕ

ω ϕ

∆ − ∆⎡ ⎤
⎢ ⎥= ∆
⎢ ⎥− ∆⎣ ⎦

 (32) 

Substituting these relationships given by (30) in (23), we get 
velocity error differential equations 
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ˆ ˆ(1 cos ) sin 2 cos 2 sin
ˆ ˆsin (1 cos ) 2 cos

ˆ ˆ 2 cos

n n n
z x z y y ie z ie y x

n n n n
z x z y x ie x y

n n n
y x x y ie x z

f f g v v
v f f g v

f f v

φ φ φ ω ϕ ω ϕ
φ φ φ ω ϕ

φ φ ω ϕ

′

′

′ ′

⎡ ⎤− + − − ∆ + ∆ +∇
⎢ ⎥

∆ = − + − + − ∆ +∇⎢ ⎥
⎢ ⎥− + ∆ +∇⎢ ⎥⎣ ⎦

 (33) 

Substitution of (30) in (29) yields attitude error differential 
equations as 

 
sin cos sin /

(1 cos ) cos tan /

cos tan /

n
z ie y ie y x

n n
z ie x x y

n
x ie x z

v R

v R

v R

φ ω ϕ φ ω ϕ ε

φ φ ω ϕ φ ϕ ε

φ ω ϕ ϕ ε′

⎡ ⎤− + − ∆ +
⎢ ⎥
⎢ ⎥= − − ∆ +
⎢ ⎥

+ ∆ +⎢ ⎥⎣ ⎦

 (34) 

3.4 Simulation 

To validate and corroborate the alignment problem described 
in this paper, the primary sensor system used is the SINS that 
generates position, velocity and attitude information. The 
goal of the initial alignment scheme is to provide accurate 
attitude transformation matrix and improved estimates of the 
SINS error sources. Velocity error from the SINS yields 
observation to the CDF2. All the simulations have been 
carried out using a real set of data. Here, the SINS 
computations are carried out at 20 Hz; while the CDF2 
update interval is 1 Hz. Simulations have been carried out for 
400 seconds. 

In the simulation, the designed values of matrices for the 
process noise covariance Q and the measurement noise 
covariance R are as follows: 

, ,([ , ]), , , ; ,g i a jQ diag Q Q i x y z j x y= = =  

where 2
, (0.01 / )g iQ h=  for gyros and 2

, (50 )a jQ gµ=  for 
accelerometers 

2 2([(0.1 / ) ,(0.1 / ) ])R diag m s m s=  
The initial state vector 0x  is assumed to be zero and the initial 
error covariance is defined as 

0 ([ , , , ]) , , , ; ,i j i jvP diag P P P P i x y z j x yφ ε ∇= = =  

where 2 2 2(1 ) , (0.1 / ) , (0.02 / )i j ivP P m s P hφ ε= = =  and 

2(100 )jP gµ∇ =  

Measurement model used in this paper is linear, i.e., 
horizontal velocity components as estimated by the 
navigation system are used as observation to the proposed 
filter implementation. State vector consists of ten system 
states, i.e., 3 attitude errors, 2 horizontal velocity errors, 3 
gyro drifts, and 2 level accelerometer biases.  

The discrete filter realization used in this paper is in the direct 
feedback mode where the estimated attitude errors are fed 
back to the SINS, thus minimizing the evolution of the 
observed velocity errors those are to be delivered as an 
observation to the filter. In this simulation, quaternion is 
obtained from the corrected attitude matrix and is fed back 
for attitude error compensation. 

3.5 Results and Discussion 

Simulation results for the initial alignment problem are 
shown in Fig. 2. These results illustrate that among the three 
misalignment angles, leveling misalignment angles can be 
estimated effectively. The estimation of Eφ  and Nφ  

converges fast but the convergence of Uφ is very slow. Slow 
convergence rate of Uφ  is due to the unobservable state of Eε .  

Additionally, the CDF provides a faster processing speed 
than the UKF because it does not need to predict forward 
every positive and negative sigma point in separate stages 
from when the measurement prediction, measurement 
prediction covariance and cross-covariance are solved. Both 
the CDF and UKF provide substantial performance increase 
over the EKF in state estimation problems.  
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Fig. 2. Axes misalignment angles 

Quantitative comparison between the three nonlinear filtering 
techniques has been depicted in the Table 1. In the table, θ , 
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ψ  and γ  stands for vehicle’s pitch, heading and roll angles, 
respectively. 

Table 1.  Attitude accuracy comparison 

Filter ["]θ  [ ]ψ  ["]γ  
EKF 13.25 2.43 24.32 
UKF 7.34 1.92 17.45 
CDF 6.57 1.76 16.12 

4. CONCLUSIONS 

In terms of estimation accuracy, there is insignificant 
difference between the EKF, UKF, and CDF. However, the 
EKF may diverge due to poor functional linearization and the 
UKF may result in large errors and slow convergence due to 
poorly proportioned and overly large covariance matrices 
while the CDF is much less sensitive to this problem. In 
terms of speed, there is an approximately 1.0:2.5:5.0 
(EKF:CDF:UKF) ratio for speed, while the ratio for memory 
is approximately 1.0:1.6:2.0 (EKF:CDF:UKF) for maximum 
number of elements stored. The EKF requires that the partial 
derivative at a particular point is available, causing very low 
reliability in some cases. The UKF and CDF do not always 
meet the requirement that the state covariance be positive 
definite, therefore the square-root UKF and CDF should be 
used instead, which are said to be more efficient and robust. 
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